差分压控(VCO)振荡器的制作方法

文档序号:19413344发布日期:2019-12-14 00:40阅读:677来源:国知局
差分压控(VCO)振荡器的制作方法

本公开总体上涉及一种差分压控(vco)振荡器。具体地说,本公开涉及一种具有考毕兹(colpitts)配置的差分vco。



背景技术:

在过去几年中,已经发展为快速发展的市场的用于实现安全和保障的汽车驾驶辅助系统(adas)已经推动了毫米波硅技术的发展。adas的主要方面涉及超宽带(uwb)/调频连续波(fmcw)雷达电路的精度以及w频段(75ghz到110ghz)中采用硅完全集成解决方案的形式的可实现性。完整的adas设备通常包括针对例如泊车辅助、盲点检测和碰撞缓解辅助的77-81ghz近程雷达(srr)uwb传感器和针对例如前置监测和自适应巡航控制(acc)的具有fmcw调制的76-77ghz远程雷达(lrr)传感器。

为了符合srr和lrr两者,在这种系统中采用的频率合成器必须为前者提供具有宽频率范围的时钟参考,而功率放大器(pa)的光谱纯度和大输出功率对于后一应用来说是强制性的。在基于压控振荡器(vco)的频率合成器中,功率和带内噪声性能取决于vco电路,所述vco电路代表带有高频分频器(即,预分频器)的频率合成器的关键块。尽管取得了过去的发展,但是组合高输出功率振荡信号实施相位噪声(pn)低且调谐范围(tr)宽的w频段vco依然是有挑战性的。



技术实现要素:

根据本发明的第一方面,提供一种差分振荡器电路,包括:

一对晶体管,所述对晶体管具有通过共同偏置电压偏置的控制端;

变压器,所述变压器具有初级线圈和次级线圈,所述初级线圈耦合在所述晶体管的第一电流端之间,并且所述次级线圈耦合在具有两个变容管的闭合串联电路中,所述两个变容管被布置成通过第一共同调谐电压进行调谐;以及

串联电路,所述串联电路包括串联耦合到所述晶体管的第二电流端的两个另外的变容管,其中所述两个另外的变容管被布置成通过第二共同调谐电压进行调谐。

在一个或多个实施例中,所述电路进一步包括:

反馈电容器,所述反馈电容器中的每一个反馈电容器耦合在所述晶体管中的相应晶体管的所述第一电流端与所述第二电流端之间。

在一个或多个实施例中,所述电路进一步包括:

偏置电流源,所述偏置电流源中的每一个偏置电流源插入在所述晶体管中的相应晶体管的所述第二电流端与参考电位之间。

在一个或多个实施例中,所述晶体管形成平衡差分对。

在一个或多个实施例中,所述初级线圈具有中心抽头,所述中心抽头被布置成接收电源电压。

在一个或多个实施例中,所述次级线圈具有中心抽头,所述中心抽头供应到所述参考电位。

在一个或多个实施例中,所述晶体管是双极性晶体管,其中所述第一电流端是集电极端,所述第二电流端是发射极端,并且所述控制端是基极端。

在一个或多个实施例中,所述晶体管是npn型晶体管。

在一个或多个实施例中,所述晶体管是金属氧化物半导体mos晶体管,其中所述第一电流端是漏极端,所述第二电流端是源极端,并且所述控制端是栅极端。

在一个或多个实施例中,所述晶体管是n沟道mos晶体管。

在一个或多个实施例中,所述电路进一步包括:

两个电容器,所述两个电容器中的每一个电容器串联耦合在所述晶体管中的相应晶体管的所述第二电流端与所述两个另外的变容管中的相应变容管之间。

在一个或多个实施例中,所述电路进一步包括:

两个电阻器,所述两个电阻器中的每一个电阻器耦合到所述两个电容器中的相应电容器与所述两个另外的变容管中的相邻变容管之间的互连和基极参考电位。

在一个或多个实施例中,所述电路进一步包括:

偏置电压源,所述偏置电压源耦合到所述晶体管的所述控制端的互连并且被布置成供应所述共同偏置电压。

在一个或多个实施例中,所述电路进一步包括:

第一调谐电压源,所述第一调谐电压源耦合到所述两个变容管的互连并且被布置成供应所述第一共同调谐电压。

在一个或多个实施例中,所述电路进一步包括:

第二调谐电压源,所述第二调谐电压源耦合到所述两个另外的变容管的互连并且被布置成供应所述第二共同调谐电压。

本发明的这些和其它方面将根据下文中所描述的实施例显而易见,且参考这些实施例予以阐明。

附图说明

结合在本文中并形成本说明书的一部分的附图示出了本发明并且与本说明书一起进一步用于解释本发明的原理并使相关领域的技术人员能够制造和使用本发明。

图1示意性地示出了用于示出根据本发明的例子的差分振荡器的配置的电路图;

图2示意性地示出了用于示出根据本发明的另一个例子的差分振荡器的配置的电路图;并且

图3示意性地示出了根据本发明的另一个例子的pll合成器的电路图。

具体实施方式

下文将参照附图详细地描述本公开的实施例。要注意的是,相同的附图标记在附图中用于表示相同或相当的要素,并且将不重复对其进行描述。下文阐述的实施例表示使本领域的技术人员能够实践本发明的必要信息。在根据附图阅读以下说明之后,本领域的技术人员将理解本发明的概念并且将认识到本文未特别提出的这些概念的应用。应当理解的是,这些概念和应用落入本公开和随附权利要求的范围内。

参照图1,示出了用于示出根据本发明的例子的差分振荡器的配置的电路示意图。差分振荡器100是共基极考毕兹振荡器并且采用的是具有正输出端vout+110和负输出端vout-115的差分振荡器电路的形式。应当注意的是,在本说明书的上下文中,差分信号可以包括幅度相同但相位相反的两个分量。差分信号可以通过两个端提供。

差分振荡器包括两个有源装置,在这种情况下为第一晶体管130和第二晶体管135。可以使用任何类型的晶体管或适合的有源装置。分别为晶体管130和135的有源装置的性质可以是相同的以提供对称有源装置。具体地说,所述两个有源装置是双极性晶体管130和135;更具体地说,所述两个有源装置是双极性结型晶体管130和135。可以考虑将适合于高频率的晶体管用于或用作有源装置,具体地说npn型晶体管。

在所示配置中,双极性晶体管130和135形成双极性晶体管130和135的平衡差分对。晶体管130和135的基极可以连接到偏置电压vbias。偏置电压vbias可以是直流(dc)偏置电压vbias,所述dc偏置电压可以被称为共模dc偏置电压vbias。偏置电压vbias可以由耦合在晶体管130和135的基极与如接地等最低参考电位之间的偏置电压源160提供。偏置电压vbias可以以任何合适的方式选择以偏置晶体管130和135的基极电压。在所示例子中,晶体管130和135的基极彼此耦合,并且偏置电压vbias施加到晶体管130和135的互连基极。

电容器120和125并联耦合到晶体管130和135的集电极-发射极路径。电容器120和电容器125形成正反馈电容器,所述正反馈电容器中的每一个正反馈电容器连接到晶体管130和135中的相应晶体管的集电极和发射极。电容器120和125将正反馈从晶体管130和135中的相应晶体管的发射极提供到集电极。将电容器120和125的电容选择为相等是可行的。

被偏置为处于电源电压vdd140的线圈155耦合到晶体管130和135的集电极,使得晶体管130和135的集电极通过线圈155彼此耦合。晶体管130和135的集电极耦合到线圈155的端部抽头中的相应端部抽头。在一个例子中,电源电压vdd140供应到线圈155;具体地说,电源电压vdd140供应到线圈155的中心抽头。例如,电源电压vdd可以是2.5v或更低或更高(例如,3.3v或5v)。

晶体管130和135的发射极另外通过变容管170和175彼此耦合。变容管170和175的电容可通过调谐电压源200所提供的调谐电压vtune2进行调谐,以供应变容管170和175的互连共同网。调谐电压vtune2是直流电压源或例如由电流镜电路提供的电流镜电压。将变容管170和175的电容选择为相等是可行的。变容管170和175对适当调谐电压范围内变化的调谐电压vtune2可以具有基本上相同的电容依赖性。在所示配置中,变容管170和175串联耦合在晶体管130和135的发射极之间。变容管170和175的电容调谐是通过单端调谐电压vtune2控制来实现的。

在一个例子中,为了使调谐电压vtune2能够从零电压(未偏置)开始调谐变容管电容器170和175,在晶体管130和135的发射极中的相应发射极与变容管170和175中的相应变容管之间插入了另外的电容器180和185。将电容器180和185的电容选择为相等是可行的。电容器180和185中的相应电容器与变容管中的相应变容管之间的互连的电位通过电阻器210和215中的相应电阻器设定为最低参考电位,如接地。用于使振荡信号通过电容器180和185以及偏置电阻器210和215并且用于偏置的ac耦合方法利用了变容管170和175的整体正调谐特性。

在差分振荡器中,分别地,偏置电流源190为晶体管130提供偏置电流ib1,并且偏置电流源195为晶体管135提供偏置电流ib2。偏置电流源190和195可以分别提供直流偏置电流ib1和直流偏置电流ib2。在一个例子中,偏置电流源190和195插入在晶体管130和135的发射极中的相应发射极与如接地等最低参考电位之间。偏置电流源190和195可以为晶体管130和135提供基本相同的偏置电流ib(=ib1=ib2)。

正输出端vout+110和负输出端vout-115耦合到晶体管130和135中的相应晶体管的集电极。

线圈155是变压器150的初级线圈155,所述变压器150包括与线圈155电感耦合的第二或次级线圈156。第二线圈156串联连接到变容管220和225,所述变容管220和225的电容可通过调谐电压源230向变容管220和225的共同互连网提供的调谐电压vtune1进行调谐。调谐电压vtune1是直流电压源或例如由电流镜电路提供的电流镜电压。变容管220和225的电容调谐通过单端调谐电压vtune1控制实现。将变容管220和225的电容选择为相等是可行的。变容管220和225可以改变对适当调谐电压范围内的变化的调谐电压vtune1的电容依赖性。在所示配置中,变容管220和225串联连接在第二线圈156的端部抽头中的相应端部抽头之间。第二线圈156的中心抽头应用到参考电位,并且具体地说,第二线圈156的中心抽头被设定为如接地等最低参考电位以便在给定供应内获得最大调谐范围。

差分振荡器的主频率调谐通过变压器耦合的变容管对220和225实现。变压器耦合的变容管对220和225实现对w频段中的振荡器频率的调谐。具体地说,变压器耦合的变容管对220和225实现对包括lrr频率范围(76-77ghz)和srr频率范围(77-81ghz)的频率范围内的振荡器频率的调谐。差分振荡器的频率调谐范围通过发射极侧布置的变容管对170和175进一步扩大,所述发射极侧布置的变容管对170和175不仅针对例如lrr和srr应用实现宽调谐范围,而且尤其实现对由于工艺、供应和温度变化(pvt)造成的振荡频率漂移的补偿。

关于图1,示出并描述了差分振荡器的例子,所述差分振荡器包括作为有源装置的双极性晶体管130和135。具体地说,sige双极性晶体管130和135可以提供期望的高频特性。然而,差分振荡器的实施方案不应被理解成限制于作为有源装置的双极性晶体管130和135。mos(金属氧化物半导体)晶体管并且具体地说是nmos(n型金属氧化物半导体)晶体管也可以用作有源装置。

参照图2,示出了用于示出根据本发明的例子的差分振荡器的另一种配置的电路示意图。性质可以相同以提供对称有源装置的分别为晶体管130和135的有源装置是mos晶体管130'和135';更具体地说,所述两个有源装置是采用平衡配置的nmos晶体管130'和135'。剩余电路基本上对应于参照图1描述的电路。因此,上文的描述基本上同样适用于图2的配置,条件是与双极性晶体管130和135的端相关的技术术语被转换成与mos晶体管130'和135'的端相关的技术术语。本领域的技术人员将立即理解的是,在双极性晶体管的上下文中使用的术语“集电极”、“发射极”和“基极”转换成mos晶体管的对应术语“漏极”、“源极”和“栅极”。因此,省略重复。

为了进行说明,集电极端和漏极端还将被称为第一电流端,发射极端和漏极端还将被称为第二电流端,并且基极端和栅极端还将被称为控制端。

参照图3,示出了根据本发明的另一个例子的pll合成器的电路示意图。所示pll合成器应当被理解为表示上述差分vco的用例,但本申请不应当被理解为受限于此。

pll合成器包括接收差分vco100的输出信号的分频器链。分频器链可以包括静态分频器sfd310和可编程分频器310。可编程分频器可以从频率选择逻辑fsl接收频率控制字形式的控制信息。分频器链的输出供应到相位和频率检测器pfd330,所述pfd330另外例如从主振荡器300和下游布置的固定分频器305接收参考输入信号。由相位和频率检测器pfd330生成的相位和频率差供应到电荷泵cp335和滤波器340,所述cp335和滤波器340最终生成供应到差分电压振荡器100的调谐电压信号vtune1。

根据本申请的例子,提供了一种差分振荡器电路。所述差分振荡器电路包括一对晶体管,所述对晶体管具有通过共同偏置电压偏置的控制端。所述差分振荡器电路另外包括变压器,所述变压器具有初级线圈和次级线圈,所述初级线圈耦合在所述晶体管的第一电流端之间,并且所述次级线圈耦合在具有两个变容管的闭合串联电路中,所述两个变容管被布置成通过第一共同调谐电压进行调谐。所述差分振荡器电路另外包括串联电路,所述串联电路包括串联耦合到所述晶体管的第二电流端的两个另外的变容管。所述两个另外的变容管被布置成通过第二共同调谐电压进行调谐。

根据一个例子,所述差分振荡器电路另外包括反馈电容器。所述反馈电容器中的每一个反馈电容器耦合在所述晶体管中的相应晶体管的所述第一电流端与所述第二电流端之间。

根据一个例子,所述差分振荡器电路另外包括偏置电流源。所述偏置电流源中的每一个偏置电流源插入在所述晶体管中的相应晶体管的所述第二电流端与参考电位(例如,最低参考电位或接地)之间。所述偏置电流源可以供应直流电流,并且具体地说,所述偏置电流源可以向所述晶体管中的相应晶体管的所述第二电流端供应相同的直流电流。

根据一个例子,所述晶体管形成平衡差分对。

根据一个例子,所述初级线圈具有中心抽头,所述中心抽头被布置成接收电源电压。根据一个例子,所述次级线圈具有中心抽头,所述中心抽头被布置成接收所述参考电位(例如,最低参考电位或接地)。

根据一个例子,所述晶体管为双极性晶体管。所述第一电流端是集电极端,所述第二电流端是发射极端,并且所述控制端是基极端。根据一个例子,所述晶体管为双极性晶体管,并且具体地说是npn型晶体管。

根据一个例子,所述晶体管为金属氧化物半导体(mos)晶体管,并且具体地说是mosfet(金属氧化物半导体场效应晶体管)。所述第一电流端是漏极端,所述第二电流端是源极端,并且所述控制端是栅极端。根据一个例子,所述晶体管为n沟道mos晶体管和n沟道mosfet。

根据一个例子,所述差分振荡器电路另外包括两个电容器。所述两个电容器中的每一个电容器串联耦合在所述晶体管中的相应晶体管的所述第二电流端与所述两个另外的变容管中的相应变容管之间。

根据一个例子,所述差分振荡器电路另外包括两个电阻器。所述两个电阻器中的每一个电阻器耦合到所述两个电容器中的相应电容器与所述两个另外的变容管中的相邻变容管之间的互连和参考电位(例如,最低参考电位或接地)。

根据一个例子,所述差分振荡器电路另外包括偏置电压源,所述偏置电压源耦合到所述晶体管的所述控制端的互连并且被布置成供应所述第一共同偏置电压。所述偏置电压源被布置成供应共模dc偏置电压。

根据一个例子,所述差分振荡器电路另外包括第一调谐电压源,所述第一调谐电压源耦合到所述两个变容管的互连并且被布置成供应所述第一共同调谐电压。所述第一调谐电压源被布置成供应第一共模dc调谐电压。

根据一个例子,所述差分振荡器电路另外包括第二调谐电压源,所述第二调谐电压源耦合到所述两个另外的变容管的互连并且被布置成供应所述第二共同调谐电压。所述第二调谐电压源被布置成供应第二共模dc调谐电压。

在前面的说明书中,已经参考本发明的实施例的具体例子描述了本发明。然而,将明显的是,可以在不脱离如所附权利要求中阐述的本发明的更广的精神和范围的情况下对其做出各种修改和改变。

例如,本文描述的半导体衬底可以是任何半导体材料或材料组合,如砷化镓、硅锗、绝缘体上硅(soi)、硅、单晶硅等以及上述各项的组合。

本文讨论的连接或耦合可以是适合于例如通过中间装置来往于相应节点、单元或装置传送信号的任何类型的连接或耦合。术语耦合和连接,对应地被耦合和被连接可以互换使用。因此,除非另有暗示或说明,否则连接可以是例如直接连接或间接连接。可以关于单个连接、多个连接、单向连接或双向连接对所述连接进行说明或描述。然而,不同实施例可以改变连接的实施方案。例如,可以使用单独的单向连接而不使用双向连接,并且反之亦然。而且,多个连接可以用连续地或以时分复用的方式传送多个信号的单个连接代替。同样,承载多个信号的单一连接可以被分成承载这些信号的子集的各种不同连接。因此,存在许多用于传送信号的选项。

本文所描述的每个信号可以被设计为差分正模拟信号或负模拟信号。在负模拟信号的情况下,所述信号相对低于与模拟接地电平零相对应的共模dc信号。在正信号的情况下,所述信号高于与模拟接地相对应的共模dc信号。注意,本文描述的差分信号中的任何差分信号可以被设计为正信号或负信号。

本领域的技术人员将认识到,功能块之间的界限仅仅是说明性的,并且替代性实施例可能合并功能块或电路元件或向各个块或电路元件添加功能的替代分解。因此,应理解的是,本文描绘的架构仅仅是示例性的,并且实际上可以实施实现相同功能的许多其它架构。例如,感应线圈和电阻器可以被集成到一个元件中。

用于实现相同功能的部件的任何布置被有效“关联”,使得期望功能得以实现。因此,本文中被组合以实现特定功能的任何两个部件可以被视为彼此“相关联”,使得期望功能被实现,而不论架构或中间部件如何。同样,如此关联的任何两个部件也可以被视为彼此“可操作地连接”或“可操作地耦合”以实现期望功能。

另外,本领域的技术人员将认识到,上文所描述的操作之间的界限仅仅是说明性的。可以将多个操作组合成单个操作,可以使单个操作分布于另外的操作中,并且可以在时间上至少部分重叠地执行操作。此外,替代性实施例可以包括特定操作的多个实例,并且在各个其它实施例中可以改变操作的顺序。

而且,在一个实施例中,所示出的例子可以被实施为定位在单个集成电路上或同一装置内的电路系统。例如,可以将振荡器电路的所有部件集成在一个衬底上。可替换的是,所述例子可以被实施为以合适的方式彼此互连的任何数量的单独集成电路或单独装置。例如,可以在与设置振荡器芯的衬底不同的衬底上部分地或完全地设置输出分支中的一个或多于一个。

而且,所述例子、实施例或其部分可以被实施为物理电路系统或可以如以任何合适类型的硬件描述语言转换成物理电路系统的逻辑表示的软表示或代码表示。

而且,本发明不限于在不可编程硬件中实施的物理装置或单元,但也可以应用于能够通过根据合适的程序代码运行来执行期望装置功能的可编程装置或单元中,所述可编程装置或单元如在本申请中被共同表示为“计算机系统”的主机、微型计算机、服务器、工作站、个人计算机、笔记本计算机、个人数字助理、电子游戏、汽车和其它嵌入式系统、手机和各种其它无线装置。

然而,其它修改、变更和替代方案也是可能的。因此,说明书和附图将被视为是说明性的,而不是限制性的。

在权利要求中,括号内的任何附图标记不应解释为限制权利要求。“包括”一词不排除存在除了权利要求中列出的元件或步骤之外的元件或步骤。此外,如本文所用的术语“一个或一种(a或an)”被定义为一个或多于一个。而且,在权利要求中使用如“至少一个”和“一个或多个”等引入性短语不应被解释为暗示通过不定冠词“一个或一种(a或an)”引入的另一权利要求要素将包含这种所引入权利要求要素的任何特定权利要求限于仅包含一个这种要素的发明,甚至是在同一权利要求包括引入性短语“一个或多个”或“至少一个”以及如“一个或一种(a或an)”等不定冠词时也是如此。对于定冠词的使用也是如此。除非另有说明,否则如“第一”和“第二”等术语用于任意区分这种术语描述的要素。因此,这些术语不一定旨在指示这种要素的时间优先次序或其它优先次序。在彼此不同的权利要求中叙述了某些措施的简单事实并不表明这些措施的组合不能被有利地使用。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1