选择性比吸收率调整的制作方法

文档序号:11637741阅读:209来源:国知局
选择性比吸收率调整的制造方法与工艺

附图简述

图1例示出了用于在比吸收率(sar)标准的上下文中选择性地调整射频(rf)传输功率的示例系统。

图2例示出了用于在sar标准的上下文中选择性地调整rf传输功率的另一示例系统。

图3例示出了用于在sar标准的上下文中选择性地调整rf传输功率的系统的示例体系结构。

图4例示出了在sar标准的上下文中选择性地调整rf传输功率的示例sar邻近度检测子系统的各组件。

图5例示出了用于在sar标准的上下文中选择性地调整rf传输功率的示例基于运动的人类检测子系统的各组件。

图6例示出了用于在sar标准的上下文中选择性地调整rf传输功率的示例操作。

图7例示出了在sar标准的上下文中对选择性地调整rf传输功率是有用的示例电子设备。

详细描述

现代电子设备通常采用高频无线电通信,特别是移动设备。由于人类组织可在该人类组织被置于接近发射天线时被强无线电波负面地影响(例如,加热),各政府机构和工业实体已经建立标准来限制被发射到人类组织中的射频(rf)功率。例如,比吸收率(sar)测试测量发射到位于邻近rf发射机的人类组织中的rf功率。满足这样的sar标准的一种方法包括当对象(例如,人类部位)被检测到邻近rf发射机时降低rf传输功率。然而,降低rf传输功率也可能损害电子设备的通信性能。

所描述的技术提供了具有对传输源附近的人类组织和非人类对象进行区分的能力的系统。以此方式,可取决于在rf发射机附近检测到人类组织还是非人类对象来选择性地作出对传输源的传输功率调整。对传输源附近的人类组织和其他非人类对象进行区分提供了对sar调整的选择性控制。因此,电子设备可通过在邻近处检测到人类组织的情况下降低传输功率,而在邻近处检测到非人类对象(而没有人类组织)的情况下不降低传输功率来避免为符合sar标准而实行的传输功率降低所引入的某些通信性能降低。

图1例示出了用于在比吸收率(sar)标准的上下文中选择性地调整射频(rf)传输功率的示例系统100。电子设备102包括传输功率控制器104和连接到诸如天线106和108之类的天线的一个或多个rf传输源。通常,天线106和108位于包围电子设备102的壳体的内部,但天线106和108被示为位于外壳外部以便例示对各种主体(例如,人类组织112、非人类对象114)的接近的概念。电子设备102还可包括例如显示面板110和内部电子组件,诸如存储器、一个或多个处理器、输入和输出接口、电源、以及其它组件。

传输功率控制器104对系统100的rf传输源附近的非人类对象和人类组织进行区分。在操作期间,电子设备102可例如由人类沿着电子设备102的顶部边缘来握持。如果检测到人类组织,则该检测将使传输功率控制器104遵从sar标准降低人类组织112附近的rf传输源的传输功率。相反,当电子设备102正放置在桌子上时,该桌子可被检测为在rf传输源附近的非人类对象114。检测到非人类对象原本将导致传输功率控制器104降低在桌子附近的rf传输源的传输功率。该后一示例不必符合sar标准,因为sar标准不适用于非人类组织。然而,对传输功率控制器104的增强使其能够对邻近的人类组织和邻近的非人类对象进行区分。因此,在一个实现中,由传输功率控制器104提供给天线108的传输功率将被降低以符合sar标准,而由传输功率控制器104提供给天线106的传输功率将不会被降低。还可以采用其它调整方案。

图2例示出了用于在sar标准的上下文中选择性地调整rf传输功率的另一示例系统200。电子设备202包括传输功率控制器204和rf发射机206和208)(例如,传输源)。通常,rf发射机206和208位于包围电子设备202的壳体的内部。电子设备202还可包括例如显示面板210和内部电子组件,诸如存储器、一个或多个处理器、输入和输出接口、电源、以及其它组件。

邻近度传感器垫212位于rf发射机206附近以检测进入rf发射机206附近的对象。类似地,邻近度传感器垫214位于rf发射机208附近以检测进入rf发射机208附近的对象。在一个实现中,rf发射机206可表示移动宽带发射天线,而rf发射机208可表示另一移动宽带发射天线、wifi发射天线等。可采用各种组合。邻近度传感器垫212和214被分别设计成检测由rf发射机206和208附近的导电对象的靠近引起的外部电容耦合变化。邻近度传感器垫212和214的检测能力也对诸如温度和/或湿度的变化之类的周围环境条件敏感,因为温度和湿度两者都可改变邻近度传感器垫212和214的电容响应。替换地或附加地,可使用被用于电子设备202的触摸屏、跟踪垫、以及其它输入组件的电容传感器来检测对象邻近度。

参考垫216也位于rf发射机206附近。参考垫216是被设计成对由其附近的外部对象引起的电容变化不敏感(例如,无关),但仍然保持对周围环境条件(诸如温度和/或湿度的变化)敏感的传感器。在一个实现中,参考垫216被包围在封套中,该封套保护参考垫216免受外部电容变化,同时仍允许对周围环境条件引起的内部电容变化敏感。由参考垫216检测的这些内部电容变化与周围环境条件引起的在邻近度垫212和214中的电容变化基本成线性比例。如此,参考垫216充当至少关于温度和/或湿度的周围环境条件传感器,并且向传输功率控制器204提供参考或补偿信号。参考信号被用于移除接收自邻近度传感器垫212和214的邻近度信号中的温度和湿度的影响。

在对象(无论是否是人类组织)进入电容传感器212附近的情况下,电容传感器212经历电容耦合的变化,该电容耦合的变化反映为电容传感器212向传输功率控制器204发送的主邻近度信号的变化。在此示例中,电容是从电容传感器212到接地来测量的。传输功率控制器204还接收其它信号(包括来自参考垫216的参考信号、来自电容传感器214的副邻近度信号),以及其它上下文信号(诸如(例如来自加速度计、陀螺仪、和/或指南针的)运动信号、相机和话筒信号、触摸屏输入信号、和其他基于传感器的信号)。基于这些输入,传输功率控制器204确定人类组织对象(诸如手208)是否已经进入了rf发射机206的附近区域。如果是,传输功率控制器204降低rf发射206的传输功率以努力符合sar标准和/或以其他方式保护人类组织免受rf传输信号的负面影响。

图3例示出了用于在sar标准的上下文中选择性地调整rf传输功率的系统(例如,电子设备)的示例体系结构300。在高层次上,系统的体系结构300将温度/湿度补偿邻近度信号与基于运动的人类检测进行组合,使区分个体rf发射机附近的人类组织和非人类组织对象。以此方式,系统可以遵从sar标准更选择性地调整传输功率。

电容感测电路302包括一个或多个邻近度传感器垫和参考垫。在图3中,电容感测电路302被示为具有两个邻近度传感器垫:输出主邻近度信号的主邻近度传感器垫(最接近rf发射机),和向电容数字化仪304输出副邻近度信号的副邻近度传感器垫(最远离rf发射机)。电容感测电路302的参考垫向电容数字化仪304输出温度和湿度参考信号(“t和h参考”)。电容感测电路302的参考垫被设计成对由其附近的外部对象引起的电容变化不敏感(例如,无关),但仍然保持对温度和湿度引发的电容变化量保持敏感,所述电容变化量与温度和湿度在电容感测电路302的其他参考垫中引起的电容变化基本成线性比例。

在一个实现中,在全功率正常操作期间,电容数字化仪304被配置成每9毫秒对电容数字化仪304的三个传感器输入或阶段进行采样,其中每个采样包括与在相应输入或阶段处接收的电容邻近度信号或电容参考信号成比例的无符号16位数字。在低功率连接待机操作期间,电容数字化仪304被配置成每800毫秒对三个传感器输入或阶段进行采样。全功率操作使用约6毫瓦的功率,而低功率操作使用约1毫瓦的功率。

sar邻近度检测子系统306轮询由电容数字化仪304数字化的电容传感器数据,并且执行对传输源附近的人类组织和非人类对象进行区分的检测过程。采用从1hz至10hz的示例轮询采样率,其中采样率是相对稳定的(逐样品的采样区间有+/-5%可变性),但也可替换地采用其他采样率。例如,较慢的采样率增加了检测邻近对象的时间量,因为数字滤波瞬态响应需要较长时间才能完成。在此场景中,用于最快性能的推荐采样率为约10hz,因为较高的采样率允许体系结构300对电容传感器数据的变化更具响应性。如果采用低功率操作(例如,在某些系统中不能达到10hz的采样率的情况下),则将采样率降低到固定的较低速率是可以接受的,但可能会降低性能。在又一示例中,如果使用降低的采样率,采样率的变化可在系统300中引入数字滤波器的稳定时间(例如,它们的瞬态响应时间)。与使用电容数字化仪304的内部采样速率相比,这种轮询可提供更高效的功率利用。sar邻近度检测子系统306可以按电路系统或电路系统、一个或多个处理器、以及软件或固件指令的组合来实现。

通常,温度和湿度增加会增加由电容数字化仪和诸如邻近度垫或参考垫之类的电容传感器垫测得的感测电容,而温度和湿度降低会降低由电容数字化仪和电容传感器垫测得的感测电容。因此,体系结构300为电容感测电路所经历的温度和湿度的影响提供补偿。

在一个实现中,对于+/-2pf的输入范围,电容数字化仪340具有+/-20pf的动态范围。电容数字化仪340采用偏移(afe偏移或模拟前端偏移)来调整传入邻近度和参考信号的基线。然而,电容数字化仪340对于甚至在各个体系统中的电路组件值的非常小的差异的极端灵敏度可导致适合于每个系统的归零数字化电容输入信号的不同afe偏移。附加地,甚至精确的afe偏移也可能不完全归零经数字化的传感器值,因此附加的补偿dc偏移被用于进一步减少电容输入信号的周围环境分量(例如,在室温和湿度下邻近没有对象的情况下进行校准)。

如此,根据系统300的校准能力确定补偿dc偏移。执行校准来为每个输入确定用于配置电容数字化器304的适合的afe偏移。除了afe偏移之外,校准还确定适合的dc偏移以便用所确定的afe偏移将数字化电容输入归零。一旦确定,则afe偏移和dc偏移被存储并随后在初始化期间被重用,因为只要硬件平台不改变,它们就不趋于改变。注意:各个系统可具有不同的afe偏移和dc偏移,至少部分原因是系统组件值的差异。

电容感测电路302、电容数字化仪304、以及sar邻近度检测子系统306与主机硬件和软件平台308协作,以提供选择性sar调整信息,该选择性sar调整信息被主机硬件和软件平台308用于调整调制解调器310(示例rf发射机)的传输功率。主机硬件和软件平台308经由中断信号通道(irq)和i2c(或其他接口)从电容数字化仪304处同步并接收数字化电容样本(例如,涉及主邻近度信号、副邻近度信号、以及参考信号)。

除了其他组件之外,硬件和软件平台308(例如,平板计算机、移动智能电话、膝上型计算机、可穿戴设备、或其他设备)包括以下各项中的一个或多个:

●一个或多个加速度计

●一个或多个陀螺仪

●一个或多个磁力计

●传感器硬件

●驱动器软件

●运动传感器融合电路系统和/或软件

●通信硬件和驱动器软件(例如,wifi调制解调器接口硬件和软件)

还可采用其它传感器,诸如一个或多个气压计、触摸屏、一个或多个相机、一个或多个话筒、加速度计、陀螺仪、指南针和其它传感器。各种加速度计、陀螺仪、磁力计和其他传感器表示运动传感器组件,运动传感器融合电路系统和/或软件将运动传感器组件的输出信号相组合,以更好地捕捉特定运动事件和任何单个组成传感器输入。运动传感器融合电路系统和/或软件还可管理各种传感器的校准、打开/关闭陀螺仪、以及管理传感器功耗。

硬件和软件平台308通过经由数字化仪驱动器311、调制解调器驱动器312、以及硬件抽象层314发信号部分地与sar邻近度检测子系统306和基于运动的人类检测器316进行通信。硬件抽象层314允许sar邻近度检测子系统306和基于运动的人类检测器316是平台无关的,从而允许它们进行工作而无需修改(或不无需显著修改)其他主机硬件和软件平台。

基于运动的人类检测器316使用因平台而异的3轴加速度计和运动传感器融合数据来检测人类运动并提高sar邻近度检测子系统306的准确度。基于运动的人类检测器316确定设备是否正在经历预期是基于人类的运动的运动,或者设备是否以指示人类不会使用系统的方式来定向(例如,面朝下持续很长一段时间)。结果,在一个实现中,基于运动的人类检测器316确定检测到的运动是否增加了人类组织在邻近度传感器的附近区域中的可能性。基于运动的人类检测状态被用于调整人类存在的置信度,并因此有助于选择性地调整人类组织附近的rf传输功率。

在sar邻近度检测子系统306的每个周期结束时,更新对象和人类检测指示符。调制解调器310用于确定rf传输功率降低是否是适合的。例如,在四状态检测指示系统中,如果对象检测指示符指示在rf发射机附近检测到对象,但人类检测指示符没有指示在附近检测到人类,则没有rf传输功率降低是适合的。替换地,如果人类检测指示符也指示在rf发射机附近检测到人类/对象,则rf传输功率降低是适合的。如果两个指示符都没有指示检测到人类/对象,则没有rf传输功率降低是适合的。最后,如果人类检测指示符指示附近有人类,但对象检测指示符没有指示附近有对象,则rf传输功率降低是适合的。

调制解调器310还将检测状态信息传递到主机硬件和软件平台308中的wifi驱动器,该wifi驱动器也可降低各个rf发射机的rf传输功率。调制解调器310还可从sar邻近度检测子系统306请求其他状态信息,诸如人类检测置信度值。

图4例示出了在sar标准的上下文中选择性地调整rf传输功率的示例sar邻近度检测子系统400的各组件。在一个实现中给定来自三个感测输入(例如主邻近度信号、副邻近度信号、以及参考/补偿信号)的原始数字化电容数据,sar邻近度检测子系统400执行以下操作中的一个或多个:

1.sar邻近度检测子系统400基于每个通道的预校准增益来缩放来自三个感测输入(例如,主邻近度信号、副邻近度信号、以及参考信号)的原始数字化电容数据,提供经缩放的主邻近度数据、经缩放的副邻近度数据和经缩放的补偿数据。

2.sar邻近度检测子系统400从经缩放的邻近度数据和经缩放的补偿数据中滤除温度和湿度影响。

3.sar邻近度检测子系统400执行“动态检测”,检测在附近区域内快速移动的对象(无论是否是人类组织)的邻近度。

4.sar邻近度检测子系统400执行“静态检测”,检测在附近区域内非常慢地移动的或静止的对象(无论是否是人类组织)的邻近度,其特别适用于在上电时检测附近区域中的对象。

5.sar邻近度检测子系统400执行“人类检测”,基于邻近度数据与类人类模板的相关性来检测附近区域内的大的(例如,躯干、大腿等)类人类对象的存在。包括基于运动的人类检测数据的其他数据可与此相关性聚集在一起,以提供对人类组织检测的更多置信度。

6.在邻近度方差满足方差条件的情况下(例如,在足够长的时间段中邻近度方差足够低的情况下),sar邻近度检测子系统400将周围邻近度调整直到预定边界(例如,每秒两个计数)。在一个实现中,在使用对象检测操作之一而当前没有检测到对象的情况下和在前七十秒内没有检测到人类的情况下,发生这种类型的调整。

7.sar邻近度检测子系统400通过自上次周围邻近度更新以来检测到的补偿的变化来调整当前周围邻近度。在一个实现中,这种类型的调整可在冷启动时,在退出连接待机的情况下、或在对象仅被静态地检测到(例如,没被动态地检测到或检测到人类)并在至少二十秒内尚未被更新的情况下发生。

8.sar邻近度检测子系统400将周围补偿向上调整到预定边界(例如,每秒两个计数)。

9.sar邻近度检测子系统400监视接收自参考垫的补偿信号中的快速持久变化,并且在补偿信号已经稳定之际标记发生“周围邻近度和补偿更新”。

10.sar邻近度检测子系统400更新对象和人类检测指示符。

虽然上述操作以指定的顺序给出,但是一些操作可根据但不限于工程、功率、和/或时序考虑来重新排序。

功率管理电路402将来自主机系统和调制解调器的功率状态信息提供给sar邻近度检测子系统400,该sar邻近度检测子系统能够将电容数字化仪404动态地重新配置成不同的功率状态。以此方式,电容数字化仪404可使用少至一毫瓦或多至六毫瓦的功率。例如,当rf发射机不在发射时,电容数字化仪404中的寄存器被配置为与rf发射机正在发射时相比消耗较少功率的功率状态。在一些功率状态下,sar邻近度检测子系统400将电容数字化仪404中的寄存器配置为以低功率状态(例如,一毫瓦)运行,同时仍以1hz的降低的速率采样电容数据。这样的操作对允许sar邻近度检测子系统400利用由温度和/或湿度的环境变化引起的电容变化来更新其周围邻近度和补偿信号是有用的。

自动调谐器406在校准时间与电容数字化仪404对接,以校准作为sar校准数据408存储在存储器中的afe、邻近度、以及补偿偏移。afe偏移通过初始化器410反馈以在校准时间配置电容数字化仪404中的寄存器。afe偏移提供对从三个电容传感器垫输入处接收的原始电容信号的初始调整。

邻近度和补偿偏移被传递到缩放器412,该缩放器412基于邻近度和补偿偏移缩放接收自电容数字化仪404的邻近度和补偿数据(即,电容数据)。每个通道都具有基于相应的偏移的其自己的增益调整,该偏移是根据在设计和/或制造时刻的经验测试数据来确定的并被存储在sar校准数据408的存储器中。

经缩放的电容数据(proxscaled和compscaled)被传递到温度和湿度滤波器414,该滤波器至少部分地移除由于温度和/或湿度的变化而改变的环境条件造成的电容变化的影响。sar邻近度检测子系统400应用等式1(以下)来生成经调整的邻近度信号。

proxadj=proxscaled-compscaled-proxambient(1)

温度和湿度滤波器414根据接收自sar校准数据408的存储器的当前邻近度偏移来计算周围邻近度信号(proxambien),这基于温度和/或湿度的变化通过基线调整操作进一步被调整。温度和湿度滤波器414还监视从缩放器412接收的经缩放的补偿信号,以检测经缩放的补偿信号的快速变化。这种快速变化指示附近区域中快速的温度和/或湿度变化。温度和湿度滤波器414的监视操作检测经缩放的补偿信号在时间窗口上的信号变化量,并确定经缩放的补偿信号变化是否满足快速变化条件(例如,对于多个连贯检查,变化超过快速变化阈值)。如果满足快速变化条件,则温度和湿度滤波器414向基线调整器416指示快速的温度和/或湿度变化事件。

基线调整器416确定当前周围邻近度以从由温度和湿度滤波器414从缩放器412接收的经缩放的邻近度(电容)信号移除温度和/或湿度变化的影响。在一个实现中,温度和/或湿度的变化可导致数字化邻近度电容的变化为1000个计数及以上,并且这些变化可导致假邻近度触发。通滤除经缩放的邻近度(电容)信号中的温度和/或湿度变化的影响,邻近度检测器在变化的环境条件(例如温度和/或湿度变化)下提供更加准确的结果。

在一个实现中,从经缩放的邻近度信号中减去经缩放的补偿信号,二者都由接收自缩放器412的经缩放的电容数据表示,温度和湿度滤波器414可移除约五十个计数内的温度和/或湿度的影响。例如,当在周围邻近度已移除的情况下跟踪温度和湿度上的邻近度,并且电容传感器垫附近没有对象时,会期待看到平线响应。然而,所得的信号通常将在约五十个计数或某些中间基线的+/-25个计数的方差附近浮动。为了使该响应更接近于平坦,每当(dc-滤波的)经调整的邻近度的方差在足够的时间段内处于可接受的边界内并且在附近区域内没有检测到对象的情况下,基线调整器416就调整周围邻近度。基于由dc滤波器420从经调整的邻近度信号导出的dc-滤波的邻近度信号,通过邻近度方差组件418将方差提供给基线调整器416。dc滤波器420从经调整的邻近度信号中移除dc偏移,以准备由动态邻近度检测器422进行处理。在一个实现中,dc滤波器420包括跟随有泄漏积分器的区分器,它们相组合地执行有效的高通滤波操作。

邻近度方差组件418确定何时存在周围条件(从而可更新邻近度和补偿基线)。周围条件的存在是使用加权平均来计算均值和均方而从源自dc-滤波器420的dc-滤波邻近度信号中导出的。经验数据显示,当邻近区域内没有对象时,邻近度方差持续为低,因此邻近度方差为更新周围邻近度和补偿信号提供了良好的门槛。

在一个实现中,在dc滤波的邻近度方差低于预定的计数边界(例如,10个计数)达至少预定的时间段(例如,1秒)、静态和动态检测器未被触发,且人类检测器未被触发达预定的时间段(例如,70秒)的情况下,基线调整器416执行周围邻近度和补偿信号的速率受限(例如,每秒两个计数)更新。速率限制基于对接收到的数字化邻近度和补偿电容数据的分析,这表明环境条件的快速变化(例如,温度和/或湿度的变化)不会导致超过预定的(例如,每秒2个计数)数字化电容的变化。然而,可采用其他速率限制、边界、以及时间段。使用所描述的实现,通过当前经缩放的补偿和当前周围补偿的差异来更新周围补偿,同时差分速率被限制到预定的限制(例如,每秒2个计数)。

在另一实现中,如果温度和湿度滤波器414检测到快速温度和/或湿度变化事件,则基线调整器416基于接收到的当前经缩放的邻近度和补偿信号来更新环境邻近度和补偿。在此场景中,至少两个选项可被用于更新周围邻近度,但在这两个选项中的任一项下周围补偿都是用当前经缩放的补偿信号来更新的。在第一选项下,基线调整器416将周围邻近度设置为当前经缩放的邻近度和当前经缩放的补偿信号之间的差值。在第二选择下,因为当前检测到人类,所以基线调整器416通过当前经缩放的补偿信号和当前周围补偿信号之间的差值来调整周围邻近度。该至少两个选项考虑了邻近度信号检测到人类时的情形。在这些场景中,人类的存在为外部电容变化提供了显著的贡献,所以替代于当前经缩放的邻近度而使用当前经缩放的补偿信号,因为当前经缩放的补偿信号对对象邻近度不敏感。

如果经调整的邻近度信号满足静态邻近度条件(例如,超过静态邻近度阈值),则静态邻近度检测器424指示在附近区域中检测到对象。一旦被触发,静态对象检测状态在经调整的邻近度不再满足静态邻近度条件达预定时间段(例如,1秒)之后复位。状态邻近度检测信号被传递到动态邻近度检测器422和逻辑或(or)运算符组件426。

如果dc-滤波的经调整的邻近度信号满足动态邻近度条件(例如,超过动态邻近度阈值),则动态邻近度检测器422指示检测到对象。一旦被触发,如逻辑或运算符组件426所确定的,动态对象检测状态在满足以下条件中的一个或多个之后复位:

1.dc-滤波的经调整的邻近度信号满足动态检测复位条件(例如,对至少两个采样而言,dc-滤波的经调整的邻近度信号比负动态检测阈值更负)。

2.静态邻近度检测信号被复位达预定数量的采样(例如,2个采样)。

人类检测器428使用相关性滤波器来确定传入的经调整的邻近度信号是否与类人类模板相关。经验数据指示,用于检测类人类邻近度对象的良好模板是在预定时间段(例如5秒)上的阶跃函数,并且相关性满足人类相关性条件(例如超过0.8)。如果传入的经调整的邻近度信号与该模板相关以满足人类相关性条件,则人类检测器428指示邻近度传感器垫被放置在人类身体部分(诸如膝盖、腹部、或大前臂)附近,该人类身体部分足够大以对人类组织在附近区域中有置信度。每次在人类检测器428满足人类相关性条件并且触发静态检测器或动态检测器的情况下,人类检测置信度递增一定的百分比,并且在相关性停止满足人相关性条件(例如,低于0.8)之后再次增加。如果相关性持续不能满足人类相关性条件(例如,保持低于0.8)达预定时间段,则人类检测置信度以一定的百分比降低直到人类检测置信度达到中性水平(例如,零)。

人类检测聚集器430基于从基于运动的人类检测子系统(参见图3中的基于运动的人类检测器316和图5中的基于运动的人类检测子系统500)接收的基于运动的人类检测器触发状态来缩放从人类检测器428接收的人类检测置信度信号。当这两个人类检测器(例如,基于运动的人类检测子系统和人类检测器428)在邻近区域中检测到人类时,人类检测聚集器430有效地增加人类检测结果的置信度。

在人类检测器428和人类检测聚集器430的一个实现中,人类检测器428处理经调整的邻近度(例如,其可包括多达n个通道的经调整的邻近度),并计算每个通道的人类组织存在的置信度作为每个通道的人类检测置信度信号(例如,基于人类相关性条件的满足度)。然后将这n个人类检测置信度信号输入到人类检测聚集器430,如果基于运动的人类检测器触发状态指示人类的存在,则该人类检测聚集器通过缩放因子增加每个人类检测置信度信号。人类检测置信度信号被对照人类检测滤波器条件进行测试(例如,人类检测置信度信号是否等于或超过人类检测阈值)。如果条件被满足,则人类检测聚集器430将指示人类已经被检测到的人类检测信号输出到指示符控件432。如果人类检测信号被触发,则它将保持被触发直到人类检测置信度信号降低到中性水平(例如,零)。一旦在人类检测器428中不再满足人类相关性条件达预定时间段(例如7秒),则人类检测置信度信号(例如,以25%的增量)逐渐减小。

指示符控件432从逻辑或运算符组件426接收对象检测信号,并从人类检测聚集器430接收人类检测信号,并输出这两个指示符,一个指示是否检测到任何对象,而另一个指示是否检测到人类组织。基于这些输出,sar邻近度检测子系统400可调整rf发射机的传输功率以符合sar标准和/或以其他方式保护人类组织免受rf传输信号的负面影响。

图5例示出了用于在sar标准的上下文中选择性地调整rf传输功率的示例基于运动的人类检测子系统500的各组件。基于运动的人类检测子系统500使用来自基于运动的传感器融合操作的三轴加速度计数据以及定向数据,以确定电子设备是否正在经历可能由人类造成的运动。基于运动的人类检测子系统500在一时间窗内积分相对运动,并然后确定积分和是否满足人类运动条件(例如,该和超过人类运动阈值)。

在一个实现中,基于运动的人类检测子系统500从加速度计驱动器502接收加速度计数据,该加速度计驱动器是到加速度计传感器(未示出)的接口。传感器校准器504对加速度计数据应用校准偏移和/或增益调整。矢量大小计算器组件506根据所调整的加速度计数据来计算3轴加速度计矢量。高通滤波器508以全加速度计采样率对3轴加速度计矢量的大小进行滤波以移除dc偏移。移动窗口积分器510执行高通滤波加速度计矢量的预定时间窗(例如,一秒)的积分。平滑滤波器512对从移动窗口积分器510接收的积分结果进行滤波,以产生当前活动水平。

活动状态更新器514基于自执行上次更新以来的最大活动水平周期性地(例如,每十秒)更新活动滞后。在每个周期内(例如,每10秒间隔),监测当前活动水平,并对照于静止条件(例如,根据经验来确定的活动水平阈值)对该周期内检测到的最大活动水平进行测试。如果最大活动水平(如活动滞后所指示的)满足静止条件(例如,小于或等于静止阈值),则活动滞后被减小(但不低于零)。如果最大活动水平不满足静止条件(例如,高于静止阈值),则活动滞后增加(但不高于其最大值)。活动滞后数据提供活动状态结果。

人类检测状态更新器516使用来自运动传感器融合组件518的定向信息来更新活动状态。如果设备定向满足稳定性条件(例如,定向没有改变大于1.2度达至少十秒),并且设备定向使得rf发射天线不能靠近大的人体部位,则指示没有检测到人类。如果设备定向满足稳定性条件和静止条件,并且设备定向使得rf发射机天线可能靠近大的人体部位,则指示没有检测到人类。注意,在静止条件和活动阈值之间可能存在死区(deadband),以防止加速度计人类检测状态的快速变化。如果设备动向满足稳定性条件但不满足静止条件,并且设备定向使得rf发射机天线可能靠近大的人体部位,则指示检测到人类。注意,在静止条件和活动阈值之间可能存在死区,以防止加速度计人类检测状态的快速变化。

响应于人类检测状态的更新,人类检测状态更新器516向sar邻近度检测子系统的人类检测聚集器输出运动人类检测信号。

图6例示出了用于在sar标准的上下文中选择性地调整rf传输功率的示例操作600。生成操作602根据电子设备的邻近度传感器生成邻近度信号。邻近度传感器检测邻近度传感器的邻近区域中电容耦合的变化,并且邻近度传感器也对诸如温度和湿度变化之类的周围环境条件敏感。该灵敏度(作为邻近度信号中的周围环境条件偏移)被反映在了所生成的邻近度信号中。另一生成操作604根据电子设备的环境条件传感器生成参考信号。环境条件传感器对诸如温度和湿度变化之类的周围环境条件敏感,而不对改变环境条件传感器邻近的电容耦合的对象敏感。如此,环境条件传感器检测环境条件传感器的周围环境条件的变化,但环境条件传感器与其邻近的对象是无关的。

调整操作606基于参考信号调整邻近度信号,以滤除周围环境条件对邻近度传感器的影响。检测操作608检测在邻近度传感器的邻近区域中对象的存在,无论对象正快速移动、缓慢移动或正保持静止。另一检测操作610检测在电子设备的邻近度传感器的邻近区域中人类组织的存在。在一个实现中,使用相关滤波器来实现该检测,以确定经调整的邻近度信号是否与类人类模板相关。

另一检测操作612检测电子设备的运动状态,以确定电子设备是否看起来像由人持握(例如,基于被认为代表人类持握的运动和/或定向的期望)。另一调整操作614基于电子设备的运动状态(例如,被人持握的或非被人持握的)来调整存在人类组织的置信度。信令操作616基于对邻近度传感器的邻近区域中对象和/或人类组织的检测,向电子设备的rf发射机发信号以调整它的传输功率。这种检测可基于操作600中的检测和调整操作中的一者或多者。

图7例示出了在sar标准的上下文中对选择性地调整rf传输功率是有用的示例电子设备700。可在移动电子设备中实现的电子设备700包括处理器702、存储器704、显示器706(例如触摸屏显示器)以及其他接口708(例如键盘)。存储器704一般包括易失性存储器(例如ram)和非易失性存储器(例如闪存)二者。诸如microsoft操作系统之类的操作系统710驻留在存储器704中,并且由处理器702来执行,但是应当理解,可以采用其他操作系统。

一个或多个应用程序712被加载到存储器704中并由处理器702在操作系统710上执行。应用712的各示例包括但不限于用于处理邻近度检测、运动检测、运动传感器融合、静态检测、动态检测、人类检测、周围条件滤波、邻近度滤波器调整等的指令。电子设备700包括电源716,该电源由一个或多个电池或其他电源供电并且向电子设备700的其他组件提供电能。电源716还可以连接到外部电源,该外部电源对内置电池或其他电源进行覆盖或充电。

电子设备700包括一个或多个通信收发器730以提供网络连通性(例如移动电话网络、等等)。电子设备700还包括各种其他组件,诸如定位系统720(例如,全球定位卫星收发器)、一个或多个加速度计722和附加存储728。还可以采用其他配置。

在一示例实现中,邻近度检测子系统、软件平台、操作系统、各种驱动器、硬件抽象层、以及其他模块可通过存储在存储器704和/或存储设备728中且由处理器702处理的指令来实现。适用的安全标准(例如,sar标准)和/或包括传输功率调整值、阈值、条件等的表格可被存储在存储器704和/或作为持久数据存储的存储设备728中。

电子设备700可包括各种各样的有形计算机可读存储介质和无形计算机可读通信信号。有形计算机可读存储可由能被电子设备700访问的任何可用的介质来体现,并包括易失性和非易失性存储介质、可移动和不可移动的存储介质两者。有形计算机可读存储介质不包括无形通信信号,而是包括以用于储存诸如计算机可读指令、数据结构、程序模块或其它数据等信息的任一方法或技术实现的易失性和非易失性、可移动和不可移动存储介质。有形计算机可读存储介质包括但不限于,ram、rom、eeprom、闪存或其它存储器技术、cdrom、数字多功能盘(dvd)或其它光盘存储、磁盒、磁带、磁盘存储或其它磁存储设备、或可以用来储存所期望的信息并可由电子设备700访问的任一其它有形介质。与有形计算机可读存储介质对比,无形计算机可读通信信号可用诸如载波或其他信号传输机制等已调制数据信号来体现计算机可读指令、数据结构、程序模块或其他数据。术语“已调制数据信号”指其一个或多个特征以这样的方式设置或改变以便在信号中对信息进行编码的信号。

在所描述的技术的一个示例中,一种电子设备包括rf发射机、邻近度传感器以及邻近度检测子系统。所述邻近度传感器取决于所述邻近度传感器的一个或多个周围环境条件并且取决于所述邻近度传感器的邻近区域中对象的邻近度来生成邻近度信号。邻近度检测子系统通信地耦合到所述邻近度传感器和所述rf发射机并通过从所述邻近度信号中滤除所述一个或多个周围环境条件的影响来调整所述邻近度信号。所述经调整的邻近度信号向rf发射机发出一个或多个对象标识信号,以调整所述rf发射机的传输功率。

上述示例电子设备的示例电子设备可进一步包括位于rf发射机和邻近度传感器附近的周围环境条件传感器。周围环境条件传感器通信地耦合到邻近度检测子系统。周围环境条件传感器生成参考信号。参考信号与周围环境条件传感器的邻近区域中的对象无关。邻近度检测子系统基于参考信号调整邻近度信号以从邻近度传感器中滤除一个或多个周围环境条件的影响。一个或多个周围环境条件可包括温度变化或湿度变化中的至少一个。

在任何前述示例电子设备的示例电子设备中,所述邻近度检测子系统用直流偏移调整所述邻近度信号,其中所述直流偏移基于所述参考信号。

在任何前述示例电子设备的示例电子设备中,所述邻近度检测子系统确定所述邻近度传感器的所述邻近区域中的对象是否正静止于所述邻近区域内,其中所述一个或多个对象标识信号取决于对象是否正静止于所述邻近度传感器的所述邻近区域内。

在任何前述示例电子设备的示例电子设备中,所述邻近度检测子系统确定所述邻近度传感器的所述邻近区域中的对象是否正在所述邻近区域内移动,其中所述一个或多个对象标识信号取决于对象是否正在所述邻近度传感器的所述邻近区域内移动。

在任何前述示例电子设备的示例电子设备中,所述邻近度检测子系统确定所述经调整的邻近度信号是否满足指示所述邻近度传感器的所述邻近区域内的人类组织的人类相关性条件,其中所述一个或多个对象标识信号取决于对象是否包括在所述邻近度传感器的所述邻近区域内的人类组织。

在任何前述示例电子设备的示例电子设备中,所述邻近度检测子系统检测所述电子设备的运动,确定所述检测到的运动是否增加人类组织在所述邻近度传感器的邻近区域内的可能性,并增加在所述邻近度传感器的邻近区域中检测到人类组织的置信度。所述一个或多个对象标识信号取决于所述邻近度传感器的邻近区域中是否存在人类组织。

在任何前述示例电子设备的示例电子设备中,所述邻近度检测子系统输出对象检测信号和人类检测信号作为所述一个或多个对象标识信号,以用于标识所述电子设备的所述邻近度传感器的所述邻近区域中的对象类型。

在示例方法中,根据电子设备的邻近度传感器生成邻近度信号。所述邻近度传感器的邻近度信号取决于所述邻近度传感器的一个或多个周围环境条件,并且取决于所述邻近度传感器的区域中对象的存在。基于从位于rf发射机和邻近度传感器附近的环境条件传感器生成的参考信号,从所述邻近度信号滤除所述一个或多个周围环境条件的影响来调整邻近度信号。参考信号与邻近度传感器的所述区域中的对象无关。用一个或多个对象标识信号向rf发射机发信号,以基于所述经调整的邻近度信号来调整所述rf发射机的传输功率。

在任何前述示例方法的示例方法中,所述一个或多个周围环境条件包括温度变化或湿度变化中的至少一个。

在任何前述示例方法的示例方法中,调整邻近度信号的操作包括用直流偏移来调整邻近度信号,其中所述直流偏移基于所述参考信号。

在任何前述示例方法的示例方法中,该信令包括确定邻近度传感器的所述区域中的对象是否静止于所述区域内。所述一个或多个对象标识信号取决于对象是否静止于所述邻近度传感器的所述区域中。

在任何前述示例方法的示例方法中,该信令包括确定邻近度传感器的所述区域中的对象是否在所述区域内移动。所述一个或多个对象标识信号取决于对象是否在所述邻近度传感器的所述区域内移动。

在任何前述示例方法的示例方法中,信令包括确定经调整的邻近度信号是否满足指示所述邻近度传感器的所述区域内的人类组织的人类相关性条件。所述一个或多个对象标识信号取决于对象是否包括在所述邻近度传感器的所述区域内的人类组织。

在任何前述示例方法的示例方法中,所述信令包括检测所述电子设备的运动,确定所述检测到的运动是否增加人类组织在所述邻近度传感器的所述区域内的可能性,并增加在所述邻近度传感器的所述区域中检测到人类组织的置信度。所述一个或多个对象标识信号取决于所述邻近度传感器的所述区域中是否存在人类组织。

在任何前述示例方法的示例方法中,其中所述信令包括输出对象检测信号和人类检测信号作为所述一个或多个对象标识信号,以用于标识所述电子设备的所述邻近度传感器的所述区域中的对象类型。

另一示例电子设备包括邻近度传感器、和周围环境条件传感器、邻近度检测子系统、以及rf发射机。所述邻近度传感器取决于所述邻近度传感器上的一个或多个周围环境条件和所述邻近度传感器的邻近区域中对象的检测来生成邻近度信号。周围环境条件传感器位于邻近度传感器附近并生成参考信号。参考信号与周围环境条件传感器的邻近区域中的对象无关。邻近度检测子系统通信地耦合到邻近度传感器和周围环境条件传感器。邻近度检测子系统通过从邻近度传感器中滤除一个或多个周围环境条件的影响来调整邻近度信号。rf发射机通信地耦合到邻近度传感器、周围环境传感器、以及邻近度检测子系统。rf发射机基于经调整的邻近度信号调整传输功率。

在任何前述示例电子设备的示例电子设备中,所述一个或多个周围环境条件包括温度变化或湿度变化中的至少一个。

在任何前述示例电子设备的示例电子设备中,邻近度检测子系统用直流偏移调整邻近度信号。直流偏移基于参考信号。

另一示例设备包括用于根据电子设备的邻近度传感器生成邻近度信号的装置、用于调整邻近度信号的装置、以及用于向rf发射机发信号的装置。所述邻近度传感器的邻近度信号取决于所述邻近度传感器的一个或多个周围环境条件,并且取决于所述邻近度传感器的区域中对象的存在。所述用于调整邻近度信号装置基于从位于rf发射机和邻近度传感器附近的环境条件传感器生成的参考信号,从所述邻近度信号滤除所述一个或多个周围环境条件的影响。参考信号与邻近度传感器的所述区域中的对象无关。所述用于用一个或多个对象标识信号向rf发射机发信号的装置基于所述经调整的邻近度信号来调整所述rf发射机的传输功率。

在任何前述示例设备的示例设备中,所述一个或多个周围环境条件包括温度变化或湿度变化中的至少一个。

在任何前述示例设备的示例设备中,所述用于调整邻近度信号的装置用直流偏移来调整邻近度信号。直流偏移基于参考信号。

在任何前述示例设备的示例设备中,所述用于发信号的装置确定邻近度传感器的所述区域中的对象是否静止于所述区域内。所述一个或多个对象标识信号取决于对象是否静止于所述邻近度传感器的所述区域中。

在任何前述示例设备的示例设备中,所述用于发信号的装置确定邻近度传感器的所述区域中的对象是否在所述区域内移动。所述一个或多个对象标识信号取决于对象是否在所述邻近度传感器的所述区域内移动。

在任何前述示例设备的示例设备中,所述用于发信号的装置确定经调整的邻近度信号是否满足指示所述邻近度传感器的所述区域内的人类组织的人类相关性条件。所述一个或多个对象标识信号取决于对象是否包括在所述邻近度传感器区域内的人类组织。

在任何前述示例设备的示例设备中,所述用于发信号的装置检测所述电子设备的运动,确定所述检测到的运动是否增加人类组织在所述邻近度传感器的所述区域内的可能性,并增加在所述邻近度传感器的所述区域中检测到人类组织的置信度。所述一个或多个对象标识信号取决于所述邻近度传感器的所述区域中是否存在人类组织。

在任何前述示例设备的示例设备中,所述用于发信号的装置输出对象检测信号和人类检测信号作为所述一个或多个对象标识信号,以用于标识所述设备的所述邻近度传感器的所述区域中的对象类型。

该实现是取决于实现本发明的计算机系统的性能要求的选择问题。此外,应该理解,逻辑操作可以以任何顺序执行、按需添加或忽略,除非明确地声明,或者按由权利要求语言固有地要求特定的顺序。

上面的说明、示例和数据提供了对本发明的示例性实施例的结构和使用的完整的描述。因为可以在不背离本发明的精神和范围的情况下做出本发明的许多实现方式,所以本发明落在所附权利要求的范围内。此外,不同实施例的结构特征可以与另一实现方式相组合而不偏离所记载的权利要求书。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1