相位切割功率控制的制作方法

文档序号:12185632阅读:443来源:国知局
相位切割功率控制的制作方法与工艺

本申请涉及交流电功率的控制装置和方法,具体地说,涉及通过相位切割的交流电功率控制。



背景技术:

当电功率,以电压或电流施加于负载,从而由电力源有效地传送能量给负载,基本上有若干个关键的问题。

首先,来自电源的电压或电流电平应适合负载,而负载通常被设计为仅在电压或电流电平的一定范围内才能正常工作。举例说,一个白炽灯可以从一个指定幅度的供电电压正常工作,例如230V或110V,另一方面一个LED灯却需要例如300mA的驱动电流。电压或电流如果和规定范围有偏差可能引起电源或负载操作效率受损或甚至破坏性的损坏。

第二,负载可能被指定只接受直流或交流电源,并具有一定的频率,和一定的波形。例如,对于上面引述的例子中,白炽灯可能被设计为50/60赫兹正弦波电压供电,而LED灯可以被设计为直流电流供电。与此规定范围有偏差也可能引起电源或负载操作效率受损甚至破坏性的损坏。

第三,电源有可能需要正确的负载才可预期地正常运行。一个例子是可控硅(TRIAC)照明调光器,其中一个要求是被栅电极脉冲触发后通过被充分加载的可控硅的负载电流须保持不低于最小保持电流阈值,以使可控硅保持导通。最小保持电流是所使用可控硅管的电特性。第四,控制负载功率的指令信号,有必要通过单独的信号线,或者通过电源线本身来传送。可控硅调光器是后者一个很好的例子,因为电源和信号线被结合在一起成单线路的照明装置。在负载侧作合适的信号处理,相位切割波形实际上可以被解码为超越简单的功率电平控制,而传递至负载更多的功率的操控信号。很明显信号线的节省意味着经济效益。

为了解决上述问题,在过去几十年大量的各种电气和电子系统和方法被发明了。这些包括用电力变压器来提高或降低AC电压电平,DC至DC转换器或AC-DC转换器以提供直流电压电源,以及DC至AC或AC至AC转换器,以提供交流电压供应。所有这些都被部署于解决上述的第一个和第二个问题。

至于第三个和第四个问题,可控硅调光器是一个富有技术挑战的研究好题目,因为这个老技术亦可应用于现代电子器件,例如由开关模式电源SMPS驱动的LED灯,将解释如下。

可控硅调光器是最流行的相位切割功率控制器,或简称为相位切割器,其通过相位切割,即除去AC电压的正弦波形的一部分,从而降低了提供给负载的RMS(均方根)电压,亦即降低了电功率。相位切割实际上可以看作一个特别适用于交流电源控制的PWM(脉冲宽度调制)技术,通常为了正常操作,需要与AC电压源的频率同步。

已经存在了半个世纪,可控硅调光器最初被设计用于为阻性负载的白炽灯,取其电路简单,成本低,故已非常流行。另外,通过将控制信号及电力以同一电路递送给负载,可控硅调光器提供了两线安装模式最简单和最便宜的方式,如在图1的电路图中示出。当然,大多数现有的基础住宅布线设施已经是按双线模式安装的。基本上可控硅调光器是包含一个CR(电容器-电阻器)组成的电容器C1和电阻R1+R2的定时电路,及一个由双向触发二极管D1和可控硅TR1组成的电功率开关电路。请注意,当可控硅是开路时,负载LOAD,在白炽灯的情况下为一个电阻,是置于CR定时电路的关键路径。因此,如果负载不能为定时电路提供足够低的阻抗,其存在可能影响定时电路以至可控硅调光器的表现。

相比于白炽灯,作为由开关模式电源转换器供电的现代化设备对相位切割功率控制器呈现了一个完全不同种类的负载。一个典型的例子是开关AC到DC转换器驱动的LED灯,对相位切割调光器提供了反应性和非线性的负载。这是传统的可控硅调光器面对高能量效率LED灯的问题,是其无法直接或通过功率变换器抽取足够的电流来保持可控硅的导通。另外,反应性和非线性的负载未必在两线连接方式下可为可控硅调光器提供良好的定时电路路径,或导致灯具的反常行为,诸如光闪烁,亮熄交替,突亮灯,突熄灯等。虽然这方面三线连接模式提供比两线模式较好的解决方案,但这不是在现有许多住宅现场是可行的。如何设计好LED驱动器以能和该两线调光系统正常工作,在时下极具实用和商业意义。

可控硅调光器被分类为“前沿”或“前向”相位切割调光器,以分别于“后沿”或“落后”或“反向”相位切割调光器。这两个类别是根据切割部分是AC电压的单个半周期的前或后部分,如图2所示为例子。从上到下,第一波形是相位切割前的电源电压,第二个是被前沿90度左右被切割,而底部一个是被后沿45度左右切割。

除了上述两类相位切割调光器,还有另一类是在每半周期切割交流电源多次,或甚至以高频率切割。这些调光器被称为正弦波调光器,由于其电路结构复杂和高成本,仅部署于高端应用,例如电视台和剧院。这些调光器将也为本发明所公开的功率控制器兼容。

相位切割的确是AC电源控制一个简单而直接的方式。然而,相位“切割”产生了一个现象,可能导致在设计中不希望有的EMI(电磁干扰)问题,即电压的非常突然的变化,以及电流的类似突变。为了解决这个问题,如图1由电感器L1和电容器C2组成的LC滤波器被部署作EMI的抑制。

对电阻性负载例如白炽灯,可控硅调光器以简单的LC滤波效果已很好。然而,如果调光器被连接到一个感性或容性负载,例如一个SMPS(开关模式电源)驱动的照明装置,便会有非常不同的效果。一个相位切割功率控制器的输出电压的突然变化,以符号形式即高dV/dt施加在电容性负载可以导至非常高的电流脉冲,而高的电流脉冲即di/dt通过电感可以导至非常高的电压脉冲。这种高水平的EMI如果不加抑制可能使电源控制器和/或其负载装置不能工作,甚至遭受破坏。对于可控硅调光器,一个电抗性负载还有另一个问题。在正弦电源电压的每个过零点之后,可控硅在由CR定时电路所定的相位角触发接通。一旦触发,可控硅继续导通,直至电流下降至保持电流阈值。对于电阻性负载,负载电流通常是设计为保持电流阈值以上直至正弦电压变为接近零。相同的过程被重复于每个半波周期。至于电抗性负载,当可控硅电流从截止到开通可能突然上升和下降,即振铃振荡,一旦电流波动至低于保持电流阈值时,即使只是瞬间,可控硅也将立即被断路,因而引起AC/DC变换器驱动的LED灯作为调光器负载而导至的闪烁。不只为了保持电流,无论是前沿或后沿触发的相位切割功率控制器,在两线模式下,通常需要经负载提供足够的工作电流。因此对于轻负载,如图3A所示,可能需要并联连接一个假负载以保持足够份量的电流以确保相位切割功率控制器的正常操作。

因此,假负载具有三个功能:在导通时间帮助提供保持相位切割器导通的负载电流,在非导通时间提供CR定时电路正常工作的电路径,并在两线模式下为相位切割器正常运行提供足够的功率。注意,假负载会从相位切割器汲取电流,如图3A所示直接从切割器的输出,或者通过过滤器和阻尼器,或通过整流器。框图所示,忽略由过滤器和阻尼器单元通过的通常较小的电流,通过相位切割器总电流Ipcut等于开关模式电源转换器输入电流Ismpc,和假负载电流Idummy的和。还要注意的是对假负载而言,通常整流器与滤波器和阻尼器在级联的位置可以互换。作为一个例子,专利US6452343是个有部署假负载/泄放器的可控硅调光器的早期专利。然而很明显,在这种排列下,能量被假负载/泄放器消耗及浪费掉。因此已经有各种尝试,为了动态地或自适应地减少电力的浪费,控制电流仅在需要时通过假负载。许多不同的电路方案被设计以控制假负载或泄放电流,例如通过监测调光器的电压输出,或调光器的电流输出,或调光器开关的时间控制。图3B的框图是用于说明具有可变假负载的相位切割功率控制系统。如图所示,假负载是由一个假负载控制器DLC控制吸取来自整流器的输出电流。在假负载控制器DLC内,代表调光器输出电流Irect,被检测并由有限增益的比较器(未示出)和预定的电流基准Iref比较。Iref可以是常数或随时间变化的电压,代表一个电流值不小于相位切割器(例如可控硅)的保持电流阈值。相对于Iref,调光器电流Irect的任何短缺将由比较器放大并驱动假负载来从整流器输出更多的电流,并与并联的开关模式电源转换器,维持相位切割器电流不少于Iref。任何时刻当开关模式电源转换器有更大的电流,则假负载电流将被减少,使较少的功率被浪费。注意,与固定假负载的情况不同,电流是从整流器输出端而不是整流器输入端引至可变假负载,以方便单极模式下的控制。同样地,电压和电流检测点也是在以同样的原因置于整流之后。如图3B所示有由虚线表示的其他替代感测点,例如调光器的输出电压,开关模式电源转换器的电压或电流,正如通过由下述专利所列举的现有技术的各种控制方案。

专利US6870327,US8169154,US8264165和US8716957所述,调光器输出电压被持续地监测,当调光开关被接通时,假负载被以短的时间接通,以抵消任何可能关闭调光器可控硅开关的振铃调光电流的下冲。

专利US8664885所述调光器输出电压也被持续监测,其调光器输出电压低于预先设定的电压电平时,假负载/泄漏电流被允许流动。这是假定,当线路输入电压,亦即调光器输出电压低于某设定电压电平时,调光可控硅将失去导通。另一方面,对于US7132802,当调光器输出电压接近于零,一个跨接调光器输出端的泄放器被接通,以使调光器的定时器能正确操作。专利US7656103,US8283875,US8441210,US8575901,US8610375和US8704462所述调光器的输出电流也被持续监测,并与代表调光可控硅的维持电流阈值的一个参考电压比较。只有当调光器的输出电流达不到该阈值时,所述假负载或泄漏电流才被接通,并控制以弥补不足。此外,泄漏电流可通过跨越(LED)负载的电流或电压以监测控制,如专利US8581498和US8766560。为了寻求更好的解决方案,已经有提议是以特意增加开关模式电源转换器的输出,从而使转换器从相位切割早器中抽取更多的电流,就好像它正在扮演了假负载或泄放器的附加角色。所取得的好处是,此假负载或泄放器并没有需要额外的组件,从而避免了在成本和效率相关的付出。专利US8610375似乎已经依此作出尝试,其中当检测到可控硅电流为比保持电流阈值低时功率转换器开关的占空率便被增大。然而专利并无交待转换器由加大占空率而强制提高输入驱动电流,但却不理会使负载的功率有何影响,即没有解决转换器负载功率的增加,以及是否和如何令能量效率受到损害。因此,作为本发明的一个非常理想的目的,是开发一个无需任何单独的假负载或泄放器的相位切割功率控制方法,并同时对输出到负载的功率绝对没有任何不良影响。

还有一个需要是对负载的供电能控制得平滑顺利,例如通过调光器控制使LED灯得到平稳的发光输出。在目前的市场下,一般经验是传统的白炽灯调光控制的平滑性轻易胜过LED灯。故此如果LED灯能在这方面和白炽灯一样好,市场会是非常感兴趣的。

图4A至4C示出了相位切割功率控制的现有技术中,用于由开关模式电源转换器向负载,例如目前许多LED灯,供电的各方案的工作原理。

引述LED灯作为相位切割功率控制下的一个典型负载例子,在现有技术中有两种不同的方法来驱动通过一个开关模式电源转换器的方案。第一种方法是利用开关模式电源转换器,产生一个幅度正比于相位切割电压(有效值或平均值或其他测量参数)的电流。通过改变相位切割电压输出的大小,LED灯的电流被比例地改变,其光输出从而被相应地控制。图4A所示,由Vrect表示的整流器输出电压被检测和由DC Sig Gen模组得到代表Vrect大小,有效值或平均值或其他测量参数的Vrectdc直流电压。Vrectdc也可以由代表Vrect的占空比(未切割部分百分比)。Vrectdc作为瞬时参考Ispcref接有限增益的比较器COMP的正输入端。从开关模式电源转换器向负载输出电流被检测为与由Ispc表示。Ispc与Ispcref进行比较以产生一误差信号Ispcerr作为反馈信号,以驱动开关模式电源转换器,以减少这个误差信号。因此,负载电流被驱动以追随相位切割器的输出电压幅度。

第二种方法是由开关模式电源转换器产生一个恒定的电流(或者电压,较不理想)以斩波模式输送到LED灯,而其斩波占空比与相位切割电压值(如有效值或平均值)成正比。至于切割频率可以很方便地使用整流后电源电压的100/120赫兹。进一步,如果相位切割调光器的输出电压占空比可被接受代表LED灯所需功率的大小,控制电路可以被大大简化。

图4B的方框图显示了该方法的工作原理。整流器的输出电压Vrect与低电压基准Vrectlow作比较,其输出是一个方波Vchop。Vrect大于Vrectlow时Vchop是高电压电平,Vrect低于Vrectlow时Vchop是低电压电平,这意味着Vchop的占空比基本上按照相位切割的输出电压。因此功率以电流或电压模式,由开关模式电源转换器输出,并根据该相位切割功率控制器输出电压被斩波以提供给负载。

以50/60赫兹的线路频率,虽然白炽灯不成问题,但人眼可以感受到LED灯100/120赫兹明显的闪烁。这是因为相比于白炽灯,发光二极管对脉动驱动电流的电光响应有时间低得多这一事实。因此,除非该LED灯的响应时间被内置于LED器件的磷光充分减慢,一些研究建议用较高的斩波频率诸如800赫兹,希望以此摆脱闪烁的问题。图4C显示了一个如何实现这结果的电路。如图所示,整流输出电压Vrect被检测并转换为DC信号Vrectdc由DC Sig Gen模组使得Vrectdc代表Vrect的幅度,无论是有效值或平均值或其他测量参数。Vrectdc也可以代表Vrect的占空比。Vrectdc驱动脉冲宽度调制控制器PWM Sig Gen产生频率800Hz或更高的斩波信号Vchop,其占空比与Vrectdc成正比。因此从功率开关模式电源转换器的输出,并输送到负载的电流或电压,被较高频率的相位切割功率控制器切割以消除其闪烁效应。除了闪烁,现有市场上的调光器还有另一个方面往往未能满足用户的期望,即顺利平滑地把光量降低至很低或什至零水平,并且适当地为观众的瞳孔因暗淡的光而扩大作出补偿。为了这个目的,需要一个更复杂的控制方案,以达到上述期望的调光特性。

因此,作为本发明的另一个目的是设计一个控制方法,通过相位切割改善调光特性。

一般施加于直流操作装置,从AC到DC的转换过程中,大电容器通常用于能量储存,大不可或缺。相位切割功率中用于转换所提供的电压占空比可以非常小,需要大电容器把电荷储存起来,以保对控制电路的正常运行的持续供电。这就需要相对于其他电子组件,如发光二极管和半导体集成电路,不幸没有良好的可靠性和长寿命的电解电容器。因此,作为本发明另一个目的,设计出一种可调光的开关模式电源转换器,而不需要大的电容器。没有大电容器的副送好处是,由于大电容不存在,大浪涌电流大大减小,因此输入电流缓冲器也不再需要。进一步的好处是,如果没有大电容器,输入线电流趋于与输入线电压更密切地跟随,这意味着高功率因数得以保留。

请注意,在整个上述和下述的说明中,可控硅调光器经常被引用作为典型的相位切割功率控制器的一个例子,缘于它是本发明的所有创新应用的好例子。同样地,开关模式电源转换器推动的LED灯则被经常引用作为一个典型相位切割功率控制器的无功负载例子。因此,应当理解的是,尽管只提出了有限的实施例,本发明的描述及相应的权利要求,可适当地应用于任何相位切割功率控制器及任何种类的负载。



技术实现要素:

有鉴于此,本申请所要解决的技术问题是提供了一种具有以下特征的功率控制装置和方法:

1)相位切割器所要求的的保持/负载电流由开关变换器提供而无需任何额外的假负载/泄放器。

2)平滑的照明调旋旋光性能可使负载调光到零而无闪烁。

3)电解电容的需求减少。

4)输入阻尼装置的需求减少。

5)高电源效率和高功率因数的实现。

当然,实施本申请的任一产品必不一定需要同时达到以上所述的所有技术效果。

为了满足相位切割功率控制器最小泄放/负载电流的要求,特别对于可控硅调光器,人们认识到,一个独立的假负载/泄放器不论从成本降低或能源效率的角度来看都是不理想的。所以建议假负载/泄放器的角色由开关模式电源转换器和负载来担当。通过本发明的教导,通过相位切割功率控制器(或简单地说,相位切割器)的电流的连续监测,以查看其最小泄放/负载电流的要求是否得到满足。如果电流不足,转换器便被加强驱动(例如通过增加PWM的占空比)以增加转换器输入电流,于是相位切割器的泄放/负载电流增加,直到要求得到满足。同时,通过如上满足最小泄放/负载电流的要求相同的驱动方式,传送给负载的功率亦连续地被监测及控制到指定的功率电平。如果指定负载功率已达,而最小泄放/负载电流的要求亦得到满足,控制便迖平衡。但是如果负载的指定功率已经达到,但最小泄放/负载电流的要求未能满足,则加强驱动会迫使转换器将高于设计指定的功率强加于负载。为了解决这个困境,该转换器被加强驱动以增加泄放/负载电流来满足相位切割器的要求,但在同时提供给负载的功率需要停止增加。除了在某处消耗额外的功率,或者将其作为静态能量储存,例如成电容器中的电荷或电感器中的电流,似乎没有其他出路。有幸的是,典型的开关模式电源转换器拥有合乎此目的的基本元素:可消耗额外功率的开关组件,和可储存能量的电容器和电感器,把为了满足相位切割器的负载电流要求而提供的额外功率储存起来。

至于电源被相位切割器控制的方式,人们认识到,有时为了达至某希望的功能,需要部署更复杂的控制方案,一个典型的例子是通过相位切割调光器控制的灯光。众所周知,感知的光亮,为适应自然自反动作的虹膜扩张所影响。因此由照明功率测量测得低的光线水平在眼睛中并不低。现在市场上,大多数调光器的调光控制范围过于狭窄,调光器向下调低时光线水平下降过快,而瞳孔放大却又使感知的低端光线水平居高不下。为了改进,本发明建议建成的实施例之一拥有“平方定律”的功能,以便提供给负载的功率大致与相位切割器的平均输出电压的平方成正比。

为了进一步消除大电容的需要,能量反馈方案被开发以自举开关模式电源转换器输入电压,使转换器的输出功率在整个电源电压的波谷仍得于保持,而无需使用大电容作电荷储存。为了EMI滤波的目的,低于微法拉的小电容器仍然是需要的。

本发明的其他应用和优点将从下面的描述和附图变得显而易见。应该了解,在并不脱离本发明的范围和精神的情况下,所显示及描述的结构可以进行具体的变更。

附图说明

此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:

图1是本申请实施例的可控硅调光器作为一个典型的相位切割器示意图;

图2是本申请实施例的前沿和后沿调光波形的时序图;

图3A是本申请实施例的具有固定假负载的相位切割功率控制系统的框图;

图3B是本申请实施例的具有可变假负载的相位切割功率控制系统的框图;

图4A是本申请实施例的输出电流控制相位切割功率控制系统的框图;

图4B是本申请实施例的100/120赫兹斩波输出相位切割功率控制系统的框图;

图4C是本申请实施例的800赫兹斩波输出相位切割功率控制系统的框图;

图5A是本申请实施例的相位切割器电流和开关模式电源转换器的功率转换效率之间关系的框图;

图5B是本申请实施例的100赫兹输出斩波调光系统的框图;

图6是本申请实施例的模拟OR的电路图;

图7A是本申请实施例的通过减弱MOSFET电源开关驱动信号而令开关模式电源转换器的效率降低示意图;

图7B是本申请实施例的通过电源开关MOSFET源极负反馈而令开关模式电源转换器的效率降低示意图;

图7C是本申请实施例的通过电源开关MOSFET漏极加载而令开关模式电源转换器的效率降低示意图;

图7D是本申请实施例的通过电源开关晶体管收集电极负反馈而令开关模式电源转换器的效率降低示意图;

图7E是本申请实施例的变压器耦合再生缓冲而令开关模式电源转换器输入电流增加的示意图;

图7F是本申请实施例的电容器耦合再生缓冲而令开关模式电源转换器输入电流增加的示意图;

图8是图5框示系统的操作流程图;

图9是本申请实施例的具有800赫兹输出斩波的调光系统的方框图;

图10A是本申请实施例的具有再生缓冲电路的宽输入范围效率控制开关模式电源转换器的示意图;

图10B是本申请实施例的具有再生缓冲电路的宽输入范围效率控制开关模式电源转换器的示意图;

图11A是本申请实施例的宽输入范围效率控制开关模式电源转换器的输入和输出波形的时序图;

图11B是时标展开后的图11A的时序图,以显示再生能量传递充电电流脉冲的详细情况。

图12是本申请实施例的通过电流(/电压/功率)控制的调光系统的框图;

图13是本申请实施例的平方律特性的调光系统的框图;

图14是本申请实施例的实现的LED调光曲线图。

具体实施方式

以下将配合附图及实施例来详细说明本申请的实施方式,藉此对本申请如何应用技术手段来解决技术问题并达成技术功效的实现过程能充分理解并据以实施。

图5A的方框图,示出相位切割器电流如何与开关模式电源转换器功率转换效率相关,是解释本发明的原理所必需的。等效回路(A)示出的是一个开关模式电源转换器SMPC,直接连接到整流器的输出电压Vrect,亦即从整流器及相位切割器(均未示出)汲取电流。所述的开关模式电源转换器SMPC由开关SW象征性地表示,其输出向负载LOAD递送负载电流Iload。假设该转换器的功率效率是Effpc,递送到负载的功率是Vrect x Irect x Effpc。转换器的输入电流,即Irect,可以设想在转换器内由两部份组成:流向负载LOAD的Iload,和由开关及所有其它转换器组件贡献的耗散(流失)电流Iloss。进一步假设所有耗散是在一个虚构的负载LOSS上,那么我们可以重绘的等效回路(B),则开关SW的效率Effsw等于一,即开关SW是无损的。Irect=Iload+Iloss,将电流和阻抗幅度变换到功率转换器的等效输入,以便于分析。

等同转换器的输入和输出功率,Vrect x Irect=Vrect x Iloss+Vrect x Iload,那么,

Effpc x Vrect x Irect=Vrect x Iload

1-Effpc)×Vrect x Irect=Vrect x Iloss

因此Iload=Effpc x Irect

现在,如果我们要求调光器的电流Irect总是比阈值(如可控硅的保持电流阈值)Ihold,即Irect=Iload+Iloss>Ihold更大,则Iload/Effpc>Ihold

换句话说,功率保持恒定,从而负载电流Iload亦恒定,我们可以控制功率转换器的效率,以使足够大的电流通过相位切割器作正常的操作。

然而,如果故意降低功率转换器的效率不能接受,有一个可能的出路是当相位切割器的电流Irect要求增加时,耗散电流Iloss的一部分能量被储存起来,而稍后当相位切割电流Irect要求降低时,储存的能量由负载消耗掉。这种想法可通过图5A电路(C)来说明。其中STOR是可被电容器或电感器,甚至是蓄电池来实现的储存组件。在泄放信号Bleed的控制下,电源开关(未示出)也可以被部署在储存组件STOR内部以处理能量的形式(如电压的提高)或以适当地控制能量流的方向和时间。如电路(C)所示,当Vrect低于预定值时,能量可通过一个压控单极性电源开关SWvc被传递到一个缓冲电容器Cbuf。因此,部分时间在当Vrect在“谷”值期间特别是泄放不需要时,该功率变换器是由储存在Cbuf的能量供电,从而导致更平滑的转换器输出。进一步的细节将结合图10A和图10B相关联地讨论。

作为本发明的一个实施例,相位切割器负载电流整体的控制和维护,以斩波输出的相位切割功率控制系统如图5B的框图所示。可控硅调光器的保持电流作为典型例子,泄放电流被主动地控制,以满足相位切割器负载电流的要求。调光控制是通过100/120赫兹斩波即如图4B说明。与图4B相比,一个泄放控制器被引入来控制开关模式电源转换器的输入电流,以同时满足相位切割器的最小电流需求和负载的功率需求。由信号Vrect与预定值Vrectlow由比较器COMP2比较导出的斩波信号Vchop被施加到输出斩波开关,或通过如虚线所示直接到开关模式电源转换器(即图4B所示的方式)。一个电容器Cf被连接在功率变换器的输入端,以过滤高频泄漏,但不过滤整流产生的低频波纹。鉴于产生斩波信号Vchop的需要,电容器Cf的存在不应使整流器输出的电压波形失真。

来自整流器的电流输出被检测为信号Irect。Irect代表了相位切割电流,其之前的滤波器及阻尼器和整流器模组在设计上除了无碍的高频成分不应该对泄放电流有任何显着程度的改变。如图示Irect及其测量点的选择仅为设计方便的问题,任何其他电路点只要能部署作相位切割器电流测量皆可以代替。适当地按比例缩小后(未示出),Irect被耦合到有限增益的比较器COMP1和由Irectref表示的预定的参考电压比较。这个参考电压可以是常数或随时间变化的电压,并且可以被选择为代表对相位切割器的正常操作所需的最低泄放/加载的电流,例如保持一个可控硅调光器导通的阈值电流。比较器COMP1的输出为Irecterr,代表Irect落后Irectref多远的误差信号。通过模拟或门,所述误差信号耦合到所述开关控制脉冲Pulse Gen模组,由其产生的开关控制脉冲来驱动开关模式电源转换器。设计上,开关控制脉冲可具有正比于误差信号Irecterr的占空比,使电源转换器由误差信号引发的开关控制脉冲的占空比增加了,并因此增加了转换器的输入和输出电流。

在同一时间,功率转换器的输出Uspc被检测到。Uspc代表输出电流,电压或功率中的任何一个。Uspc可以由虚线所示,在斩波输出再过滤后联接到有限增益的比较器COMP3。比较器COMP3把Uspc和预定参考信号Uspcref进行比较,Uspcref代表所要求的输出电流,电压或功率。比较结果Uspcerr表示作为转换器输出Uspc离开参考Uspcref有多远,即转换器的输出未能达到所希望的输出电平的误差信号。通过模拟或门,对称于Irecterr,Uspcerr误差信号被耦合到所述开关控制脉冲Pulse Gen模组,由其产生的开关控制脉冲来驱动开关模式电源转换器。换句话说,模拟或门输入了两个误差信号,以控制开关控制脉冲Pulse Gen模组。通过模拟或门的操作性质,两个输入中具有较高正信号电平的任一项主导了模拟或门的输出。

由现有技术中,一个两输入模拟或门可以简单地通过两个二极管实现,其中二极管的两个阴极连接在一起作为输出,或者由一个二极管和一个电阻,二极管阴极连接到电阻器作为输出。然而由于二极管的非线性特性如此形成的模拟或门具有非线性误差。作为本发明的实施例如图6是一个改进了的新模拟或门的电路拓扑。该设计提供了零非线性误差的优点,而且每个输入可以由电阻值适当地选择独立地被缩放。如图6,信号Irecterr电压增益等于(R1+R2)/R2,而信号Uspcerr电压增益为(R3+R4)/R4。进一步通过电路的对称性,它可以扩展到任何数量的输入。

现假设模拟或门输入端有两个误差信号,并假设两个信号放大率相等,则有两种情况要考虑:

情形之一:Uspcerr比Irecterr较大,这意味着功率转换器的转换输出功率的需求比对于最小泄放/负载电流的需求强烈。Uspcerr将主导模拟或门,从而使输入电流为达成目标变换器输出功率至负载而超过相位切割器的最低泄放/加载电流。这是一个无论如何也可以接受的结果。

方案二:Irecterr比Uspcerr较大,这意味着最小泄放/负载电流的需求比对于功率转换器的转换输出功率的需求强烈。Irecterr将主导模拟或门,从而使最小泄放/加载相位切割器的电流需求被满足,但因为该转换器是仅仅为满足最小电流要求被驱动,负载可被过份驱动。这是一个不能接受的情况。

为了解决这个两难,误差信号Uspcerr被反相并耦合到所述转换器作为泄放信号Bleed。信号Bleed是要命令转换器泄放更多电流,以提高转换器的输入电流,但却没有增加输出至负载的功率。除了把额外的电流消耗于某地方,或者把它作为静态能量储存,如在电容器里的电荷或电感器里的电流,并没有出路。非常幸运,开关模式电源转换器刚好有合适此目的的组件:开关组件以消耗额外的电流,和反应性组件,即电容和电感,以储存能量。

参照图7A,一个开关模式电源转换器部份显示的示意图,具有至少一个功率开关组件,最好是主开关组件。晶体管Q1便是这种开关组件。为了降低转换器的效率,泄放信号Bleed被施加到经由电阻器R3至晶体管Q2的基极,接通Q2。电阻R2和电容器C1的公共节点有效地接地,因此降低了对Q1的驱动。因此,该开关Q1未能完全接通和关断,从而导致横跨晶体管Q1的源极-漏极电极更高伏降,和较长的切换时间,从而导致Q1开关升的热损耗。

同样地图7B至图7D开关模式电源转换器的部分显示的示意图,示出了如何将开关模式电源转换器的效率以不同方式被降低。如图7B所示,开关模式电源转换器的效率减小是通过从MOSFET Q1作为主开关的源极电极负反馈,使Q1开关增加耗散;如图7C所示,开关模式电源转换器效率的降低是通过用一个加载在MOSFET Q1漏极电极的电容器C1使Q1增加耗散;以及在图7D所示的开关模式电源转换器的效率减小是通过从双极晶体管Q1的集电极负反馈,同样使Q1耗散增加。

电源传输的额外泄放/负载电流相关联的能量,除了可在主开关耗散,也可以通过再生缓冲储存起来作为静态能量。如图7E所示,Q1是开关电源变压器T1的主开关。电感器L3连接到变压器T1的。当泄放信号Bleed变高时,晶体管Q2由比较器IC1输出的负电流接通,完成感应电流经L3和二极管D1的路径流到电容器Cstor。因此,输入电流的开关模式电源转换器的增加由变压器耦合再生缓冲。在Cstor储存的能量可能在稍后的时间当供电线路是在一个较低的水平时被消耗。

同样地图7F示出开关模式电源转换器的输入电流如何通过电容器耦合再生缓冲被增加。能量耦合自作为主开关的MOSFET Q1的漏极。

为了更好地理解图5B所示的相位切割功率控制系统的总体操作,图8提供了一个操作流程图。从该相位切割的交流电压进行滤波,衰减和整流的状态开始,它查询是否整流器输出电流,即相位切割器电流Irect比参考电流Irectref较高。如果不是,开关控制信号的占空比增加时,以驱动开关模式电源转换器上的输出Uspc。如果是,则询问是否对转换器的输出Uspc已经达到目标值Uspcref。如果不是,开关控制信号的占空比增加时,以驱动开关模式电源转换器上的输出Uspc。如果是的话,将开关模式电源转换器的效率被驱动向下(通过泄放信号Bleed)。至此,当开关模式电源转换器的效率达到了某平衡状态而转换器的输出Uspc和相位切割器电流Irect已经达到了目标值。

上述流程进行的同一时间,内置直流电源DCS通电后,开关模式电源转换器的电源随即建立。斩波信号Vchop从相位切割电压产生,从而使转换器的输出功率被斩波并传递至负载。

众所周知,为了减少LED灯可能有的闪烁效果,较高的斩波频率是可取的。图9示出具有800赫兹或更高频的输出斩波作为本发明的实施方式的调光系统的方框图。斩波操作如图4C所示并已经作相关描述。基本上斩波信号Vchop是从直流信号Vrectdc正比于整流器的电压输出Vrect的幅度产生的。

参照图9,介绍了一个宽输入范围效率控制开关模式电源转换器,简称WESPCO。在本质上,这是以满足在大相位切割(高调光)低电平输入电压的情况开发的的宽输入范围转换器。这开发也有另一个意图,就是消除大电容的需要。能量反馈方案被部署,把开关模式电源转换器的输入电压引导向上,使转换器的输出功率在整个线电压的波谷得以保持,而无需使用用于电荷储存的大电容器。然而,为了EMI滤波的目的,低于微法拉的小电容仍然是需要的。

图10A是一个宽输入范围效率控制开关模式电源转换器的一部分的示意图,对于电路的再生和耗散缓冲连接的关键部分的说明,但为了清晰解说而省略了电压电平转换部分。如图所示,由泄放信号Bleed通过放大器U2使晶体管Q4导通,使主开关MOSFET Q1的漏极电极的高电压脉冲由电容器C1连续耦合到由整流二极管D1和D2形成的二极管泵,向电容器C2充电及储存起来。由MOSFET Q2形成的开关是常开,直到由比较器U1接通。Vrectf,检测定位于整流模组及滤波器/阻尼器之后,被耦合到比较器U1的负输入端和与预定电压Vrectmin作比较。Vrectmin被选择为要保持作为Vrectf的最小电压。每当Vrectf低于Vrectmin,U1的输出上升,Q2导通,允许在C2中的电荷通过二极管D4到储存电容器Cstor。作为Cstor被充电,Vrectf上升至Vrectf比Vrectmin更高而Q2被尽快关闭。由C2向Cstor的充电停止后Cstor通过变压器T1的初级线圈L1放电而令Vrectf下降。如此循环重复作为振荡直到线电压和Vrectf上升到比Vrectmin更高的水平。因此Vrectf是在不低于Vrectmin的预定值的水平始终保持。注意,在U2的非反相输入Vb决定了泄放信号Bleed对再生缓冲作用的水平,而电阻R1,R2决定了对MOSFET开关Q1的耗散缓冲。因此,通过调整Vb,R1和R2上MOSFET Q1再生和耗散作用的相对优先设计可以改变。

类似地,图10B是一个宽输入范围效率控制开关模式电源转换器的示意图,具有通过磁耦合传送再生能量到电源输入作为本发明的实施例。如图所示,通过泄放信号Bleed的动作电感器L3磁耦合到高频开关变压器T1。L3向C2通过二极管D2充电,之后该操作描述如图10A。

图11A是示出作为本发明的实施例的宽输入范围效率控制开关模式电源转换器的输入和输出波形的时序图。波形从根据图10B操作的只有小电容的电路产生。从上到下,第一波形是未经过滤的整流线路电压,第二个是从电容器C2流向电容器Cstor的切换充电电流。第三个是在所述功率变换器的输入端的电压Vrectf。需要注意的是大约100伏的最小电压被维持。底部波形是转换器约31V的输出电压和约300毫安的负载电流。

图11B是图11A的时序图在约30毫秒时标放大以清楚地显示了再生能量传递的充电电流脉冲。

图12是表示电流(/电压/功率)控制作为本发明的一个实施方式的调光系统的方框图。部署利用宽输入范围效率控制开关模式电源转换器WESPCO和但没有斩波,可以为负载产生一个干净的DC/AC。除了泄放控制器,电路的操作类似于已在图4A进行了描述。在一般情况下,转换器的输出可以依电压,电流或功率方面通过检测的Uspc有关输出参数作控制。

作为本发明的实施例图13示出平方律特性的调光系统的框图。如图整流器输出电压Vrectf,过滤并衰减,检测并变换为直流信号Vrectdc由DC Sig Gen模组使得Vrectdc代表Vrect的幅度,无论是在有效值或平均值或任何其他测量参数。Vrectdc也可以由代表Vrect的占空比。Vrectdc提出作为瞬时参考有限增益的比较器COMP3的正输入端,如Ispcref。COMP3输出信号Uspcerr,是负责经由模拟或门和开关控制脉冲Pulse Gen模组控制宽输入范围效率控制开关模式电源转换WESPCO的输出。信号Uspcerr也被反相成为泄放信号Bleed用于确保转换器的输出仍然受控制,尽管需要同时满足相位切割功率控制器的泄放/加载的一个互相冲突的要求。

Vrectdc也呈现给斩波控制器模组用于产生一斩波信号Vchop到转换器WESPCO,其占空比与相位切割器输出电压的幅度成比例。

如果信号Vrectdc是正比于相位切割功率控制器输出电压Vrect的平均值,可证明Vrectdc=K1*(1-COS(Alpha))/2

其中,K1成比例,相位切割之前正弦输入线电压的峰值的比例因子。

alpha是相位切割器的传导的角度。

则占空比将是,根据图13的设计,DutyC=K2*Vrectdc=K1*K2*(1-COS(Alpha))/2

进一步如果Uspc被检测为从转换器WESPCO输出的平均功率,那么从转换器功率为Pspc=K3*Vrectdc

因此电源提供给负载Pload=Pspc*DutyC=K3*Vrectdc*K2*Vrectdc=K2*K3*Vrectdc^2

换句话说,提供给负载的功率正比于从相位切割器电源控制器的平均电压的平方。

在传导Alpha的角度而言:

Pload=K2*K3[K1*(1-COS(Alpha))/2]^2

=K1^2*K2*K3*[(1-COS(Alpha))/2]^2

=K*[(1-COS(Alpha))/2]^2其中K=K1^2*K2*K3*

根据两种不同方式驱动的LED灯的光输出,给规化后的Vrectdc(调光传导度)和PLoad(LED输出功率)绘制出图14的说明性图表,即曲线“a”正比于切割电压的平均值,和曲线“b”正比于切割电压的平方。

众所周知,眼睛感知的光由虹膜受适应自然自反动作扩张的影响。因此照明功率测量得低水平的光对人的眼睛来说并不很低。因此,当光将调变暗下来,曲线“b”提供了比曲线“a”在相同照明范围中控制得更广阔和更流畅的感觉。对于较高的照明范围,曲线“b”仍然在比曲“a”提供较“自然”的曲线而较优胜,因后者顶部扁平得近乎一个“盲区”,意即当调光器已正在调向最亮的极端,光水平只有较少的变化。

根据应用需要由所描述的电路装置提供的相位切割功率控制器的“调光”的特性有进一步调整的灵活性。例如,如果信号Uspc代表变换器WESPCO的平均输出电压或电流,而Vrectdc是相位切割器输出电压的平均值,提供给负载的功率将正比于的平均相位切割输出电压的三次方。通过对功率控制器的控制相位切割器输出电压的特殊的信号处理,调光特性的进一步的变化的安排也是可能的。

虽然本发明及其优点已经详细描述,但应当理解,在不脱离本发明的精神和范围情况下各种变化,替换,和变更都有可能。即是说,包括在本申请中的讨论旨在用作基本描述。应当理解的是,因为许多替代品都是隐含的,所以具体的讨论不可能明确地描述所有可能的实施方案。它也不一定可能完全地解释本发明的通用性质,亦不一定可能明确也说明每个特征或组件实际上如何可以代表多种多样的备选或等效的组件或其更广泛的功能。再次,全部这些都隐含地包括在本公开内容中。其中,本发明中的装置如用术语描述,该装置的各组件隐式地包含了其执行功能。没有任何描述或术语能限制本发明的范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1