图像感测装置的制作方法

文档序号:7604841阅读:159来源:国知局
专利名称:图像感测装置的制作方法
技术领域
本发明涉及一种数字图像感测装置,更具体地说,涉及一种数字图像感测装置,用比图像感测装置中安装的图像感测设备的像素数更少的像素数快速生成高品质图像。
背景技术
随着近来个人计算机的快速普及,对作为图像输入设备的数字相机的需求不断增长。此外,诸如数字视频记录器的高品质录像装置也被广泛用作运动图像记录器。
电子照相机的图像质量取决于几个因素。尤其是,图像感测元件的像素数对于感测图像分辨率来说是非常重要的因素。当今一些已商业化的电子静电照相机具有超过五百万的像素。然而,并不是所有的应用目的都需要五百万像素的数据。显示在国际互联网网页上的图像(如果有的话)通常具有较小的像素尺寸(pixel size)。
在当前的数字相机中,瓶颈是从图像感测元件到图像存储器的传送时间。具有大量像素的大多数型号都不能进行高速连续拍摄。此外,即使数字相机也需要具有运动图像感测功能来作为附加功能。因此,必须能够高速地向存储器传送。为此,优选地是提前减少要处理的数据量。
当输出图像的像素数比图像感测元件的像素数少时,提前限制要使用的像素数。另选地,使用一个时钟平均并读出多个像素。通过这种处理,可以减少要从图像感测元件传送到存储器的数据量,并且可以增加存储器传输率。
在通过线性内插来减少尺寸时,通过使用所有像素生成大尺寸的图像。然后,通过线性内插生成小尺寸的图像。
这种通过线性内插进行的尺寸再生可以确保高图像品质。然而,由于使用所有像素数据进行线性内插,计算量很大。因此,该方法不适于上述的连续拍摄功能或者运动图像感测。
有一种减少存储器读取的数据量的方法,在该方法中,向图像感测元件增加集成功能,以通过读取少量经平均的数据来生成缩减的图像。日本专利申请特开No.2001-245141公开了一种使用该方法的高速图像缩减的方法。
日本专利申请特开No.2001-016441公开了一种装置,用于在分辨率受限时进行数据缩减并修正数据失真。该对比文献的实施例公开了如何用分辨率为600dpi的装置生成400dpi的数据。当600dpi数据被直接缩减时,数据失真。为了解决这一问题,通过线性内插从600dpi的数据中生成补偿位置失真的像素数据。在日本专利申请特开No.2001-016441中公开的装置通过使用扫描得到的全部600dpi数据进行内插,生成400dpi的数据。

发明内容
本发明意在一种图像感测装置,用于缩短从图像感测元件读取图像数据所需的时间并且可以在宽的缩放比范围内形成失真极少的高分辨率图像。
根据本发明的图像感测装置具有图像感测设备。图像感测设备包括光电转换元件,用于对光学图像进行光电转换以获取图像数据;以及读取控制单元,用于根据提供的读取规则读取所述光电转换元件获取的图像数据。所述的图像感测设备还包括图像缩放比选择单元,用于选择要输出的图像的缩放比;读取方案选择单元,用于根据所选的图像缩放比选择所述读取控制单元要从所述光电转换元件中读取图像数据的读取方案;以及读取规则提供单元,用于向所述读取控制单元提供与所述读取方案选择单元所选的读取方案相对应的读取规则。


图1示出了根据本发明的第一实施例的图像感测装置的构成。
图2示出了在垂直方向上对具有RG/GB Bayer矩阵的图像进行14/16缩减转换的实例。
图3示出了在图2所示的转换从上侧去掉转换前的16像素中的第8和第9个数据的状态。
图4示出了在水平方向和垂直方向两个方向去掉了16像素中的2个像素的实例。
图5示出了根据图4所示的实例缩减的像素数据的左侧第一列数据的失真修正转换。
图6示出了在水平和垂直方向两个方向去掉了8像素中的2个像素的实例。
图7示出了用于包括单芯片彩色图像感测元件的光电转换元件的滤波处理单元的构成。
图8示出了用于包括单色图像感测元件或者多芯片彩色图像感测元件的光电转换元件的滤波处理单元的构成。
图9示出了对应于缩减读取加失真修正处理的尺寸改变。
图10示出了对应于平均读取加线性内插处理的尺寸改变。
图11示出了在如图1所示的图像感测装置中对应图像缩放比的读取方案切换和尺寸改变。
图12示出了根据本发明的第二实施例的图像感测装置的构成。
图13为用于形成1帧的时间连续的相邻两个场的像素数据的示意图,该像素数据通过水平平均垂直隔行扫描读取。
图14为时间连续的相邻两帧的相同区域中的像素数据的示意图,通过缩减读取和读取区域基准位置移位处理来读取该像素数据。
图15示出了通过重复6/8缩减读取的读取中,帧读取的像素位置,其中读取区域的读取起始位置与光电转换元件的像素矩阵的左上像素相匹配。
图16示出了通过重复6/8缩减读取器的读取中,帧读取的像素位置,其中读取区域的读取结束位置与光电转换元件的像素矩阵的右下像素相匹配。
图17示出了根据本发明的第三实施例的图像感测装置的构成。
具体实施例方式
下面,将根据附图描述本发明的实施例。
第一实施例图1示出了根据本发明的第一实施例的图像感测装置的构成。图像感测装置100具有成像光学系统110,用于形成对象的光学图像;以及图像感测设备120,用于在成像光学系统110形成的光学图像的预定区域输出图像信号。图像感测设备120具有2维光电转换元件(图像感测元件)122,用于对成像光学系统110形成的光学图像进行光电转换,以获取图像数据(像素数据集);以及读取控制单元124,用于根据提供的读取规则读取由光电转换元件122获取的图像数据。
图像感测装置100还具有图像缩放比选择单元132,用于选择要输出的图像的缩放比;读取方案选择单134,用于根据所选的图像缩放比,选择读取控制单元124要从光电转换元件122中读取图像数据的读取方案;以及读取规则提供单元140,用于向图像感测设备120提供与读取方案选择单元134所选的读取方案相对应的读取规则。
读取方案选择单元134根据所选的图像缩放比选择缩减读取模式、平均读取模式和全像素读取模式中的一种读取方案。读取规则提供单元140包括缩减读取规则设置单元142,用于设置与缩减读取模式相对应的读取规则;平均读取规则设置单元144,用于设置与平均读取模式相对应的读取规则;全像素读取规则设置单元146,用于设置与全像素读取模式相对应的读取规则。
读取规则提供单元140有选择地操作缩减读取规则设置单元142、平均读取规则设置单元144和全像素读取规则设置单元146中与读取方案选择单元134所选的读取方案相对应的一个。然后,与读取方案选择单元134所选的读取方案对应的读取规则被提供给读取控制单元124;读取控制单元124根据读取规则提供单元140提供的读取规则,从光电转换元件122读取像素数据。
更具体地,对于小于100%的图像缩放比(即图像缩减),读取方案选择单元134选择缩减读取模式和平均读取模式中的一个。对于100%或更大的图像缩放比(即图像放大),读取方案选择单元134选择全像素读取模式。图像缩放比表示要输出(例如,显示在图像显示单元174上)的图像的2维排列的像素数据的大小(水平和垂直区域中的像素数)与光电转换元件122获取的2维排列像素数据的区域(水平和垂直区域中的像素数)的比。
对于小于100%的图像缩放比,读取方案选择单元134根据图像缩放比和要输出的图像的品质的重要因素(对比度、分辨率、失真、亮斑和色斑)之一,选择缩减读取模式和平均读取模式之一。换句话说,对于小于100%的图像缩放比,读取方案选择单元134根据图像缩放比和假定对象选择缩减读取模式和平均读取模式中的一个。
图像感测装置100还具有失真修正单元150,用于在缩减读取模式中对图像感测设备120输出的图像信号进行失真修正;线性内插尺寸改变单元164,用于在平均读取模式和全像素读取模式中通过线性内插对图像感测设备120输出的图像信号进行尺寸改变;以及选择器162,用于根据读取方案选择单元134所选的读取方案,有选择地将图像感测设备120输出的图像信号发送到失真修正单元150和线性内插尺寸改变单元164中的一个。
当读取方案选择单元134选择缩减读取模式时,选择器162将来自图像感测设备120的图像信号发送到失真修正单元150。当读取方案选择单元134选择平均读取模式或者全像素读取模式时,选择器162将来自图像感测设备120的图像信号发送到线性内插尺寸改变单元164。
失真修正单元150具有滤波处理单元152,用于对来自图像感测设备120的图像信号进行滤波处理;以及滤波系数设置单元154,用于根据缩减读取规则设置单元142设置的读取规则,设置滤波处理单元152进行滤波处理所使用的滤波系数。
滤波系数设置单元154具有LUT存储单元156,用于存储含有多个滤波系数的查找表(LUT);以及滤波系数选择单元158,用于从存储在LUT存储单元156中的查找表中选择滤波系数。
滤波系数设置单元154不总是需要具有LUT存储单元156和滤波系数选择单元158。滤波系数设置单元154可以通过与缩减读取规则设置单元142设置的读取规则相对应的计算处理来计算滤波系数。
使用LUT的滤波系数设置单元154需要大存储器容量来存储LUT,但数学处理的负荷会较小。另一方面,不使用LUT的滤波系数设置单元154不需要大的存储器容量,但计算处理的负荷较大。
图像感测装置100还具有图像信号处理单元172,用于对缩减读取模式下从失真修正单元150输出的图像信号、或者对平均读取模式或全像素读取模式下从线性内插尺寸改变单元164输出的图像信号进行预定的处理(例如,白平衡、灰度转换或边缘强化);图像显示单元174,用于根据从图像信号处理单元172输出的图像信号显示图像;以及图像记录单元176,用于根据图像信号处理单元172输出的图像信号记录图像。
图像感测设备120可以进行缩减读取操作。通过缩减读取操作,图像感测设备120可以在比读取所有像素更短的时间内,在光电转换元件122上的特定区域内读取像素。
例如,当光电转换元件122是使用CMOS的图像感测元件时,图像感测设备120通过在水平和垂直两个方向上使用移位寄存器来指定读取位置。
更具体地说,假定第j行的第i个元件被定义为C(i,j)并且从此处起,水平方向的像素被定义为C(i+1,j)、C(i+2,j)、C(i+3,j)、C(i+4,j)、C(i+5,j)、C(i+6,j)、C(i+7,j)、C(i+8,j)……,可以读取在任意水平位置对它们进行缩减了的像素,例如C(i+1,j)、C(i+2,j)、C(i+3,j)、C(i+4,j)、C(i+7,j)、C(i+8,j)……。
这也适用于垂直方向;对于在行方向上排列的像素,例如第j行、j+1行、j+2行……,可以读取像素,在任意行将它们缩减。
当光电转换元件122是CCD时,由于它在水平方向转移电荷的同时读取数据,所以图像感测设备120读取水平方向的所有像素,但可以在垂直方向读取像素并使它们缩减。
失真修正单元150内插忽略了信息的已缩减的数字图像数据,并且还为放大转换进行滤波处理。也就是说,在本说明中,失真修正指同时进行“内插”和“放大转换”。
在双线性内插中,当放大转换限于有理数(整数比),并且重复两次线性内插时,简化了算法。图2示出了在水平方向上对具有RG/GB Bayer矩阵的图像进行14/16缩减转换的实例。参考图2,上段表示缩减转换前的像素的1维数据阵列,下段表示缩减转换后的像素的1维数据阵列。
该转换可以由下列矩阵表示Rc0Gc1Rc2Gc3Rc4Gc5Rc6Gc7Rc8Gc9Rc10Gc11Rc12Gc13·10000000000000000131401140000000000000012140214000000000000001114031400000000000000101404140000000000000091405140000000000000081406140000000000000071407140000000000000061408140000000000000051409140000000000000041401014000000000000003140111400000000000000214012140000000000000011401314Ri0Gi1Ri2Gi3Ri4Gi5Ri6Gi7Ri8Gi9Ri10Gi11Ri12Gi13Ri14Gi15---(1)]]>在等式(1)中,Ri2p和Gi2p+1(p为不小于0且小于7的整数)表示光电转换元件122中水平方向连续排列的像素的像素数据,并且具有与水平方向排列的像素的位置相对应的连续的下标。Rc2q和Gc2p+1(q为不小于0且小于6的整数)表示转换后的像素数据,并且具有与水平方向排列的像素的位置相对应的连续的下标。
例如,使用Ri2和Gi4,转换后的Rc2由公式(2)给出Rc2=1214Ri2+214Ri4.---(2)]]>等式(1)通常表示16像素到14像素的转换,其中每一像素按上述方式转换。
图3示出了在图2所示的转换中从左侧忽略了转换前的16个像素中的第8和第9像素数据的状态。在此情况下,根据下式,优选地通过使用相同信道的邻近的像素数据线性内插被忽略的像素数据(由Ri6和Ri10得到Ri8,Ri7和Ri11得到Ri9)Ri8=Ri6+Ri102,Gi9=Gi7+Gi112,---(3)]]>当根据等式(3)替换等式(1)中的Ri8和Ri9时,我们得到Rc0Gc1Rc2Gc3Rc4Gc5Rc6Gc7Rc8Gc9Rc10Gc11Rc12Gc13·10000000000000000131401140000000000000012140214000000000000001114031400000000000000101404140000000000000091405140000000000000081406140000000000000071407140000000000000061408140000000000000051409140000000000000041401014000000000000003140111400000000000000214012140000000000000011401314Ri0Gi1Ri2Gi3Ri4Gi5Ri6Gi7Ri8+Ri102Gi7+Gi112Ri10Gi11Ri12Gi13Ri14Gi15---(4)]]>等式(4)右手侧的十六个数据的列Ri0、Ri1、……、Ri14、Ri15可以由下式表示
Rc0Gc1Rc2Gc3Rc4Gc5Rc6Gc7Rc8+Rc102Gi7+Gi112Ri10Gi11Ri12Gi13Ri14Gi15=100000000000000100000000000000100000000000000100000000000000100000000000000100000000000000100000000000000100000000000012012000000000000120120000000000001000000000000001000000000000001000000000000001000000000000001000000000000001Ri0Gi1Ri2Gi3Ri4Gi5Ri6Gi7Ri10Gi11Ri12Gi13Ri14Gi15---(5)]]>当代入等式(4)中,计算矩阵的积时,可以得到Rc0Gc1Rc2Gc3Rc4Gc5Rc6Gc7Rc8Gc9Rc10Gc11Rc12Gc13·1000000000000001314011400000000000121402140000000000001114031400000000000010140414000000000000914051400000000000011140314000000000000212807280000000000314011140000000000005280232800000000000041401014000000000000314011140000000000002140121400000000000011401314Ri0Gi1Ri2Gi3Ri4Gi5Ri6Gi7Ri10Gi11Ri12Gi13Ri14Gi15]]>该转换等同于等式(4),并且具有与14个像素数据输入相对应的14个像素数据输出。换句话说,进行14/16缩减转换之后,该转换从Ri8和Ri9之外的14个像素数据中得到了14个像素数据。
图4示出了在水平方向和垂直方向都减少了16个像素中的2个像素的实例。在该实例中,在水平方向和垂直方向都将第8和第9个像素减掉。
图5示出了根据图4所示的实例缩减读取的像素数据的左侧第一列的转换。如图5所示,在垂直方向实际读取的像素数据为14个数据Ri0、Ri1、Ri2、Ri3、Ri4、Ri5、Ri6、Ri7、Ri10、Ri11、Ri12、Ri13、Ri14、Ri15。
等式(6)等同于从第8个(第8行)和第9个(第9行)像素数据之外的14个像素数据得到14/16缩减转换之后的14个像素数据的转换。
从等式(6)的矩阵表示的线性操作等式中可以明显看出,由于进行了像素缩减,由原始像素数据Ri6和Ri10的加权线性和来表示失真修正后不同位置的像素数据Rc6和Rc8,如下所示Rc6=1114Ri6+314Ri10]]>Rc8=314Ri6+1114Ri10,]]>…(7)用于获得像素数据Rc8的像素数据与用于获得像素数据Rc6的像素数据相同。更具体地说,用于获得像素数据Rc8的像素数据的顺序不同于在此(即,对相位进行移位)之前用于获得像素数据Rc1到Rc6的像素数据的顺序。这也适用于像素数据Gc7和Gc9。
如图5所示,实际读取的像素数据包括Ri0、Gi1、Ri2、Gi3、Ri4、Gi5、Ri6、Gi7、Ri10、Gi11、Ri12、Gi13、Ri14、Gi15这14个数据。假定分别有Rj0、Gj1、Rj2、Gj3、Rj4、Gj5、Rj6、Gj7、Rj8、Gj9、Rj10、Gj11、Rj12、Gj13。也就是
Ri0Gi1Ri2Gi3Ri4Gi5Ri6Gi7Ri10Gi11Ri12Gi13Ri14Gi15=Rj0Gj1Rj2Rj3Gj4Rj5Gj6Rj7Gj8Rj9Gj10Rj11Gj12Rj13---(8)]]>如上所述,Ri2p和Gi2p+1(p为不小于0且小于7的整数)表示在光电转换元件122中水平方向排列的像素的像素数据。不连续的下标表示在读取中缩减了数据。Rj2r和Gj2r+1(r为不小于0且小于6的整数)表示通过像素缩减读取实际读取的像素数据,并且具有对应于读取顺序的连续的下标。
等式(8)代入等式(6)时,我们得到
Rc0Gc1Rc2Gc3Rc4Gc5Rc6Gc7Rc8Gc9Rc10Gc11Rc12Gc13·1000000000000001314011400000000000121402140000000000001114031400000000000010140414000000000000914051400000000000011140314000000000000212807280000000000314011140000000000005280232800000000000041401014000000000000314011140000000000002140121400000000000011401314Rj0Gj1Rj2Gj3Rj4Gj5Rj6Gj7Rj10Gj11Rj12Gj13---(9)]]>此即失真修正转换,用于从由像素缩减读取实际读取的14个像素数据中得到14/16缩减转换之后的14个像素数据。
上述线性失真修正可以按下述方式扩展到2维数组。
等式(9)被表达为C=AB, …(10)其中,A为转换矩阵,进行线性失真补偿(即,在上述实例中,对通过缩减16像素中的2个像素得到的14个像素数据进行失真补偿),B为n行1列的矩阵,表示失真补偿前的像素数据,C为n行1列矩阵,表示失真补偿后的像素数据。图4所示的读取数据由以下给出的矩阵Di表示
在等式(11)中,用线画出了被忽略了的部分。设D0为一致的14(像素)×14(像素)的阵列。在水平方向失真修正之后在垂直方向失真修正的转换通过在等式(10)中使用A给出,如下所示Dc=AATDi, …(12)其中AT为A的转置矩阵。
线性失真转换(即将等式(4)再写为等式(6))也可被如下地考虑。
(1)当读取了位置X的像素数据并且还读取了位置X+2处的像素数据时,直接将等式(4)中的系数用作像素数据的加权系数。
(2)当读取了位置X的像素数据而未读取位置X+2的像素数据时,代以读取位置X+4的像素数据。位置X的像素数据的加权系数x变成x’=0.5(x+1)。位置X+4的像素数据的加权系数为改变后的系数x’与1的差,即,1-x’。
(3)当未读取位置X的像素数据而读取了位置X+2的像素数据时,位置X的读取位置向前移动2位为X-2。位置X-2处的像素数据的加权系数x变为x’=0.5x。位置X+2处的像素数据的加权系数为改变后的系数与1的差,即,1-x’。
因此,通过使用查找表(LUT)使像素读取位置与修正系数相对应而代替了进行失真修正,可以通过使用CPU的算术处理功能直接根据读取规则计算失真修正系数。
以上描述了在具有主色Bayer矩阵的彩色图像感测元件中进行缩减读取之后进行的失真修正。以类似的方式,即使对单色图像感测元件或其他彩色滤波矩阵也可进行缩减读取后的失真修正。
当光电转换读取单元的图像信号被直接存储在存储器中并且通过地址指定进行了操作时,可以避免上述的相位问题。下面将描述高速管线处理。
图6示出了在水平和垂直方向两个方向上缩减8像素中的2个像素的实例。例如,将检查在水平方向缩减的第一行的读取。当将图6中的左上角定义为基准时,读取像素位置为Ri0、Gi1、Ri2、Gi3、Ri4、Gi5、Ri6和Gi7。重复该规则。该实例中的失真修正(转换)的矩阵表达如下所示Rc0Gc1Rc2Gc3Rc4Gc5=1000000560560000560160000340160016056000011201112Ri0Gi1Ri2Gi3Ri4Gi5---(13)]]>由图7所示的滤波处理单元进行管线处理。对于与时钟相对应的每个操作,移位寄存器362将所保存的图像数据向右移动1位。选择器364根据s1的状态选择移位寄存器362中保存的5个相邻像素数据的第1个和第3个像素数据中的一个。选择器366根据s2状态选择移位寄存器362所保存的5个相邻像素数据的第3和第5个像素数据中的一个。
乘法器374将选择器364的输出d1乘以加权增加系数k1。乘法器376将选择器366的输出d2乘以加权增加系数k2。加法器378将乘法器394的输出和乘法器396的输出相加。
表1示出了通过图7所示的滤波处理单元的管线处理的操作(状态变化)。

(表1)对于依据时钟的每次操作,提供给移位寄存器362的像素数据序列(i0、i1、i2……)都从初始状态(其中c1=i0、c2=i1和c3=i2)向右移。因此,选择器364在s1为0(d1=c3)时选择c3,而在s1为1(d1=c1)时,选择c1。另一方面,选择器366在s2为0(d2=c5)时选择c5,而在s2为1(d2=c3)时,选择c3。与时钟同步地将系数k1从滤波系数设置单元154中的存储器提供给乘法器374,并且将系数k2提供给乘法器376。加法器378输出=k1×d1+k2×d2。
从表1可明显看出,当连续数据移动时,选择器根据状态s1和s2进行切换,输出对应于等式(6)指明的缩减规则的加权系数k1和k2,并且在进行包括像素相位操作(选择器切换)的管线处理的同时进行加权相加操作。
当仅有一种关于单个图像感测元件的彩色信息时,如在与具有诸如Bayer矩阵或补偿彩色滤波矩阵的彩色滤波阵列(CFA)的图像感测元件不同的单色或者3芯片彩色图像感测元件中那样,则与Bayer矩阵的CFA不同,无须准备一个像素的间隔来处理失真修正中相同颜色的像素。此外,无须对两个连续的像素进行缩减来使相同颜色的信号具有相同的相位(以按照预定的次序(例如,R、G、R、G……)进行读取)在单色图像感测元件中,在选择数据的同时进行相邻像素的加权相加。因此,失真修正(转换)由下式表示Pc2=aPi1+(1-a)Pi2,…(14)其中,Pc是转换后的像素数据,Pi是作为转换源的像素数据。
通过图8所示的滤波处理单元进行管线处理。对于根据时钟的每次操作,移位寄存器382都将保存的图像数据向右移1位。选择器368根据状态s1选择三个相邻像素数据的第1和第2像素数据(c1和c2)中的一个。选择器386根据状态s2选择三个相邻像素数据的第2和第3像素数据(c2和c3)中的一个。
乘法器394将选择器384的输出d1乘以加权增加系数k1。乘法器396将选择器386的输出d2乘以加权增加系数k2。加法器378将乘法器394的输出与乘法器396的输出相加。
本实施例的图像感测装置在缩减读取模式中读取光电转换元件得到的图像数据,在硬件中至少在垂直方向(优选地在水平和垂直方向两个方向)对其进行缩减。因此,本实施例的图像感测装置可以在比从光电转换元件读取所有图像数据的普通图像感测装置更短的时间内读取图像数据,然后使用软件缩减该图像数据。
下面将描述通过缩减读取加失真修正处理进行尺寸改变的合适的应用范围以及根据图像缩放比切换读取方案(全像素读取模式、平均读取模式和缩减读取模式)并随后进行图像信号处理的优点。
表2到表4示出了典型对象的感测评估,表示在各种缩减倍数时(1)通过缩减读取加失真修正处理的图像和(2)通过平均读取加线性放大处理的图像之间的图像品质的优越性。更具体地说,表2示出了诸如建筑物和结构的对象的评估结果。表3为诸如人和自然景观的对象的评估结果。表4示出了诸如清晰画和线条画的对象的评估结果。在这些表中,“1”表示缩减输出加失真修正处理较好,“2”表示平均读取加线性放大处理较好。此外“△”表示这两种处理操作是等效的。
对象建筑物,结构

(表2)对象人,自然景观

(表3)对象清晰画,线条画


(表4)在此,简要地描述该感测效果的原因。
当缩减倍数高时,例如在从16个像素中读取14个像素的模式(对应等式(6)给出的转换)中,缩减读取加失真修正处理得到的图像品质不亚于全像素读取后通过线性内插来改变尺寸的处理(根据等式(1)给出的转换)得到的图像品质。然而,当缩减倍数低时,例如,在读取6个像素中的4个像素的模式中,品质较差。其可能的原因如下。由于随着缩减倍数降低,像素缩减的比增大,所忽略的图像信息的比例增加。因此,通过等式(6)表示的线性内插来重构是很困难的。
平均读取加线性放大处理得到的图像在分辨率和对比度上较差。然而,当缩减倍数低时(例如,60%),放大(在1/2取样中,原始数据减少到50%;为了获得60%的图像,进行120%的放大)引起的带内降低较小。
考虑到上述因素,当缩减倍数高时,优选地选择缩减读取模式。当缩减倍数低时,优选地选择平均读取加线性内插放大。
将检查对象类型。对于对象为自然图像的情况,重点应放在纹理和分辨率上。对于对象为自然图像的情况,从带内降低和减少波纹的角度看,缩减读取加失真修正处理要优于平均读取加线性放大处理。因此,对于自然图像的对象,优选地将在缩减读取模式和平均读取模式之间切换的缩减倍数设置得相对较低(例如,大约66%)。
对于诸如线条画的对象,重点应放在减少失真上,这是因为可以通过另一图像处理(使用滤波的带增强)在一定程度上恢复对比度和分辨率。基于这种原因,对于诸如线条画的对象,平均读取加线性放大处理优于缩减读取加失真修正处理。因此,对于诸如线条画的对象,优选地将缩减读取模式和平均读取模式之间切换的缩减倍数设置得相对高(例如,大约75%)。
通过根据缩减倍数在缩减读取模式和平均读取模式之间切换(并随后进行图像信号处理),可以在很宽的缩减倍数范围中得到高分辨率的图像。
根据缩减倍数在读取方案之间切换并且随后进行图像处理的另一优点是,在很宽的倍数范围内可以增加放大步骤数。
缩减读取的缩放比X如下x=n-kn---(15)]]>(n缩减块的单位,k要缩减的像素数)。也就是说,由整数比给出缩放比X。
当缩减倍数相对高时,在例如从20/22=91%(从22像素中读取20个像素的模式)到18/20=90%、16/18=89%、14/16=87.5%、12/14=85.7%和10/12=83.3%的相对精确的间隔上进行尺寸改变。
然而,当缩减倍数相对低时,缩放比间隔变得很大,例如6/8=75%、10/14=71%、4/6=66%和6/10=60%。尽管诸如8/14=57%的缩减倍数也是可能的,但是因为块中要缩减的像素比增加了,所以通过线性内插进行失真修正来重构变得很困难。
因此,通过根据缩减倍数在缩减读取模式和平均读取模式之间切换(并随后进行图像信号处理),可以在精确的间隔上指定缩减倍数。
图9示出了对应于缩减读取加失真修正处理的尺寸改变。更具体地说,图9示出了在光电转换元件上将720×540像素区域变成VGA(640×480)的实例。在该实例中,重复通过缩减18像素中的2个像素来读取16像素的规则。图像尺寸减少到16/18=8/9,即大约89%(720→640和540→480)。
图10示出了对应平均读取加线性内插处理的尺寸改变。更具体地说,图10示出了将1120×840个像素变成VGA大小的实例。在该实例中,根据VGA时钟进行水平2像素平均读取加垂直2行隔行扫描读取,从而先读取1280×960像素的区域。提取对应于1120×840像素区域的部分,并且变成VGA尺寸。由于进行了2像素平均,所以在光电转换元件上对应1120×840像素区域的存储区域为560×420。提取该区域,并且通过线性内插放大到该尺寸(640/560=1.14倍)。此时,根据光电转换元件上的图像尺寸,图像尺寸缩减到640/1120=57%。
图11示出了在本实施例的图像感测装置中对应缩放比的读取方案切换和尺寸改变。对于100%或更大的缩放比,通过全像素读取加线性内插放大处理进行尺寸改变。
对于大约70%到100%的缩放比或缩减比,通过缩减读取加失真修正处理来进行尺寸改变。对于小于70%的缩放比或缩减比,通过2∶1平均读取加线性内插处理来进行尺寸改变。2∶1平均读取中图像感测元件上的读取区域两倍于全像素读取中图像感测元件上的读取区域。
从上面的描述中可以清楚地看到,在根据本实施例的图像感测装置中,通过根据图像缩放比在读取方案之间切换和随后进行图像信号处理,可以在较宽的缩放比范围内得到高分辨率图像。此外,当缩放比小于100%时,可以在精确的间隔上指定缩放比。
第二实施例本实施例特别旨在一种适合用来感测运动图像的图像感测装置。
图12示出了根据本发明的第二实施例的图像感测装置的构成。在图12中,与第一实施例的图像感测装置100中相同的附图标记表示相同的元件,并且将省略对其的详细描述以避免重复叙述。
本实施例的图像感测装置200具有成像光学系统110,用于形成对象的光学图像;以及图像感测设备220,用于在成像光学系统110形成的光学图像的预定区域连续输出图像信号。也就是说,从图像感测设备220输出的图像信号是运动图像信号,包括在时间上连续的多帧图像数据。
图像感测设备220具有2维光电转换元件222,用于对成像光学系统110形成的光学图像进行光电转换以获得图像数据(像素数据集);以及读取控制单元224,用于根据提供的读取规则连续读取光电转换元件222获得的图像数据。
图像感测装置200还具有图像缩放比选择单元132,用于选择要输出的图像的缩放比;读取方案选择单元234,用于根据所选的图像缩放比选择读取控制单元224要从光电转换元件222中读取图像数据的读取方案;以及读取规则提供单元240,用于向图像感测设备220提供与读取方案选择单元234所选出的读取方案对应的读取规则。
读取方案选择单元234根据所选的图像缩放比,选择缩减读取模式、水平平均垂直隔行扫描读取模式和垂直隔行扫描读取模式中一种。读取规则提供单元240包括缩减读取规则设置单元242,用于设置对应于缩减读取模式的读取规则;水平平均垂直隔行扫描读取规则设置单元244,用于设置与水平平均垂直隔行扫描读取模式相对应读取规则;以及垂直隔行扫描读取规则设置单元246,用于设置与垂直隔行扫描读取模式相对应的读取规则。
更具体地说,对于小于100%的图像缩放比,即图像缩减,读取方案选择单元234选择缩减读取模式和水平平均垂直隔行扫描读取模式中的一种。对于100%或更大的图像缩放比,即图像放大,读取方案选择单元234选择垂直隔行扫描读取模式。
对于小于100%的图像缩放比,读取方案选择单元234基于图像缩放比和要输出的图像的一个重要的图像品质因素(诸如对比度、分辨率、失真、亮斑和色斑),选择缩减读取模式和水平平均垂直隔行扫描读取模式中的一种。
图像感测装置200还具有失真修正单元150,用于在缩减读取模式中对图像感测设备输出的图像信号进行失真修正;读取相位控制单元252,用于在缩减读取模式中为每一帧改变将由读取控制单元224从光电转换元件222中读取的图像数据的图像数据区域(读取区域)的基准位置;以及图像区域选择处理单元254,用于在缩减读取模式中基于读取相位控制单元252为每一帧改变的读取区域的基准位置,选择从失真修正单元150输出的经修正的图像信号的所有帧共用区的范围。失真修正单元150的细节与第一实施例所述的相同。
读取相位控制单元252为每一帧改变读取区域的基准位置,并且图像区域选择处理单元254选择所有帧共用区的范围。因此,缩减读取规则设置单元242设置读取规则,从而读取控制单元224在比要输出的图像的区域更宽的范围内读取图像数据。
基于缩减读取规则设置单元242设置的读取规则和读取相位控制单元252设置的读取区域的基准位置,图像感测设备220中的读取控制单元224在光电转换元件222的像素矩阵中的相应区域内连续读取图像数据(一帧的像素数据)。因此,图像感测设备220输出运动图像信号,该运动图像信号包含在时间上连续的多帧图像数据。
图像感测装置200还具有多个存储单元,例如两个帧存储器272和274,用于临时存储在缩减读取模式中由图像区域选择处理单元254输出的图像信号的多帧图像数据,或者在水平平均垂直隔行扫描读取模式和垂直隔行扫描读取模式中由图像感测设备220输出的图像信号。
图像感测装置200还具有帧间算术处理单元282,用于在缩减读取模式中通过对存储在帧存储器272和274中的多帧图像数据进行加权平均来生成新的图像数据。
图像感测装置200还具有帧间内插算术处理单元284,用于在水平平均垂直隔行扫描读取模式和垂直隔行扫描读取模式中对存储在帧存储器272和274中的多帧图像数据进行帧间内插(在隔行扫描读取中,在连续帧之间忽略位置和行数据;通过相邻的帧数据补偿被忽略部分的数据(行数据));以及线性内插尺寸改变单元286,用于在水平平均垂直隔行扫描读取模式和垂直隔行扫描读取模式中根据用于帧间内插算术处理单元284输出的图像信号的图像缩放比通过线性内插进行尺寸改变。
此外,图像感测装置200具有第一选择器262,用于根据读取方案选择单元234所选的读取方案,有选择性地将图像感测设备220输出的图像信号发送到失真修正单元150或帧存储器272与274;以及第二选择器276和278,分别用于有选择性地将来自帧存储器272和274的图像信号发送到帧间算术处理单元282和帧间内插算术处理单元284中的一个。
当读取方案选择单元234选择缩减读取模式时,第一选择器262将来自图像感测设备220的图像信号通过失真修正单元150和图像区域选择处理单元254发送到帧存储器272和274。第二选择器277和278将分别来自帧存储器272和274的图像信号通过帧间算术处理单元282发送到图像信号处理单元172。
另一方面,当读取方案选择单元234选择了水平平均垂直隔行扫描读取模式或者垂直隔行扫描读取模式时,第一选择器262将来自图像感测设备220的图像信号直接发送到帧存储器272和274。第二选择器276和278将分别来自帧存储器272和274的图像信号通过帧间内插算术处理单元284和线性内插尺寸改变单元286发送到图像信号处理单元172。
在传统视频系统的运动图像感测中,经常使用隔行扫描方法,其中2场=1帧。隔行扫描产生的图像闪烁在通常的1/30帧速下是不易察觉的。如果有闪烁,利用隔行扫描,在与全扫描相同的时间范围内可以得到宽区域中的图像信息,并且通过在场之间内插可以在高速下得到高分辨率的图像。
在本实施例的图像感测装置200中,在垂直隔行扫描读取模式中,根据通常已知的隔行扫描方法,对时间连续的每两个相邻场,每隔一个行单元地交替读取像素数据以形成一帧。因此,通过在行单元之间内插的方法可以得到几乎无闪烁的图像。
行单元表示在滤波阵列中沿着行的布置重复的基本单元。例如在Bayer矩阵中,行单元包括2行实际像素行。
在本实施例的图像感测装置200中,在水平平均垂直隔行扫描读取模式中,对时间连续的每两个相邻场,每隔一个行单元地读取像素数据以形成一帧,同时对每行中每两个像素单元的2个对应像素数据进行平均。
像素单元表示在滤波阵列中沿每行重复的基本单元。例如在Bayer矩阵中,1个像素单元包括2个像素(例如在图13中,第一行的R和G的集合)。
图13为用于形成1帧的时间连续的相邻两个场的像素数据的示意图,该像素数据通过水平平均垂直隔行扫描来读取。
如图13所示,在每一场中,每隔一个行单元(即在每一场中每隔一对行),读取像素数据。在每一行中,为每两个像素单元读取2个对应的像素数据,即读出用于每四个像素的两个相同类型的像素数据,同时按1/2:1/2的权重平均它们。也就是说,通过一个时钟(CLK)读取对应于四个像素的两个像素数据。
作为这种读取的结果,通过在像素单元之间和行单元之间内插,得到几乎无闪烁的图像。
在本实施例的图像感测装置200中,在缩减读取模式中,隔行扫描在两个场之间内插被忽略的像素数据,以在两个连续帧之间内插被省略的像素数据。
为此,针对每一帧,读取相位控制单元252改变读取控制单元224将从光电转换元件222中缩减读取的像素数据的区域(读取区域)的基准位置。更具体地说,对每一帧,读取相位控制单元252根据预定规则周期性地改变读取区域的基准位置。
结果,为了在指定帧的图像数据中缩减读取而忽略的在光电转换元件222中的指定位置的像素数据包含在另一帧的图像数据中。也就是说,可以避免光电转换元件222中的特定位置的像素数据在图像感测设备220输出的图像信号中总是被忽略。
图14示意性地示出了时间连续的相邻两帧(帧A和帧B)的相同区域中的像素数据,该像素数据通过10/12缩减读取和读取区域基准位置移位处理来读取。
例如,如图14所示,帧B的图像数据(像素数据集合)包含在读取帧A的图像数据时跳过的像素数据(即帧A的图像数据中忽略的像素数据)。也就是说,两帧的图像数据相互补充地包含被省略了的像素数据。
对存储在帧存储器272和274中的连续帧的图像数据,帧间算术处理单元282进行内插被忽略的像素数据的处理。例如,对连续两帧的图像数据,进行1/2:1/2的相加。因此,得到与帧间内插(即通过已知的隔行扫描方法进行反隔行扫描)相同的效果,并且得到无闪烁的图像。
图15和16示意性地示出了在重复6/8缩减读取的读取中的读取区域的基准位置的移位。参照图15和16,[x,y]表示光电转换元件122中像素矩阵的像素位置,(x,y)表示读取区域中像素数据阵列。
如图15和16所示,光电转换元件122的像素数在水平方向上为k,在垂直方向上为l。因此,光电转换元件122的左上角的像素的位置表示为
,右下角的像素位置表示为[k,l]。一帧的读取区域中像素数在水平方向为m,在垂直方向为n。因此,帧左上角的读取开始位置表示为(0,0),右下角的读取结束位置表示为(m,n)。图16所示的帧读取区域从图15所示的帧读取区域,在水平方向上位移2个像素,在垂直方向上位移2个像素。
在图15所示的帧中,左上角的读取开始位置(0,0)匹配光电转换元件122的左上角像素位置
。即,(0,0)=
…(16)读取结束位置(m,n)由下式给出(m,n)=[k-2,l-2] …(17)另一方面,在图16所示的帧中,左上角的读取开始位置由下式给出(0,0)=[2,2] …(18)读取结束位置由下式给出(m,n)=[k,l] …(19)图像区域选择处理单元254选择与图15所示的帧和图16所示的帧共用的区域。也就是说,对于图15所示的帧,图像区域选择处理单元254选择(2,2)和(m,n)作为对角点的矩形区域。对于图16所示的帧,图像区域选择处理单元254选择(0,0)到(m-2,n-2)作为对角点的矩形区域。图像区域选择处理单元254所选的区域通常具有(m-2)×(n-2)个像素数据。
当考虑要提前修剪的区域时,要从光电转换元件222读取的图像总数必须考虑输出图像尺寸和相位移位量。图像区域选择处理单元254根据读取开始位置的信息改变修剪区域。
帧存储器272和274为先进先出(FIFO)存储器。帧间算术处理单元282通过使用与帧存储器272和274中相同位置的像素生成输出图像。
例如对于两帧,合成图像输出(i,j)如下地给出out(i,j)=0.5l(k,i,j)+0.5l(k-1,i,j)…(20)其中,i,j为像素位置,I(k,i,j)为第k帧的像素位置i,j处的图像信号的强度。
对于三个帧,合成图像输出(i,j)通过使用加权分布如下地给出out(i,j)=0.25l(k,i,j)+0.5l(k-1,i,j)+0.25l(k-2,i,j)…(21)通过进行帧间内插,除失真修正效果之外,还获得了通过低通操作增加图像品质的效果。
在本实施例中,在水平方向和垂直方向进行缩减读取,并且在水平方向和垂直方向两个方向上通过管线处理进行线性失真修正。对于CCD,进行垂直传送到水平传送操作图像的感测元件原则上不能在水平方向上缩减读取图像数据。因此,在水平方向上,必须读取所有像素,并且必须按等式(1)通过线性内插进行尺寸更改。
在本实施例的图像感测装置200中,由于与第一实施例相同的原因,对于100%或更大的图像缩放比,通过垂直隔行扫描读取加线性内插处理内插进行尺寸改变。对于相对高的缩减倍数,例如大约70%到100%的缩放比,通过缩减读取加失真修正处理进行尺寸改变。对于相对低的缩减倍数,例如小于70%的缩放比,通过水平平均垂直隔行扫描读取加线性内插处理进行尺寸改变。如在第一实施例中一样,根据对象调整切换读取模式的缩放比。
因此,在本实施例的图像感测装置中,通过根据图像缩放比切换读取方案并随后进行图像信号处理,可以在宽的缩放比范围内得到高分辨率的图像。此外,当缩放比小于100%时,可以在精确的间隔上指定缩放比。
第三实施例本实施例特别意在适用于感测运动图像的图像感测装置。
图17示出了根据本发明的第三实施例的图像感测装置的构成。在图17中,与第一实施例的图像感测装置100中相同的附图标记表示相同的元件,并且将忽略其详细描述以避免重复叙述。
本实施例的图像感测装置300具有成像光学系统110,用于形成对象的光学图像;以及图像感测设备220,用于在成像光学系统110形成的光学图像的预定区域连续输出图像信号。也就是说,从图像感测设备220输出的图像信号是运动图像信号,包括在时间上连续的多帧图像数据。
图像感测设备220具有2维光电转换元件222,用于对成像光学系统110形成的光学图像进行光电转换以获得图像数据(像素数据集合);以及读取控制单元224,用于根据提供的读取规则连续读取光电转换元件222得到的图像数据。
图像感测装置300还具有图像缩放比选择单元132,用于选择要输出的图像的缩放比;读取方案选择单元234,用于根据所选的图像缩放比选择读取控制单元224要从光电转换元件222中读取图像数据的读取方案;以及读取规则提供单元240,用于向图像感测设备220提供与读取方案选择单元234所选的读取方案对应的读取规则。
读取方案选择单元234根据所选的图像缩放比,选择缩减读取模式、水平平均垂直隔行扫描读取模式和垂直隔行扫描读取模式之一。读取规则提供单元240包括缩减读取规则设置单元242,用于设置与缩减读取模式对应的读取规则;水平平均垂直隔行扫描读取规则设置单元244,用于设置与水平平均垂直隔行扫描读取模式相对应的读取规则;以及垂直隔行扫描读取规则设置单元246,用于设置与垂直隔行扫描读取模式相对应的读取规则。
更具体地说,对于小于100%的图像缩放比(即图像缩减),读取方案选择单元234选择缩减读取模式和水平平均垂直隔行扫描读取模式之一。对于100%或更大的图像缩放比(即图像放大),读取方案选择单元234选择垂直隔行扫描读取模式。
对于小于100%的图像缩放比,读取方案选择单元234基于图像缩放比和一个重要的要输出的图像的图像品质因素(诸如对比度、分辨率、失真、亮斑和色斑),选择缩减读取模式和水平平均垂直隔行扫描读取模式之一。
图像感测装置300还具有定时生成器370,用于生成帧定时;以及读取规则改变单元372,用于在与定时生成器370的帧定时同步的帧之间改变读取规则。当选择缩减读取模式时,读取规则改变单元372改变每一帧的缩减读取规则。同时,读取规则改变单元372生成指令以根据读取规则选择用于失真修正滤波的系数。失真修正单元150的细节与第一实施例所述的相同。
在读取规则(读取规则改变单元372为每一帧对其进行改变)中,当所选的缩放比恒定时,尽管读取区域的基准位置和阵列组合改变,要读取的像素数也不改变。
根据缩减读取规则设置单元242设置的读取规则和读取规则改变单元372设置的读取区域基准位置,图像感测设备220中的读取控制单元224在光电转换元件222中的像素矩阵的相应区域中连续读取图像数据(一帧的像素数据)。因此,图像感测设备220输出运动图像信号,包括时间连续的多帧图像数据。
图像感测装置300还具有帧间算术处理单元380,用于通过使用多帧图像数据来生成新的图像数据。在水平平均垂直隔行扫描读取模式和垂直隔行扫描读取模式中,帧间算术处理单元380进行帧间内插算术处理。在缩减读取模式中,帧间算术处理单元380进行如上所述的等式(20)或(21)表示的帧间加权相加。
图像感测装置300还具有选择器392,用于根据读取方案选择单元234所选的读取方案,有选择性地将图像感测设备220输出的图像信号发送到失真修正单元150和帧间算术处理单元380之一。
当读取方案选择单元234选择了缩减读取模式时,选择器392将来自图像感测设备220的图像信号通过失真修正单元150发送到帧间算术处理单元380。
当读取方案选择单元234选择水平平均垂直隔行扫描读取模式或者垂直隔行扫描读取模式时,选择器392将来自图像感测设备220的图像信号发送到帧间算术处理单元380。
帧间算术处理单元380通过选择器394与线性内插尺寸改变单元396相连。当读取方案选择单元234选择水平平均垂直隔行扫描读取模式或者垂直隔行扫描读取模式并且需要尺寸改变时,选择器394将帧间算术处理单元380的输出数据传送到线性内插尺寸改变单元396,以通过帧内的线性内插处理得到具有预定尺寸的图像。
当读取方案选择单元234选择缩减读取模式并且要使用失真修正单元150得到的图像尺寸作为最终尺寸时,直接使用帧间算术处理单元380的输出。因此,选择器394旁路线性内插尺寸改变单元396。为了得到不同于通过缩减读取进行尺寸改变得到的图像尺寸,选择器394将帧间算术处理单元380的输出数据传送到线性内插尺寸改变单元396,以通过帧内的线性内插处理得到具有预定尺寸的图像。
从上面的说明中,显而易见地,在本实施例的图像感测装置中,通过根据图像缩放比切换读取方案并随后进行图像信号处理,可以在宽缩放比范围内得到高分辨率图像。此外,当缩放比小于100%时,可以在精确的间隔上指定缩放比。而且,在缩减读取模式中,在与全扫描相同的时间内得到宽区域中的图像信息。
以上已参照附图描述了本发明的实施例。然而,本发明不限于这些实施例,可以不脱离本发明的精神和范围做出各种变动和修改。
工业适用性根据本发明,提供了可以在宽图像缩放比范围内获得高分辨率图像的图像感测装置。在本图像感测装置中,特别在缩放比小于100%时,可以在精确的间隔上指定缩放比。
权利要求
1.一种图像感测装置,其输出对象的图像,包括图像感测设备,包括光电转换元件,用于对光学图像光电转换以获得图像数据;以及读取控制单元,用于根据提供的读取规则读取所述光电转换元件获取的图像数据;图像缩放比选择单元,用于选择要输出的图像的缩放比;读取方案选择单元,用于根据所选的图像缩放比选择所述读取控制单元要从所述光电转换元件中读取图像数据的读取方案;和读取规则提供单元,用于向所述的读取控制单元提供根据与所述读取方案选择单元所选的读取方案对应的读取规则。
2.根据权利要求1所述的图像感测装置,其中所述读取方案包括缩减读取模式、平均读取模式和全像素读取模式,所述读取方案选择单元根据所选的图像缩放比选择所述缩减读取模式、平均读取模式和全像素读取模式中的一种读取方案,并且所述的读取规则提供单元包括缩减读取规则设置单元,用于设置与所述缩减读取模式对应的读取规则;平均读取规则设置单元,用于设置与所述平均读取模式对应的读取规则;和全像素读取规则设置单元,用于设置与所述全像素读取模式对应的读取规则。
3.根据权利要求2所述的图像感测装置,还包括失真修正单元,用于在所述缩减读取模式中对所述图像感测设备输出的图像信号进行失真修正;线性内插尺寸改变单元,用于在所述平均读取模式和全像素读取模式中通过对所述图像感测设备输出的图像信号进行线性内插来执行尺寸改变;和选择器,用于根据所述读取方案选择单元所选的读取方案,有选择地将从所述图像感测设备输出的图像信号发送到所述失真修正单元和线性内插尺寸改变单元中的一个。
4.根据权利要求1所述的图像感测装置,其中从所述图像感测设备输出的图像信号包括含有时间连续的多帧图像数据的运动图像信号,所述读取方案选择单元根据所选的图像缩放比选择所述缩减读取模式、水平平均垂直隔行扫描读取模式和水平全像素垂直隔行扫描读取模式中的一种读取方案,并且所述读取规则提供单元包括缩减读取规则设置单元,用于设置与所述缩减读取模式相对应的读取规则;水平平均垂直隔行扫描读取规则设置单元,用于设置与所述水平平均垂直隔行扫描读取模式相对应的读取规则;和垂直隔行扫描读取规则设置单元,用于设置与所述垂直隔行扫描读取模式相对应的读取规则。
5.根据权利要求1所述的图像感测装置,其中所述读取方案包括缩减读取模式,从所述图像感测设备输出的图像信号包含多个帧,并且还包括失真修正单元,用于在所述缩减读取模式中对从所述图像感测设备输出的图像信号进行失真修正;读取相位控制单元,用于为每一帧改变将由所述读取控制单元从所述光电转换元件中读取的图像数据的区域(读取区域)的基准位置;和图像区域选择处理单元,用于基于读取区域的基准位置,选择所述失真修正单元输出的经修正的图像信号的所有帧共同的区域,所述读取相位控制单元为每一帧改变该基准位置。
6.根据权利要求5所述的图像感测装置,还包括多个存储单元,用于在所述的缩减读取模式中临时存储从所述的图像区域选择处理单元输出的图像信号的多帧图像数据;和帧间算术处理单元,用于通过对存储在所述存储单元中的多帧图像数据进行加权平均来生成新的图像数据。
7.根据权利要求4所述的图像感测装置,还包括多个存储单元,用于在所述水平平均垂直隔行扫描读取模式和水平全像素垂直隔行扫描读取模式中临时存储从所述的图像感测设备中输出的图像信号的多帧图像数据;帧间内插算术处理单元,用于对存储在所述存储单元中的多帧图像数据进行帧间内插;和线性内插尺寸改变单元,用于根据所述图像缩放比通过对所述帧间内插算术处理单元输出的图像信号进行线性内插来进行尺寸改变。
8.根据权利要求4所述的图像感测装置,还包括失真修正单元,用于在所述缩减读取模式中对所述图像感测设备输出的图像信号进行失真修正;读取相位控制单元,用于在所述缩减读取模式中为每一帧改变将由所述读取控制单元从所述光电转换元件读取的图像数据的区域(读取区域)的基准位置;图像区域选择处理单元,用于在所述缩减读取模式中基于读取区域的基准位置,选择从所述失真修正单元输出的经修正的图像信号的所有帧共同的区域,所述读取相位控制单元为每一帧改变该基准位置;多个存储单元,用于在水平平均垂直隔行扫描读取模式和垂直隔行扫描读取模式之一中,临时存储从所述图像区域选择处理单元输出的图像数据或从所述图像感测设备输出的图像信号的多帧图像数据;帧间算术处理单元,用于在所述缩减读取模式中通过对存储在所述存储单元中的多帧图像数据进行加权平均来生成新的图像数据;帧间内插算术处理单元,用于在水平平均垂直隔行扫描读取模式和水平全像素垂直隔行扫描读取模式之一中,对存储在所述存储单元中的多帧图像数据进行帧间内插,从而在各帧之间相互内插被忽略的图像信息;线性内插尺寸改变单元,用于在水平平均垂直隔行扫描读取模式和水平全像素垂直隔行扫描读取模式之一中,根据所述图像缩放比通过对从所述帧间内插算术处理单元输出的图像信号进行线性内插来进行尺寸改变;第一选择器,用于根据所述读取方案选择单元所选的读取方案,有选择性地将所述图像感测设备输出的图像信号发送到所述失真修正单元或所述多个存储单元;和第二选择器,用于有选择性地将来自所述存储单元的图像信号发送到所述帧间算术处理单元和帧间内插算术处理单元中的一个。
9.根据权利要求1所述图像感测装置,其中所述读取方案包括缩减读取模式,还包括失真修正单元,用于在所述缩减读取模式中对从所述图像感测设备输出的图像数据进行失真修正。
10.根据权利要求9所述图像感测装置,其中从所述图像感测设备输出的图像数据包含多个帧,并且在所述缩减读取模式中为多个帧中的每一帧改变缩减读取规则。
11.根据权利要求1所述图像感测装置,其中所述读取方案包括缩减读取模式,从所述图像感测设备输出的图像数据包含多个帧,并且在所述缩减读取模式中为多个帧中的每一帧改变缩减读取规则。
12.根据权利要求11所述图像感测装置,其中在为每一帧改变的读取规则中,当所述缩放比恒定时,不改变像素数。
13.根据权利要求1到12任一项所述图像感测装置,其中所述读取方案选择单元基于所述图像缩放比和要输出的图像的图像品质因素中重要的一个因素选择读取方案,所述图像品质因素包括对比度、分辨率、失真、亮斑和色斑。
14.一种图像感测装置的图像数据输出控制方法,所述图像感测装置输出对象的图像,包括选择要输出图像的缩放比;根据所选的图像缩放比,选择要从光电转换元件中读取的图像数据的读取方案;和根据与所选的读取方案对应的读取规则,从所述光电转换元件读取图像数据。
15.根据权利要求14所述图像数据读取控制方法,其中所述读取方案包括缩减读取模式,对所述缩减读取模式中读取的图像数据进行失真修正。
16.根据权利要求15所述图像数据读取控制方法,其中从所述光电转换元件中读取的图像数据包括多个帧,并且在所述缩减读取模式中为多个帧中的每一帧改变缩减读取规则。
17.根据权利要求14所述图像数据读取控制方法,其中所述读取方案包括缩减读取模式,从所述光电转换元件中读取的图像数据包括多个帧,并且在所述缩减读取模式中为所述多个帧的每一帧改变缩减读取规则。
全文摘要
一种具有图像感测设备的图像感测装置。该图像感测设备包括光电转换元件,用于对光学图像进行光电转换以获得图像数据;和读取控制单元,用于根据提供的读取规则读取光电转换元件获取的图像数据。图像感测设备还包括图像缩放比选择单元,用于选择要输出的图像的缩放比;读取方案选择单元,用于根据所选的图像缩放比选择读取控制单元要从光电转换元件中读取图像数据的读取方案;和读取规则提供单元,用于向读取控制单元提供与读取方案选择单元所选的读取方案对应的读取规则。
文档编号H04N5/376GK1745575SQ20048000315
公开日2006年3月8日 申请日期2004年1月23日 优先权日2003年1月29日
发明者渡边伸之 申请人:奥林巴斯株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1