终端设备位置确定方法和终端设备的制作方法
【专利摘要】本发明涉及一种终端设备位置确定方法和终端设备,该方法包括:分别获取各个上下文信息相对于设定位置的条件概率,所述上下文信息为与所述终端设备的位置相关联的信息,所述设定位置为所述终端设备处于室内或处于室外;根据各个所述上下文信息相对于所述设定位置的条件概率和位置概率模型,确定所述终端设备处于所述设定位置的概率;根据所述终端设备处于所述设定位置的概率,确定所述终端设备的当前位置为处于室内或室外。本发明实施例的终端设备可以获取与位置相关联的多种上下文信息的条件概率,根据条件概率和位置概率模型确定述终端设备处于设定位置的概率,不单独依赖于某一种信息,确定的终端设备位置可靠性和准确度高。
【专利说明】终端设备位置确定方法和终端设备
【技术领域】
[0001]本发明涉及定位【技术领域】,具体涉及一种终端设备位置确定方法和终端设备。
【背景技术】
[0002]随着地理信息系统、移动定位技术、无线通讯网络、智能终端技术、传感器技术的飞速发展,基于位置服务(Location Based Services,LBS)的应用发展迅速。LBS是根据用户所处位置提供的一种增值服务,主要通过移动定位技术获得用户当前所处的位置,在电子地图和业务平台的支持下,提供给用户与位置相关的信息服务,可以在用户需要的时间、地点和环境下,为用户提供与位置关联的信息服务,更加贴近用户需求和实际位置场景。
[0003]LBS市场蕴藏着巨大的商机,运营商、软件开发商、地图厂商、终端厂商等整个产业链中的众多参与者都积极投入其中,大力推进LBS服务及其应用。LBS可以应用于手机导航、基于位置的社交网络、室内定位、室内导航、智能医疗定位、智能救助等。而用户处于“室内或室外”的位置状态是LBS所需要的一种非常重要的上下文信息,它是一种相对位置信息,通过用户使用的手机等终端设备识别出这种相对位置情境状态,对于LBS应用具有很大的价值,可以用于诸多的实际应用场景中,如:
[0004]情境感知手机:根据用户处于室内室外来自动调整拍照模式、自动开关闪光灯、优化拍摄参数,根据室内室外状态自适应调整WIFI扫描频度来节约手机的能耗、电子设备自动模式切换等;
[0005]辅助定位与导航:能够使用室内室外判定结果辅助进行室内室外定位,根据室内室外采取不同的定位方式,提高定位效率,为用户提供准确、实时动态的定位与导航服务。
[0006]感知用户行为习惯:结合室内室外判断结果和相关的统计信息,可以对用户的活动规律进行较为精确的提取和预测,从而更好地为用户提供个性化的服务;
[0007]个性化推荐:推荐软件可以根据用户当前是处于室内还是室外,采取不同的推荐策略。
[0008]近年来移动智能终端,包括智能手机、平板电脑、穿戴式设备等得到了迅速的普及,终端设备搭载的传感器类型也是越来越多。目前大部分智能手机都配备有GPS模块、加速度传感器、陀螺仪、磁力计等传感器,这些传感器可以获取多种上下文信息,GPS能够定位用户的经纬度位置,电子罗盘可以间接获得用户当前的朝向(以方位角表示)等。
[0009]现有技术大多依赖某种传感器检测到的信息例如:温度、照片信息、GPS信号、通信信号或WLAN信号,与设定的门限值进行比较,确定用户处于室内或室外,推理依赖该传感器检测的信号,准确度较差,容易误判。
【发明内容】
[0010]抟术问是页
[0011]有鉴于此,本发明要解决的技术问题是,现有判断终端设备处于室内或室外的方法中准确度差,容易误判的问题。[0012]解决方案
[0013]为了解决上述技术问题,第一方面,本发明提供了一种终端设备位置确定方法,包括:
[0014]分别获取各个上下文信息相对于设定位置的条件概率,所述上下文信息为与所述终端设备的位置相关联的信息,所述设定位置为所述终端设备处于室内或处于室外;
[0015]根据各个所述上下文信息相对于所述设定位置的条件概率和位置概率模型,确定所述终端设备处于所述设定位置的概率;
[0016]根据所述终端设备处于所述设定位置的概率,确定所述终端设备的当前位置为处于室内或室外。
[0017]结合第一方面,在第一种可能的实现方式中,所述分别获取各个上下文信息相对于设定位置的条件概率,包括:
[0018]分别判断各个所述上下文信息是连续信息或离散信息;
[0019]若所述上下文信息为所述连续信息,则查找所述连续信息的高斯分布曲线,根据所述连续信息的高斯分布曲线确定所述上下文信息相对于所述设定位置的条件概率;或
[0020]若所述上下文信息为所述离散信息,则查找所述离散信息的条件概率表,获取所述上下文信息相对于所述设定位置的条件概率。
[0021]结合第一方面,在第二种可能的实现方式中,所述根据各个所述上下文信息相对于所述设定位置的条件概率和位置概率模型,确定所述终端设备处于所述设定位置的概率,包括:
[0022]根据所述位置概率模型的条件依赖关系,对各个所述上下文信息相对于所述设定位置的条件概率的分布进行转化,等价得到所述终端设备处于所述设定位置的概率。
[0023]结合第一方面的第一种可能的实现方式或第一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述分别获取各个上下文信息相对于设定位置的条件概率之前,包括:
[0024]在所述设定位置为所述终端设备处于室内或处于室外的情况下,分别对各个所述上下文信息进行采集;
[0025]若所述上下文信息为所述连续信息,则采用高斯分布对所述连续信息进行模拟,得到所述连续信息相对于所述设定位置的高斯分布的均值和/或方差,其中,所述连续信息包括所述终端设备所处环境的音量、所述终端设备所处环境的光强度、所述终端设备的移动速度或通信信号强度中的一种或几种;
[0026]在所述上下文信息为所述离散信息的情况下,采用多项分布对所述离散信息进行模拟,将得到的所述离散信息相对于所述设定位置的多项分布的概率保存到所述离散信息的所述条件概率表中,所述离散信息包括全球定位系统抓星个数或无线网络热点个数。
[0027]结合第一方面或第一方面的第一种至第三种任一可能的实现方式,在第四种可能的实施方式中,对于上述终端设备位置确定方法,所述终端设备位置确定方法还包括:
[0028]对所述位置概率模型进行阶段优化,具体包括:
[0029]统计所述位置概率模型的准确率,在所述位置概率模型的准确率小于或等于准确率门限值的情况下,对所述位置概率模型进行上下文信息的删除或增加后逐级递推,以优化所述位置概率模型。[0030]结合第一方面或第一方面的第一种至第三种任一可能的实现方式,在第五种可能的实施方式中,对所述位置概率模型进行全局优化,具体包括:
[0031]在经过设定时间长度的统计后,根据所述设定时间长度内采集的所述各个上下文信息,重新建立所述位置概率模型。
[0032]结合第一方面或第一方面的第一种至第五种任一可能的实现方式,在第六种可能的实施方式中,所述终端设备位置确定方法还包括:
[0033]采用加权平均法对采集到的信息进行平滑处理,获取所述上下文信息。
[0034]为了解决上述技术问题,第二方面,本发明提供了一种终端设备,包括:
[0035]概率获取模块,用于分别获取各个上下文信息相对于设定位置的条件概率,所述上下文信息为与所述终端设备的位置相关联的信息,所述设定位置为所述终端设备处于室内或处于室外;
[0036]模型推理模块,用于根据各个所述上下文信息相对于所述设定位置的条件概率和位置概率模型,确定所述终端设备处于所述设定位置的概率;
[0037]位置确定模块,用于根据所述终端设备处于所述设定位置的概率,确定所述终端设备的当前位置为处于室内或室外。
[0038]结合第二方面,在第一种可能的实现方式中,所述概率获取模块还用于:
[0039]分别判断各个所述上下文信息是连续信息或离散信息;
[0040]若所述上下文信息为连续信息,则查找所述连续信息的高斯分布曲线,根据所述连续信息的高斯分布曲线确定所述上下文信息相对于所述设定位置的条件概率;或
[0041]若所述上下文信息为离散信息,则查找所述离散信息的条件概率表,获取所述上下文信息相对于所述设定位置的条件概率。
[0042]结合第二方面,在第二种可能的实现方式中,所述模型推理模块,还用于根据所述位置概率模型的条件依赖关系,对各个所述上下文信息相对于所述设定位置的条件概率的分布进行转化,等价得到所述终端设备处于所述设定位置的概率。
[0043]结合第二方面的第一种可能的实现方式或第二方面的第二种可能的实现方式,在第三种可能的实现方式中,所述终端设备还包括:
[0044]采集模块,用于在所述设定位置为所述终端设备处于室内或处于室外的情况下,分别对各个所述上下文信息进行采集;
[0045]模拟模块,用于若所述上下文信息为所述连续信息,则采用高斯分布对所述连续信息进行模拟,得到所述连续信息相对于所述设定位置的高斯分布的均值和/或方差,其中,所述连续信息包括所述终端设备所处环境的音量、所述终端设备所处环境的光强度、所述终端设备的移动速度或通信信号强度中的一种或几种;
[0046]所述模拟模块,还用于在所述上下文信息为所述离散信息的情况下,采用多项分布对所述离散信息进行模拟,将得到的所述离散信息相对于所述设定位置的多项分布的概率保存到所述离散信息的所述条件概率表中,所述离散信息包括全球定位系统抓星个数或无线网络热点个数。
[0047]结合第二方面或第二方面的第一种至第三种任一可能的实现方式,在第四种可能的实现方式中,所述终端设备还包括:
[0048]阶段优化模块,用于对所述位置概率模型进行阶段优化,统计所述位置概率模型的准确率,在所述位置概率模型的准确率小于或等于准确率门限值的情况下,对所述位置概率模型进行上下文信息的删除或增加后逐级递推,以优化所述位置概率模型。
[0049]结合第二方面或第二方面的第一种至第三种任一可能的实现方式,在第五种可能的实现方式中,所述终端设备还包括:
[0050]全局优化模块,用于对所述位置概率模型进行全局优化,在经过设定时间长度的统计后,根据所述设定时间长度内采集的所述各个上下文信息,重新建立所述位置概率模型。
[0051]结合第二方面或第二方面的第一种至第五种任一可能的实现方式,在第六种可能的实现方式中,所述终端设备还包括:
[0052]平滑处理模块,用于采用加权平均法对采集到的信息进行平滑处理,获取所述上下文信息。
[0053]有益.效果
[0054]本发明实施例的终端设备可以获取与位置相关联的多种上下文信息的条件概率,根据条件概率和位置概率模型确定述终端设备处于设定位置的概率,不单独依赖于某一种信息,因此确定的终端设备位置可靠性和准确度高。
[0055]根据下面参考附图对示例性实施例的详细说明,本发明的其它特征及方面将变得清楚。
【专利附图】
【附图说明】
[0056]包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本发明的示例性实施例、特征和方面,并且用于解释本发明的原理。
[0057]图1为本发明实施例一的终端设备位置确定方法的流程图;
[0058]图2为本发明实施例二的终端设备位置确定方法的流程图;
[0059]图3a为本发明实施例三的终端设备位置确定方法的流程图;
[0060]图3b为本发明实施例三的终端设备位置确定方法中高斯分布曲线的示意图;
[0061]图3c为本发明实施例三的终端设备位置确定方法中条件概率表的示意图;
[0062]图3d为本发明实施例三的终端设备位置确定方法中模型优化的示意图;
[0063]图4为本发明实施例四的终端设备的结构框;
[0064]图5为本发明实施例五的终端设备的结构框图;
[0065]图6为本发明实施例六的终端设备的结构框图。
【具体实施方式】
[0066]以下将参考附图详细说明本发明的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
[0067]在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
[0068]另外,为了更好的说明本发明,在下文的【具体实施方式】中给出了众多的具体细节。本领域技术人员应当理解,没有这些具体细节,本发明同样可以实施。在另外一些实例中,对于大家熟知的方法、手段、元件和电路未作详细描述,以便于凸显本发明的主旨。
[0069]实施例1
[0070]图1为本发明实施例一的终端设备位置确定方法的流程图,如图1所示,该终端设备位置确定方法包括:
[0071]步骤101、分别获取各个上下文信息(context)相对于设定位置的条件概率,所述上下文信息为与所述终端设备的位置相关联的信息,所述设定位置为所述终端设备处于室内或处于室外。
[0072]具体地,终端设备可以实时获取与终端设备的位置相关联的信息。与终端设备的位置相关联的信息可以包括多种,例如:终端设备所处环境的音量(简称环境音量)、终端设备所处环境的光强度(简称环境光强度)、终端设备的移动速度或通信信号强度、GPS (Global Positioning System,全球定位系统)抓星个数或无线网络如W1-Fi(wireless-fidelity,无线保真)热点个数等上下文信息,这些上下文信息可以由终端设备的各种传感器获取,也可以是第三方服务所提供的数据。其中,环境音量可以由声音传感器获得,环境光强度可以由光线传感器获得,移动速度可以由GPS模块获得,通信信号强度可以由通信模块获得,GPS抓星个数可以由GPS模块获得,无线网络热点个数可以由无线网络模块获得。终端设备采集到的与位置相关联的各种信息可能具有误差,可以对采集到的信号先进行平滑处理如:采用加权平均法对采集到的信息进行平滑处理,获取的信息作为位置确定最终使用的上下文信息。平滑处理的算法可以有多种,本发明实施例不限定平滑处理算法的具体形式。
[0073]终端设备分别获取各个上下文信息相对于设定位置的条件概率的方式,可以先分别判断各个所述上下文信息是连续信息或离散信息,然后根据不同类型的上下文信息,按照以下方式处理:
[0074]方式一、若所述上下文信息为所述连续信息,则查找所述连续信息的高斯分布曲线,根据所述连续信息的高斯分布曲线确定所述上下文信息相对于所述设定位置的条件概率。
[0075]方式二、若所述上下文信息为所述离散信息,则查找所述离散信息的条件概率表,获取所述上下文信息相对于所述设定位置的条件概率。
[0076]步骤102、根据各个所述上下文信息相对于所述设定位置的条件概率和位置概率模型,确定所述终端设备处于所述设定位置的概率。
[0077]具体地,根据所述位置概率模型的条件依赖关系,对各个所述上下文信息相对于所述设定位置的条件概率的分布进行转化,等价得到所述终端设备处于所述设定位置的概率。移动终端使用采集到的多种上下文信息,根据位置概率模型和条件概率表分别计算设定位置的概率。其中,设定位置可以是室内,也可是室外。例如:先使用采集到的多种上下文信息查询各自的条件概率表或高斯分布曲线,得到在各个单独上下文信息处于室内(或室外)的概率数值,再把这些概率数值输入位置概率模型,计算得出当前处于室内(或室外)的概率。
[0078]步骤103、根据所述终端设备处于所述设定位置的概率,确定所述终端设备的当前位置为处于室内或室外。
[0079]具体地,如果终端设备计算得到处于室内的概率大于或等于处于室外的概率,则判定用户当前处于室内,否则判定用户当前处于室外。此外,终端设备可以将判定结果通过显示界面告知用户,通过用户反馈,确定此次判定结果是否准确。
[0080]本实施例的终端设备可以获取与位置相关联的多种上下文信息的条件概率,根据条件概率和位置概率模型确定述终端设备处于设定位置的概率,不单独依赖于某一种信息,因此确定的终端设备位置可靠性和准确度高。由于可以在终端设备上实时进行室内/室外位置判断,不需要借助其他服务器,不需要增加其他硬件模块,因此实时性和实用性强,复杂度低。
[0081]实施例2
[0082]图2为本发明实施例二的终端设备位置确定方法的流程图,图2与图1标号相同的步骤具有相同的含义,如图2所示,与上一实施例的区别在于,在步骤101之前,该终端设备位置确定方法,还可以包括以下步骤:
[0083]步骤201、在所述设定位置为所述终端设备处于室内或处于室外的情况下,分别对各个所述上下文信息进行采集。
[0084]步骤202、根据采集的上下文信息生成对应的条件概率表和位置概率模型,具体可以包括以下情况:
[0085]情况一、在所述上下文信息为所述连续信息的情况下,则采用高斯分布对所述连续信息进行模拟,得到所述连续信息相对于所述设定位置的高斯分布的均值和/或方差,其中,所述连续信息包括所述终端设备所处环境的音量、所述终端设备所处环境的光强度、所述终端设备的移动速度或通信信号强度中的一种或几种。
[0086]情况二、在所述上下文信息为所述离散信息的情况下,采用多项分布对所述离散信息进行模拟,将得到的所述离散信息相对于所述设定位置的多项分布的概率保存到所述离散信息的所述条件概率表中,所述离散信息包括全球定位系统抓星个数或无线网络热点个数。
[0087]具体地,从步骤201到步骤202是终端设备对各种上下文信息的条件概率进行离线学习的过程。例如:分别采集终端设备在室内、室外两种场景下的多种与设定位置有较强关联的上下文信息,包括:环境音量、环境光强度、GPS抓星个数、终端设备的移动速度、WIFI热点个数、通讯信号强度等。其中,环境音量、环境光强度、GPS抓星个数、终端设备的移动速度为连续信息,WIFI热点个数、通讯信号强度为离散信息。在上下文信息为连续信息如时,可以采用高斯分布对连续信息进行模拟,得到连续信息相对于设定位置的高斯分布的均值和/或方差。在上下文信息为离散信息的情况下,统计得到在某一种上下文信息取特定值时,当前用户所处位置是室内或室外的条件概率,并形成条件概率表,将条件概率表作为先验知识存储在终端设备中。本发明实施例中对所选用的上下文信息的种类和数量不做限制,不局限于上述六种,还可以根据实际情况可以扩展使用更多与位置相关联的其它上下文信息,或者仅用更少量的上下文信息。
[0088]在执行步骤101到步骤103,对终端设备的位置进行在线判定之后,将判定结果通过用户界面呈现,由用户对判定结果的正确性进行反馈。然后可以根据用户反馈将判定结果的推理记录分为正面推理记录和负面推理记录两部分,正面推理记录是判定正确的记录,负面推理记录是判定错误的记录。
[0089]为了保证位置概率模型的准确性,该终端设备位置确定方法还可以包括对位置概率模型进行优化的过程,具体可以采用阶段优化和全局优化相结合的方法,如在一段时间内(如一天内),若突发性出现推理错误率剧增(可能是用户到了一个全新环境,或者某个传感器失灵),则进行阶段优化;经过一段时间之后(如一周后),积攒了大量数据,可对位置概率模型定期进行全局优化。具体如下:
[0090]情况一、对所述位置概率模型进行阶段优化,具体包括:
[0091]统计所述位置概率模型的准确率,在所述位置概率模型的准确率小于或等于准确率门限值的情况下,对所述位置概率模型进行上下文信息的删除或增加后逐级递推,以优化所述位置概率模型。
[0092]具体地,可以基于数量不多的负面推理记录进行,在完整的位置概率模型基础上,可以恰当地删除部分上下文信息达到优化位置概率模型的目的。阶段优化的方法是基于一段时间内收集到足够多的用户反馈信息,计算位置概率模型的准确率。如果统计得到当前准确率低于准确率门限值,则针对用户反馈的负面推理记录,将完整的位置概率模型删减若干上下文信息的变量得到的位置概率模型,进行不确定性推理,从中找到能够提高推理准确率的模型,并在下一轮推理中启用该新的位置概率模型。例如:用户处于家庭场景中,以环境音量、环境光强度和WIFI热点个数作为各个变量,确定位置概率模型。在用户处于出差场景时,WIFI热点个数导致原本的位置概率模型不准确,则可以删除位置概率模型中的WIFI热点个数这个变量。此外,也可以在位置概率模型中增加新的上下文信息的变量。例如:用户从出差场景回到家庭场景,可以恢复位置概率模型中的WIFI热点个数这个变量。
[0093]阶段优化的特点是可以快速重构模型,无需大量训练数据,复杂度低,能快速达到有效提升推理准确性的效果。
[0094]情况二、对所述位置概率模型进行全局优化,具体包括:
[0095]在经过设定时间长度的统计后,根据所述设定时间长度内采集的所述各个上下文信息,重新建立所述位置概率模型。
[0096]具体地,可以基于较长时间段、累积数量较多的新的用户标注记录,重新进行一遍模型参数训练以达到全局优化位置概率模型的目的。全局优化的方法是将新增的用户标注记录(包括负面推理记录和正面推理记录)与原有的训练数据结合,按照离线学习阶段描述的方法重新进行一遍模型参数训练,建立位置概率模型。
[0097]全局优化的特点是需要大量训练数据,复杂度高,能从根本上优化整个位置概率模型。
[0098]本实施例的终端设备可以获取与位置相关联的多种上下文信息的条件概率,根据条件概率和位置概率模型确定述终端设备处于设定位置的概率,不单独依赖于某一种信息,因此确定的终端设备位置可靠性和准确度高。由于可以在终端设备上实时进行室内/室外位置判断,不需要借助其他服务器,不需要增加其他硬件模块,因此实时性和实用性强,复杂度低。并且,可根据用户反馈对位置概率模型进行自动优化,随着环境、场景的变化可以动态优化,能有效提高实际使用环境中的判定准确性,具备较好的自适应性和灵活性。此外,使用阶段性优化和全局优化相结合的动态优化方法,能同时兼顾训练复杂度和判定准确性。
[0099]实施例3[0100]图3a为本发明实施例三的终端设备位置确定方法的流程图,如图3a所示,该终端设备位置确定方法可以包括以下步骤:
[0101]离线学习阶段,采集多种上下文信息并形成条件概率表。
[0102]步骤301、分别在室内和室外场景下利用终端设备上的各种传感器采集得到多种上下文信息,包括:环境音量、环境光强度、GPS抓星数、通讯信号强度、终端设备的移动速
/又寸。
[0103]步骤302、获得针对离散信息和连续信息的条件概率表和位置概率模型。
[0104]对于连续信息如:环境音量、环境光强、通讯信号强度、终端设备的移动速度等,采用高斯分布进行模拟,学习到的参数为该上下文信息的相应的高斯分布的均值和方差。如图3b所示,为本发明实施例三的终端设备位置确定方法中高斯分布曲线的示意图,根据环境音量的高斯分布的均值和方差确定的条件概率,声音分贝相对于室内的条件概率分布在(-5?5)分贝之间,声音分贝相对于室外的条件概率分布在(O?20)分贝之间。对于离散信息如:GPS抓星个数、WIFI热点个数,采用多项分布建模,学习到的为多项分布对应的各项的概率,统计得到条件概率表。如图3c所示,为本发明实施例三的终端设备位置确定方法中条件概率表的示意图,由GPS抓星个数条件概率表中可知,GPS抓星个数为I时,处于室内的概率为0.8,处于室外的概率为0.2。
[0105]在线判定阶段,根据终端设备当前传感器所采集到上下文信息结合条件概率表判定所处的位置。
[0106]步骤303、通过终端设备上的各种传感器,实时自动采集多种上下文信息。例如:采集环境音量、环境光强度、GPS抓星数、通讯信号强度、终端设备的移动速度等数据,然后对于采集到的数据做平滑处理,以消除由于某些传感数据跳变所造成的负面影响,所用平滑处理方法不限,一般采用加权平均的方法做数据平滑处理。将平滑处理后的数据作为上下文信息进行后续的判定,可以得到更准确地描述。
[0107]步骤304、根据离线学习阶段所获得的条件概率表,以及上一步实时自动采集的上下文信息,分别计算出此时终端设备处于室内或室外的概率。具体计算的方法为:先使用采集到的多种上下文信息查询各自的条件概率表,得到在各个单独的上下文下处于室内或者室外的概率数值,再把这些概率数值输入位置概率模型计算得出当前处于室内或者室外的概率。
[0108]如果计算得到处于室内的概率大于或等于处于室外的概率,则判别用户当前处于室内,否则判别用户当前处于室外。在数据不完备的情况下,即部分上下文缺失的时候,需要对缺少的上下文进行积分处理,比较计算得到的室内室外概率的大小,概率大的作为判
定结果。
[0109]例如:在数据完备的情况下,对高级上下文进行推理就根据条件依赖关系对条件概率分布进行转化,根据贝叶斯定理可以得到如下公式(I):
[0110]p(position | voice, light, wifl, gsm, gp's, speed)
—p( posit km I voice, lights wifi, gsm, gps、speed | posiikm x p( posit km))
[0111 ]p(vok%\ Ughi, wifi, gsm, gps, speed)
[0112]
【权利要求】
1.一种终端设备位置确定方法,其特征在于,包括:分别获取各个上下文信息相对于设定位置的条件概率,所述上下文信息为与所述终端设备的位置相关联的信息,所述设定位置为所述终端设备处于室内或处于室外;根据各个所述上下文信息相对于所述设定位置的条件概率和位置概率模型,确定所述终端设备处于所述设定位置的概率;根据所述终端设备处于所述设定位置的概率,确定所述终端设备的当前位置为处于室内或室外。
2.根据权利要求1所述的终端设备位置确定方法,其特征在于,所述分别获取各个上下文信息相对于设定位置的条件概率,包括:分别判断各个所述上下文信息是连续信息或离散信息;若所述上下文信息为所述连续信息,则查找所述连续信息的高斯分布曲线,根据所述连续信息的高斯分 布曲线确定所述上下文信息相对于所述设定位置的条件概率;或若所述上下文信息为所述离散信息,则查找所述离散信息的条件概率表,获取所述上下文信息相对于所述设定位置的条件概率。
3.根据权利要求1所述的终端设备位置确定方法,其特征在于,所述根据各个所述上下文信息相对于所述设定位置的条件概率和位置概率模型,确定所述终端设备处于所述设定位置的概率,包括:根据所述位置概率模型的条件依赖关系,对各个所述上下文信息相对于所述设定位置的条件概率的分布进行转化,等价得到所述终端设备处于所述设定位置的概率。
4.根据权利要求2或3所述的终端设备位置确定方法,其特征在于,所述分别获取各个上下文信息相对于设定位置的条件概率之前,包括:在所述设定位置为所述终端设备处于室内或处于室外的情况下,分别对各个所述上下文信息进行采集;若所述上下文信息为所述连续信息,则采用高斯分布对所述连续信息进行模拟,得到所述连续信息相对于所述设定位置的高斯分布的均值和/或方差,其中,所述连续信息包括所述终端设备所处环境的音量、所述终端设备所处环境的光强度、所述终端设备的移动速度或通信信号强度中的一种或几种;在所述上下文信息为所述离散信息的情况下,采用多项分布对所述离散信息进行模拟,将得到的所述离散信息相对于所述设定位置的多项分布的概率保存到所述离散信息的所述条件概率表中,所述离散信息包括全球定位系统抓星个数或无线网络热点个数。
5.根据权利要求1-4中任一项所述的终端设备位置确定方法,其特征在于,还包括:对所述位置概率模型进行阶段优化,具体包括:统计所述位置概率模型的准确率,在所述位置概率模型的准确率小于或等于准确率门限值的情况下,对所述位置概率模型进行上下文信息的删除或增加后逐级递推,以优化所述位置概率模型。
6.根据权利要求1-4中任一项所述的终端设备位置确定方法,其特征在于,还包括:对所述位置概率模型进行全局优化,具体包括:在经过设定时间长度的统计后,根据所述设定时间长度内采集的所述各个上下文信息,重新建立所述位置概率模型。
7.根据权利要求1-6中任一项所述的终端设备位置确定方法,其特征在于,还包括:采用加权平均法对采集到的信息进行平滑处理,获取所述上下文信息。
8.—种终端设备,其特征在于,包括:概率获取模块,用于分别获取各个上下文信息相对于设定位置的条件概率,所述上下文信息为与所述终端设备的位置相关联的信息,所述设定位置为所述终端设备处于室内或处于室外;模型推理模块,用于根据各个所述上下文信息相对于所述设定位置的条件概率和位置概率模型,确定所述终端设备处于所述设定位置的概率;位置确定模块,用于根据所述终端设备处于所述设定位置的概率,确定所述终端设备的当前位置为处于室内或室外。
9.根据权利要求8所述的终端设备,其特征在于,所述概率获取模块还用于:分别判断各个所述上下文信息是连续信息或离散信息;若所述上下文信息为所述连续信息,则查找所述连续信息的高斯分布曲线,根据所述连续信息的高斯分布曲线确定所述上下文信息相对于所述设定位置的条件概率;或若所述上下文信息为所述离散信息,则查找所述离散信息的条件概率表,获取所述上下文信息相对于所述设定位置的条件概率。
10.根据权利要求8所述的终端设备,其特征在于,所述模型推理模块,还用于根据所述位置概率模型的条件依赖关系,对各个所述上下文信息相对于所述设定位置的条件概率的分布进行转化,等价得到所述终端设备处于所述设定位置的概率。
11.根据权利要求9或10所述的终端设备,其特征在于,还包括:采集模块,用于在所 述设定位置为所述终端设备处于室内或处于室外的情况下,分别对各个所述上下文信息进行采集;模拟模块,用于若所述上下文信息为所述连续信息,则采用高斯分布对所述连续信息进行模拟,得到所述连续信息相对于所述设定位置的高斯分布的均值和/或方差,其中,所述连续信息包括所述终端设备所处环境的音量、所述终端设备所处环境的光强度、所述终端设备的移动速度或通信信号强度中的一种或几种;所述模拟模块,还用于在所述上下文信息为所述离散信息的情况下,采用多项分布对所述离散信息进行模拟,将得到的所述离散信息相对于所述设定位置的多项分布的概率保存到所述离散信息的所述条件概率表中,所述离散信息包括全球定位系统抓星个数或无线网络热点个数。
12.根据权利要求8-11中任一项所述的终端设备,其特征在于,还包括:阶段优化模块,用于对所述位置概率模型进行阶段优化,统计所述位置概率模型的准确率,在所述位置概率模型的准确率小于或等于准确率门限值的情况下,对所述位置概率模型进行上下文信息的删除或增加后逐级递推,以优化所述位置概率模型。
13.根据权利要求8-11中任一项所述的终端设备,其特征在于,还包括:全局优化模块,用于对所述位置概率模型进行全局优化,在经过设定时间长度的统计后,根据所述设定时间长度内采集的所述各个上下文信息,重新建立所述位置概率模型。
14.根据权利要求8-13中任一项所述的终端设备,其特征在于,还包括:平滑处理模块,用于采用加权平均法对采集到的信息进行平滑处理,获取所述上下文信息。
【文档编号】H04M1/725GK103442331SQ201310341925
【公开日】2013年12月11日 申请日期:2013年8月7日 优先权日:2013年8月7日
【发明者】丁强, 李莉, 李春平 申请人:华为技术有限公司, 清华大学