大规模天线阵列系统中低反馈混合预编码与接收合并方法与流程

文档序号:14914222发布日期:2018-07-11 00:16阅读:451来源:国知局

本发明涉及一种大规模天线阵列系统中低反馈混合预编码与接收合并技术,属于多天线阵列通信技术领域。



背景技术:

毫米波技术利用60GHz左右的大量未许可频段实现通信,能够有效解决未来无线蜂窝通信面临的带宽短缺的问题。与当前蜂窝频段(3G或LTE)中的信号相比,毫米波信号具有严重的路径损耗、穿透损耗和衰落。然而,毫米波的波长较短,使得相同物理尺寸下能够包装更多的天线,可以支持大规模空间复用和高度定向波束成形,从而出现了基于天线阵列通信的大规模多输入多输出技术(MIMO)。这项技术能够利用发射端和接收端的多根天线提供的多个空间自由度,对已有时间和频率资源进行空间上的复用,显著提高频谱资源的利用效率和系统的通信容量。

通信系统中,传统的全数字信号预编码方法通过基带数字处理,实现幅度调制和相位调制,然后经过数模转换器、混频器和功率放大器(通常称为射频链路),将处理后的数据上变频至载波频率。由于射频链路成本高、功耗大,在大规模毫米波阵列通信系统中,每个天线元件对应一个射频链路是不切实际的,所以传统的全数字信号预编码方法难以实现。对于射频链路数量受限制的问题,现有的解决方案之一是采用数模混合系统结构。本发明针对接收端各个用户均配置天线阵列的混合结构,提出一种低反馈混合预编码与接收合并方法,将信号处理分为模拟域与数字域,用户仅需要向基站反馈离开方位角和到达方位角两个标量,信道反馈负载较小。该方法使用有限数量的射频链路驱动大规模天线阵列,获得逼近全数字信号预编码方法的频谱效率,兼顾运算复杂度和系统性能。



技术实现要素:

本发明所要解决的技术问题是为解决大规模毫米波阵列通信系统中射频链路数量受限制的问题,提供了一种低反馈两级数模混合预编码与接收合并的传输方法,降低系统成本与功耗,获得逼近全数字信号预编码方法的系统频谱效率。

本发明为解决上述技术问题采用以下技术方案:

大规模天线阵列系统中低反馈混合预编码与接收合并方法,具体包含如下步骤:

步骤1,设该多用户通信系统中,包含一个基站和K个用户设备,基站拥有M根天线和 NRF个射频链路;每个用户设备拥有P根接收天线和1个射频链路,参数满足 K=NRF≤M,P≥1,且K、M、NRF、P均是正整数,基站进行基带数字预编码和射频模拟预编码,基带数字预编码矩阵和射频模拟预编码矩阵分别用符号W和F表示,其中,W是 NRF×K维矩阵,F是M×NRF维矩阵,每个用户设备分别对其接收到的信号进行模拟接收合并处理,其中,第k个用户设备的接收合并向量用qkT,k=1,2,…,K表示,其中,qkT是1×P维向量,k为各用户设备的标号,上标T表示矩阵转置;

步骤2,定义L为基站到每个用户设备之间的信道所包含的传播路径数量,获得用户设备与基站之间对应信道中L条传播路径上的和l=1,2,…,L,k=1,2,…,K,其中,l为各条传播路径的标号,表示基站到第k个用户设备之间信道中的第l条传播路径上的幅度增益,表示基站到第k个用户设备之间信道中的第l条传播路径上的离开方位角,表示基站到第k个用户设备之间信道中的第l条传播路径上的到达方位角;

步骤3,计算每个用户设备从L条路径中选择信道幅度增益最强的路径,记录基站到第k 个用户设备之间信道中的第lmax条路径上的离开方位角和到达方位角各用户设备将这两个方位角参数反馈给基站;

步骤4,基站对待处理信号进行数字预编码;

步骤5,基站根据各个用户设备反馈的离开方位角依次生成接收阵列响应矢量,作为基站模拟预编码矩阵F的各列,基站将待发送的数据依次通过预编码矩阵W、F,得到发送信号,进行数据传输;

步骤6,用户设备利用最强径上的到达方位角生成发射阵列响应矢量,将它的共轭转置作为用户设备模拟合并向量,用户设备将接收到经过传输的发送信号乘以合并矩阵q,得到最终检测数据。

作为本发明大规模天线阵列系统中低反馈混合预编码与接收合并方法的进一步优选方案,在步骤3中,计算每个用户设备从L条路径中选择信道幅度增益最强的路径,具体如下:

其中,lmax表示L条传播路径中信道幅度增益最强的路径的标号,表示定义域 l={1,2,…,L}上使得函数取最大值的l取值,| |表示对符号内的元素取模值,

作为本发明大规模天线阵列系统中低反馈混合预编码与接收合并方法的进一步优选方案,在步骤4中,基站对需要发送的数据进行数字预编码,具体步骤如下:引入等价信道Heq,定义如下:

其中,Hk,k=1,2,…,K表示基站到第k个用户的下行链路信道矩阵,根据此等效信道,采用迫零数字预编码,该数字预编码按如下公式计算:

其中,上标H表示矩阵共轭转置,上标-1表示矩阵逆,wtk是矩阵Wt的第k列,|| ||表示符号内向量的2范数。

作为本发明大规模天线阵列系统中低反馈混合预编码与接收合并方法的进一步优选方案,在步骤5中,矩阵F的构造公式具体如下:

其中,表示根据离开方位角生成的接收阵列响应矢量,它的具体计算公式仅与天线阵列的结构有关:通常当天线阵列结构为均匀线性阵列时,接收阵列响应矢量根据下面公式计算:

其中,λ表示载波的波长,d表示天线阵列中相邻天线之间的距离,p表示天线标号,有 0≤p<P。

作为本发明大规模天线阵列系统中低反馈混合预编码与接收合并方法的进一步优选方案,在步骤6中,用户设备利用最强径上的到达方位角生成发射阵列响应矢量,将它的共轭转置作为用户设备模拟合并向量,具体计算如下:

其中,表示根据到达方位角生成的发射阵列响应矢量。它的具体计算公式仅与天线阵列的结构有关,通常当天线阵列结构为均匀线性阵列时,发射阵列响应矢量根据下面公式计算

其中,m表示天线标号,有0≤m<M。

本发明采用以上技术方案与现有技术相比,具有以下技术效果:

1、与传统的全数字信号预编码相比,本发明方法中基站仅需要配置少量射频链路,即可支持多用户多数据流同步传输,大大降低了毫米波阵列通信系统的成本和功耗;

2、本发明方法计算复杂度低,模拟预编码和模拟接收合并分别通过离开方位角和到达方位角直接生成,数字预编码采用简单的线性处理;同时,本发明方法能够获得逼近全数字信号预编码的频谱效率。

3、本发明方法中,每个用户设备仅需要向基站反馈离开方位角和到达方位角两个角度标量,信道反馈负载相当小。

附图说明

图1是本发明提出的大规模天线阵列系统中低反馈混合预编码与接收合并方法的系统框图;

图2是假设发射端和接收端均完全知道信道信息的情况下,系统中单个用户的频谱效率与信噪比的关系曲线图。

具体实施方式

下面结合附图和具体实施范例对本发明做进一步说明:

如图1所示,多用户毫米波阵列通信系统中,包含一个基站和K=4个用户设备,基站拥有M=512根天线和NRF=4个射频链路;每个用户设备拥有P=8根接收天线和1个射频链路。基站进行基带数字预编码和射频模拟预编码,基带数字预编码矩阵和射频模拟预编码矩阵分别用符号W和F表示,其中,W是4×4维矩阵,F是512×4维矩阵。每个用户设备分别对其接收到的信号进行模拟接收合并处理,其中用户k的接收合并向量用qkT,k=1,2,3,4表示,其中,qkT是1×8维向量,k为各用户设备的标号,上标T表示矩阵转置。此过程中的数字预编码处理可以对待处理信号进行幅度调整和相位调整,而模拟预编码和模拟接收合并处理均通过采用移相器实现,仅能对信号进行相位调整,不能够改变信号的幅度。

(1)假设基站到每个用户设备之间的信道所包含的传播路径数量L=10。每次传输开始时,用户设备进行信道估计,获得它与基站之间对应信道中10条传播路径上的和l=1,2,…,10,k=1,2,3,4,其中,l为各条传播路径的标号,表示基站到第k个用户设备之间信道中的第l条传播路径上的幅度增益,表示基站到第k个用户设备之间信道中的第l 条传播路径上的离开方位角,表示基站到第k个用户设备之间信道中的第l条传播路径上的到达方位角。

(2)每个用户设备从10条路径中选择信道幅度增益最强的路径,即:

其中,lmax表示10条传播路径中信道幅度增益最强的路径的标号,表示定义域l={1,2,…,10}上使得函数取最大值的l取值,| |表示对符号内的元素取模值。记录基站到第k个用户设备之间信道中的第lmax条路径上的离开方位角和到达方位角,分别记为和各用户设备将这两个方位角参数反馈给基站。

(3)基站对待处理信号首先进行数字预编码。引入等价信道Heq,定义如下:

其中,Hk,k=1,2,3,4表示基站到第k个用户的下行链路信道矩阵。根据此等效信道,采用迫零数字预编码。该数字预编码按如下公式计算:

其中,上标H表示矩阵共轭转置,上标-1表示矩阵逆,wtk是矩阵Wt的第k列,|| ||表示符号内向量的2范数。

(4)基站根据各个用户设备反馈的离开方位角依次生成接收阵列响应矢量,作为基站模拟预编码矩阵F的各列。矩阵F的构造公式如下:

其中,表示根据离开方位角生成的接收阵列响应矢量,它的具体计算公式仅与天线阵列的结构有关。例如,通常当天线阵列结构为均匀线性阵列时,接收阵列响应矢量根据下面公式计算:

其中,λ表示载波的波长,d表示天线阵列中相邻天线之间的距离,p表示天线标号,有 0≤p<8。基站将待发送的数据依次通过预编码矩阵W、F,得到发送信号,进行数据传输。

(5)用户设备利用最强径上的到达方位角生成发射阵列响应矢量,将它的共轭转置作为用户设备模拟合并向量,即

其中,表示根据到达方位角生成的发射阵列响应矢量。它的具体计算公式仅与天线阵列的结构有关,例如,通常当天线阵列结构为均匀线性阵列时,发射阵列响应矢量根据下面公式计算

其中,m表示天线标号,有0≤m<512。用户设备将接收到经过传输的发送信号乘以合并矩阵q,得到最终检测数据。

图2是假设发射端和接收端均知道信道状态信息的情况下,系统中单个用户的频谱效率与信噪比的关系曲线图。红色曲线表示全数字信号预编码方法得到的频谱效率,蓝色曲线表示本发明提出方法得到的频谱效率。由图中可以看出,本发明提出的大规模天线阵列系统中低反馈混合预编码与接收合并方法能够获得逼近全数字信号预编码方法的频谱效率。

以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1