包括路由器、控制器和非发光可变透射设备的系统及其使用方法与流程

文档序号:20621798发布日期:2020-05-06 20:56阅读:153来源:国知局
包括路由器、控制器和非发光可变透射设备的系统及其使用方法与流程

本公开涉及包括非发光可变透射设备的系统,并且更具体地涉及包括路由器、控制器和非发光可变透射设备的系统及其使用方法。



背景技术:

非发光可变透射设备可减少眩光和进入房间的日光量。建筑可包括许多非发光可变透射设备,可局部控制这些设备(在每个单独的或相对较小的设备组处),用于房间或用于建筑(相对较大的设备组)。设备布线可能非常耗时和复杂,随着控制的设备数量的增加,尤其如此。可使用电连接器或连接技术诸如端子板、拼接、焊接、导线螺母等,基于逐条导线执行将设备连接至其对应的控制系统的操作。追踪布线问题可能很困难,随着设备数量增加和布线长度延长,尤其如此。更换控制设备可能成为一项非常困难的任务。

附图简要说明

实施例以举例的方式示出,并且不受附图的限制。

图1包括根据一个实施例的用于控制一组非发光可变透射设备的系统的示意图。

图2包括根据另一个实施例的用于控制一组非发光可变透射设备的系统的示意图。

图3包括基底、用于非发光可变透射设备的层叠堆和汇流条的一部分的剖视图。

图4包括基底、层叠堆和汇流条的顶视图。

图5包括用于操作图1或图2的系统的流程图。

本领域的技术人员应当认识到,为简单和清楚起见,图中示出的各元件并不一定按比例绘制。例如,图中一些元件的尺寸可相对于其他元件进行放大,以帮助增进对本发明实施例的理解。

具体实施方式

提供结合附图的以下描述以帮助理解本文所公开的教导内容。以下论述将集中于本教导内容的具体实施方式和实施例。提供该重点是为了帮助描述教导内容,并且不应该被解释为是对本教导内容的范围或适用性的限制。

术语“正常操作”和“正常操作状态”是指电气部件或设备被设计为可操作的条件。可以从数据表或有关电压、电流、电容、电阻或其他电参数的其他信息中获得这些条件。因此,正常操作不包括远远超出其设计极限的电气部件或设备的操作。

当涉及耦接至一个或多个下游电器件的电器件时,术语“电力需求”旨在表示在正常操作此类下游器件和在电器件与下游电器件之间由连接和布线消耗任何电力的过程中,此类下游电器件所使用的最大功率。作为一个实例,控制器可耦接至三个非发光可变透射设备,这三个设备的功耗为10w、20w和25w。相对于控制器,非发光可变透射设备的电力需求为功率之和或55w。

当涉及电器件时,术语“额定功率”旨在表示在正常操作此类器件的过程中,此类电器件所使用的最大功率。作为一个实例,在正常操作过程中使用高达500w的路由器具有500w的额定功率,并且在正常操作过程中使用高达80w的控制器具有80w的额定功率。可从用于器件的数据表其他说明书中获得额定功率。

如本文所用,术语“由……构成”、“包括”、“包含”、“具有”、“有”或它们的任何其他变型旨在涵盖非排他性的包含之意。例如,包含特征列表的工艺、方法、物件或装置不一定仅限于相应的特征,而是可包括没有明确列出或这类工艺、方法、物件或装置所固有的其他特征。另外,除非另有明确说明,否则“或”是指包括性的“或”而非排他性的“或”。例如,以下任何一项均可满足条件a或b:a为真(或存在的)而b为假(或不存在的)、a为假(或不存在的)而b为真(或存在的),以及a和b两者都为真(或存在的)。

采用“一个”或“一种”来描述本文所述的元件和部件。这么做只是为了方便起见和提供对本发明范围的一般认识。除非很明显地另指他意,否则这种描述应被理解为包括一个或至少一个,并且单数也包括复数,或反之亦然。

使用字词“约”、“大约”或“基本上”旨在表示参数的值接近于指定的值或位置。然而,微小差异可能使值或位置无法完全符合规定。因此,最多至百分之十(10%)的值的差异是与所述的理想目标的合理差异。

除非另有定义,否则本文使用的所有技术术语和科技术语都与本发明所属领域的普通技术人员通常理解的含义相同。材料、方法和实例仅是示例性的而非限制性的。关于本文未述的方面,关于特定材料和加工行为的许多详细信息是常规的,并且能在玻璃、气相沉积和电致变色领域的教科书及其他来源中找到。

一种系统,可包括:非发光可变透射设备;控制器,该控制器耦接至非发光可变透射设备,并且构造为向非发光可变透射设备提供电力;以及路由器,该路由器构造为向控制器提供电力和控制信号。在一个方面,控制器包括第一连接器,路由器包括第二连接器;并且电缆包括在电缆不同端部的第三连接器和第四连接器,其中第一连接器和第三连接器彼此耦接,并且第二连接器和第四连接器彼此耦接。使用公连接/母连接可有助于快捷方便地更换、添加或移除系统内的部件。无需任何工具即可更换控制器或路由器。对比系统可需要螺丝刀、电焊枪、电工胶带等。此外,公连接/母连接显著地节省改变构造所需的时间。对于部件之间的整个信号路径,无需追踪单独的导线。显著减小了误布线的可能性。

在另一方面,系统可构造为执行控制系统的方法。该系统可包括其他非发光可变透射设备和其他控制器。该方法可包括确定用于控制器的电力需求以及将对应于电力需求的电力分配至控制器。该系统可构造为将电力分配至控制器,其可作为系统的任何初始调试或任何后续重新调试的部分。该系统允许耦接至路由器的全部非发光可变透射设备同时接收全功率。

在结合附图阅读本说明书后,将更好地理解所述系统和方法。下文描述和示出了系统结构,然后提供了非发光可变透射设备的示例性构造,以及控制系统的方法。所述实施例为例示性的,并不意在限制所附权利要求书中限定的本发明的范围。

参见图1,示出了用于控制一组非发光可变透射设备的系统,并且该系统整体标记为100。如图所示,系统100可包括建筑管理系统110。在一个特定方面,建筑管理系统110可包括计算设备诸如台式计算机、手提电脑、平板电脑、智能手机、某些其他计算设备或它们的组合。建筑管理系统110可用于控制建筑的暖通空调(hvac)系统、室内照明、室外照明、应急照明、灭火设备、电梯、自动扶梯、警报器、安全摄像机、通道门、建筑的其他合适的部件或子系统或它们的任意组合。

如图1所示,系统100可包括路由器120,该路由器120经由控制链路122连接至建筑管理系统110。控制链路122可为有线连接或无线连接。例如,有线连接可包括电缆,诸如3类电缆、5类电缆、5e类电缆、6类电缆或其他可用于传输控制信号或电力和控制信号组合的合适的电缆。在一个实施例中,有线连接可遵守ieee802.3(以太网)族标准。在另一个实施例中,根据ieee802.11(wifi)族标准内的一项或多项标准,控制链路122可使用无线局域网连接进行操作。在一个特定方面,无线连接可在2.4ghzism频段内、在5.0ghzism频段内或它们的组合频段内进行操作。

无论控制链路122的类型如何,建筑管理系统110均可经由控制链路122向路由器120提供控制信号。控制信号可用于控制一个或多个非发光可变透射设备的操作,所述一个或多个非发光可变透射设备间接或直接地连接至路由器120,并且如下文所详述。如图1所示,路由器120可连接至交流(ac)电源124。路由器120可包括机载ac至直流(dc)转换器(未示出)。机载ac至dc转换器可将ac电源124输入的约120伏特(v)的交流电转换为至多60vdc、54vdc、48vdc、24vdc、至多12vdc、至多6vdc或至多3vdc的dc电压。

图1还示出路由器120可包括多个连接器,所述多个连接器可为母连接器126的形式。在一个特定方面,母连接器126可包括一个或多个rj-11插口、一个或多个rj-14插口、一个或多个rj-25插口、一个或多个rj-45插口、一个或多个8p8c插口、其他合适的插口或它们的组合。在另一方面,母连接器126可包括一个或多个通用串行总线(usb)插口。在一个特定实施例中,母连接器126可为usb-c连接器。

如图1进一步所示,系统100包括连接至路由器120的控制器130、132、134和136。路由器120可构造为向控制器130、132、134和136提供电力和控制信号。在一个特定方面,路由器120可包括电力输入端口和控制信号端口。路由器120可构造为经由电力输入端口124接收电力并且向控制器130、132、134和136中的任一个或全部提供电力,并且构造为经由控制链路接收控制信号并且向控制器130、132、134和136中的任一个或全部提供控制信号。路由器120内的机载ac至dc转换器可耦接至路由器120的电力输入端口。路由器120可进一步包括一个部件,该部件构造为将经由电力输入端口接收的电源电压减小至经由控制器端口传输的电源电压。该部件可包括变压器或调压器。

控制器130、132、134和136中的每个可包括多个连接器,所述多个连接器为母连接器138的形式。控制器130、132、134和136上的母连接器138可包括一个或多个rj-11插口、一个或多个rj-14插口、一个或多个rj-25插口、一个或多个rj-45插口、一个或多个8p8c插口、其他合适的插口或它们的组合。在另一方面,母连接器138可包括一个或多个usb插口。在一个特定实施例中,母连接器138可为usb-c连接器。在又一方面,控制器130、132、134和136上的母连接器可与路由器120的母连接器126大致相同。

如图1所示,多条电缆140可用于将控制器130、132、134和136连接至路由器120。每条电缆140可包括3类电缆、5类电缆、5e类电缆、6类电缆或其他合适的电缆。在一个实施例中,多条电缆140可包括双绞导体,诸如双绞线。在另一个实施例中,每条电缆140可构造为传输至少4w的功率,并且在另一个实施例中,每条电缆可构造为传输至多200w的功率。在另一个实施例中,每条电缆140可构造为支持至少3mb/s的数据速率,并且在另一个实施例中,每条电缆可构造为支持至多100gb/s的数据速率。每条电缆140可包括公连接器,该公连接器压接或以其他方式附连至每条电缆140的远侧端部或近侧端部。此外,每个公连接器可包括rj-11插头、rj-14插头、rj-25插头、rj-45插头、8p8c插头、其他合适的插头或它们的组合。在另一方面,公连接器可包括一个或多个usb插头。在一个特定实施例中,公连接器可为usb-c连接器。在一个实施例中,在每个连接处的公连接器和母连接器可为互补连接器。公连接/母连接使部件诸如控制器130、132、134和136快捷方便地与系统100断开并且更换。此外,公连接/母连接可使路由器120方便地与系统100断开并且更换。虽然图1的系统100示出了控制器130、132、134和136,但系统100可包括更多或更少的控制器。

仍参考图1,系统100还可包括窗框面板150,该窗框面板150经由多组框架电缆152电连接至控制器130、132、134和136。窗框面板150可包括多个非发光可变透射设备,其中每个非发光可变透射设备可经由其自身的框架电缆连接至对应的控制器。在如图所示的实施例中,非发光可变透射设备取向为3x9矩阵。在另一个实施例中,可使用不同数量的非发光可变透射设备、不同的非发光可变透射设备矩阵或或两者。非发光可变透射设备中的每个可在分离的窗用玻璃上。在另一个实施例中,多个非发光可变透射设备可共用窗用玻璃。例如,窗用玻璃可对应于图1中的一列非发光可变透射设备。窗用玻璃可对应于多列非发光可变透射设备。在另一个实施例中,窗框面板150中的一对窗用玻璃可具有不同的尺寸,此类窗用玻璃可具有不同数量的非发光可变透射设备。在阅读本说明书之后,技术人员将能够确定用于特定应用的特定数量和组织的非发光可变透射设备。

在一个特定的非限制性实施例中,窗框面板150可包括经由一组框架电缆152耦接至控制器130的一组非发光可变透射设备160。窗框面板150还可包括经由一组框架电缆152连接至控制器132的一组非发光可变透射设备162。此外,窗框面板150可包括经由其他框架电缆组152连接至控制器134的一组非发光可变透射设备164,以及经由更多的框架电缆组152连接至控制器136的一组非发光可变透射设备166。虽然图1的系统100示出组160、162、164和166,但系统100可包括更多或更少的非发光可变透射设备组。

在一个实施例中,框架电缆152中的任一条或多条可仅在电缆的一端具有公连接器或母连接器,或者可在电缆的任一端均不具有公连接器或母连接器。例如,并且参考图4,汇流条344和348可在焊片处具有有线连接。这些导线可连接至对应的控制器,而无需任何公连接器或母连接器。另选地,导线可连接至公连接器或母连接器。在阅读本说明书之后,技术人员将理解,并非该系统内的所有连接器都需要为公连接器或母连接器。

控制器130、132、134和136可经由框架电缆组152向连接至所述控制器的非发光可变透射设备组160、162、164和166提供电力。提供至组160、162、164和166的电力可具有至多12v、至多6v或至多3v的电压。控制器130、132、134和136可用于控制组160、162、164和166内的非发光可变透射设备的操作。在操作过程中,组160、162、164和166内的非发光可变透射设备的动作类似于电容器。因此,当非发光可变透射设备处于其切换状态而非静态状态时,消耗了大部分电力。在一个实例中,路由器120可具有500w的额定功率,并且控制器130、132、134和136中的每个可具有80w的额定功率。然而,各自额定功率为80w的控制器的数量可超过路由器的额定功率500w。

为管理这一供电方案,系统100可利用用于组160、162、164和166的非发光可变透射设备的额定功率,并且基于控制器130、132、134和136的需要将电力分配至这些设备,以便向非发光可变透射设备提供全功率,这些设备经由控制器130、132、134和136耦接至路由器120。可从与组160、162、164和166的非发光可变透射设备结合存在的信息中,获得组160、162、164和166的非发光可变透射设备的额定功率。例如,该信息可包含在每个非发光可变透射设备上的识别(id)标签内、在结合这些设备提供的查找表内、由建筑管理系统110提供的信息或外部来源中。另选地,该信息可通过模拟方法获得,该模拟方法例如与这些设备中的每个相关联的电阻。

在初始构造或重新构造系统100之后或在重启系统100的过程中,可执行将电力分配至控制器130、132、134和136,以作为启动例程的一部分。操作方法在下文中结合图5予以详述。相对于构造,系统100可包括逻辑元件,例如,路由器120内可执行如下文所述的方法步骤的逻辑元件。具体地,逻辑元件可构造为确定用于耦接至路由器的控制器的电力需求并且将对应于电力需求的电力分配至控制器。可通过确定耦接至控制器130、132、134和136中的每个的非发光可变透射设备的额定功率,以及控制器130、132、134和136与对应的非发光可变透射设备之间的相关联的连接器和布线(例如,框架电缆组152),获得控制器130、132、134和136的电力需求。控制器和路由器中的每个可具有额定功率,并且控制器的额定功率之和可大于路由器的额定功率。系统100可构造为使得耦接至控制器的全部非发光可变透射设备可同时接收全功率。此外,控制器130、132、134和136中的至少两个可具有不同的电力需求和不同的电力分配。此外,控制器130、132、134和136中的至少两个可具有相同的额定功率。

在另一方面,对于控制器130、132、134和136中的每个,电力需求为组160、162、164和166内的非发光可变透射设备的额定功率之和。在系统100内,用于控制器130、132、134和136中的每个的电力和控制信号可构造为通过第一电缆内的不同导体进行传输。具体地,系统100可构造为使得通过电缆的第一导体双绞线传输电力,并且通过相同电缆的第二导体双绞线传输控制信号。另选地,系统100还可构造为使得用于控制器的至少一部分电力和至少一部分控制信号通过电缆的相同导体进行传输。

在另一个实施例中,可使用主从构造的控制器。图2类似于图1,不同之处在于主控制器处于建筑管理系统和路由器之间。在一个特定实施例中,多个路由器可耦接至主控制器,并且多个主控制器可耦接至建筑管理系统。在建筑内的全部非发光可变透射设备的额定功率超过单个路由器的额定功率的情况下,此类构造可提供帮助。具体地,路由器可具有支持建筑楼层的一部分的仅单个楼层的额定功率。一个或多个路由器可用于楼层的剩余部分或建筑的不同楼层。主控制器可提供控制信号,但是可能不向耦接至主控制器的路由器提供电力。一个示例性实施例如下所述并且在图2中示出。在阅读本说明书之后,技术人员将理解在不偏离本文所述的概念的情况下,可使用其他构造。

现在参考图2,示出了用于控制一组非发光可变透射设备的另一个系统,并且该系统整体标记为200。如图所示,系统200可包括建筑管理系统210。在一个特定方面,建筑管理系统210可包括计算设备诸如台式计算机、手提电脑、平板电脑、智能手机、某些其他计算设备或它们的组合。建筑管理系统210可用于控制建筑的hvac系统、主照明、应急照明、灭火设备、电梯、自动扶梯、警报器、安全摄像机、通道门、建筑的其他合适的部件或子系统或它们的任意组合。

如图2所示,系统200可包括主控制器212,该主控制器212经由控制链路214连接至建筑管理系统210。此外,路由器220可经由控制链路222连接至主控制器212。控制链路214和222可为有线连接或无线连接。例如,有线连接可包括电缆,诸如3类电缆、5类电缆、5e类电缆、6类电缆或其他可用于传输电力和控制信号的合适的电缆。在一个实施例中,有线连接可遵守ieee802.3(以太网)族标准。在另一个实施例中,根据ieee802.11(wifi)族标准内的一项或多项标准,控制链路222可使用无线局域网连接进行操作。在一个特定方面,无线连接可在2.4ghzism频段内、在5.0ghzism频段内或它们的组合频段内进行操作。

无论控制链路214和222的类型如何,建筑管理系统210均可经由控制链路214向主控制器212提供控制信号,并且主控制器212可经由控制链路222向路由器220提供控制信号。如前文所述,多于一个路由器可耦接至主控制器212。来自主控制器212的控制信号可用于控制下游部件的操作,所述下游部件包括路由器220、控制器230、232、234和236以及非发光可变透射设备组260、262、264和266。如图2所示,路由器220可连接至ac电源224。路由器220可包括机载ac至dc转换器(未示出)。机载ac至dc转换器可将交流电源224输入的约120vac转换为至多60vdc、54vdc、48vdc、24vdc、至多12vdc、至多6vdc或至多3vdc的dc电压。

图2还示出路由器220可包括多个连接器,所述多个连接器可为母连接器226的形式。在一个特定方面,母连接器226可包括一个或多个rj-11插口、一个或多个rj-14插口、一个或多个rj-25插口、一个或多个rj-45插口、一个或多个8p8c插口、其他合适的插口或它们的组合。在另一方面,母连接器226可包括一个或多个usb插口。在一个特定实施例中,母连接器226可为usb-c连接器。

如图2进一步所示,系统200可包括连接至路由器220的从属控制器230、从属控制器232、从属控制器234和从属控制器236。路由器220可构造为基于接收自主控制器212的控制信号,向从属控制器230、232、234和236提供电力和控制信号。在一个特定方面,路由器220可包括电力输入端口和控制信号端口。路由器220可构造为经由电力输入端口124接收电力并且向从属控制器230、232、234和236中的任一个或全部提供电力,并且构造为接收控制信号并且向从属控制器230、232、234和236中的任一个或全部提供控制信号。路由器220内的机载ac至dc转换器可耦接至电力输入端口。路由器220可进一步包括一个部件,该部件构造为将经由电力输入端口接收的电源电压减小至经由控制器端口传输的电源电压。该部件可包括变压器或调压器。

每个从属控制器230、232、234和236可包括多个连接器,所述多个连接器为母连接器238的形式。从属控制器230、232、234和236上的母连接器238可包括一个或多个rj-11插口、一个或多个rj-14插口、一个或多个rj-25插口、一个或多个rj-45插口、一个或多个8p8c插口、其他合适的插口或它们的组合。在另一方面,母连接器238可包括一个或多个usb插口。在一个特定实施例中,母连接器238可为usb-c连接器。在又一方面,从属控制器230、232、234和236上的母连接器可与路由器220的母连接器226大致相同。

如图2所示,多条电缆240可用于将从属控制器230、232、234和236连接至路由器220。每条电缆240可包括3类电缆、5类电缆、5e类电缆、6类电缆或其他合适的电缆。在一个实施例中,多条电缆240可包括双绞导体,诸如双绞线。在另一个实施例中,每条电缆240可传输至少4w的功率,并且在另一个实施例中,每条电缆可传输至多200w的功率。在另一个实施例中,每条电缆240可以至少3mb/s的速率传输数据,并且在另一个实施例中,每条电缆可以至多100gb/s的速率传输数据。每条电缆240可包括公连接器,该公连接器压接或以其他方式附连至每条电缆240的远侧端部或近侧端部。另外,每个公连接器可包括rj-11插头、rj-14插头、rj-25插头、rj-45插头、8p8c插头或它们的组合。在另一方面,公连接器可包括一个或多个usb插头。在一个特定实施例中,公连接器可为usb-c连接器。在一个实施例中,在每个连接处的公连接器和母连接器可为互补连接器。公连接/母连接使部件诸如从属控制器230、232、234和236快捷方便地与系统200断开并且更换。此外,公连接/母连接可使路由器220方便地与系统200断开并且更换。虽然图2的系统200示出了从属控制器230、232、234和236,但系统200可包括更多或更少的从属控制器。

仍参考图2,系统200还可包括窗框面板250,该窗框面板250可包括多个非发光可变透射设备,其中每个非发光可变透射设备可经由其自身的框架电缆连接至对应的控制器。在如图所示的实施例中,非发光可变透射设备可经由多组框架电缆252电连接至控制器230、232、234和236。如前文相对于窗框面板150所述,窗框面板250可具有任何数量和取向的非发光可变透射设备和窗用玻璃。

在一个特定的非限制性实施例中,窗框面板250可包括经由一组框架电缆252耦接至第一控制器230的一组非发光可变透射设备260。窗框面板250还可包括经由一组框架电缆252连接至第二控制器232的一组非发光可变透射设备262。此外,窗框面板250可包括经由其他框架电缆组252连接至第三控制器234的一组非发光可变透射设备264,以及经由更多的框架电缆组252连接至第四控制器236的一组非发光可变透射设备266。虽然图2的系统200示出组260、262、264和266,但系统200可包括更多或更少的非发光可变透射设备组。

在一个替代实施例中,框架电缆252可仅在电缆的一端具有公连接器或母连接器,或者可在电缆的任一端均不具有公连接器或母连接器。例如,并且参考图4,汇流条344和348可在焊片处具有有线连接。这些导线可连接至对应的控制器,而无需任何公连接器或母连接器。另选地,导线可连接至公连接器/母连接器。在阅读本说明书之后,技术人员将理解,并非该系统内的所有连接器都需要为公连接器或母连接器。

从属控制器230、232、234和236可经由框架电缆252向连接至所述控制器的非发光可变透射设备组260、262、264和266提供电力。提供至组260、262、264和266内的非发光可变透射设备的电力可具有至多12v、至多6v或至多3v的电压。从属控制器230、232、234和236可用于控制组260、262、264和266内的非发光可变透射设备的操作。在操作过程中,组260、262、264和266内的非发光可变透射设备的动作类似于电容器。当非发光可变透射设备处于切换状态而非静态状态时,消耗了大部分电力。在一个实例中,路由器220可具有500w的额定功率,并且控制器230、232、234和236中的每个可具有80w的额定功率。然而,各自额定功率为80w的控制器的数量可超过路由器的额定功率500w。

为管理这一供电方案,系统200可利用组260、262、264和266的非发光可变透射设备的额定功率,并且基于从属控制器230、232、234和236的需要将电力分配至这些设备,以便向非发光可变透射设备提供全功率,这些设备经由控制器230、232、234和236耦接至路由器220。可从与组260、262、264和266的非发光可变透射设备结合存在的信息中,获得组260、262、264和266的非发光可变透射设备的额定功率。例如,该信息可包含在每个非发光可变透射设备上的id标签内、在结合这些设备提供的查找表内、由建筑管理系统210提供的信息或外部来源中。另选地,该信息可通过模拟方法获得,该模拟方法例如与这些设备中的每个相关联的电阻。

在初始构造或重新构造系统200之后或在重启系统200的过程中,可执行将电力分配至控制器230、232、234和236,以作为启动例程的一部分。相对于构造,系统200可包括逻辑元件,例如,路由器220内可执行如下文所述的方法步骤的逻辑元件。具体地,逻辑元件可构造为确定用于耦接至路由器的控制器的电力需求并且将对应于电力需求的电力分配至控制器。可通过确定耦接至控制器230、232、234和236中的每个的非发光可变透射设备的额定功率,获得控制器230、232、234和236的电力需求。控制器和路由器中的每个可具有额定功率,并且控制器的额定功率之和可大于路由器的额定功率。系统200可构造为使得耦接至控制器的全部非发光可变透射设备可同时接收全功率。此外,控制器230、232、234和236中的至少两个可具有不同的电力需求和不同的电力分配。此外,控制器230、232、234和236中的至少两个可具有相同的额定功率。

在另一方面,对于控制器230、232、234和236中的每个,电力需求为组260、262、264和266内的非发光可变透射设备的额定功率之和。在系统200内,用于控制器230、232、234和236中的每个的电力和控制信号可构造为通过第一电缆内的不同导体进行传输。具体地,系统200可构造为使得通过电缆的第一导体双绞线传输电力,并且通过相同电缆的第二导体双绞线传输控制信号。另选地,系统200还可构造为使得用于控制器的至少一部分电力和至少一部分控制信号经由电缆的相同导体进行传输。

该系统可与多种不同类型的非发光可变透射设备配合使用。相对于图3和图4的描述提供了窗用玻璃的示例性实施例,该窗用玻璃包括玻璃基底以及设置在其上的非发光可变透射设备。相对于图3和图4所述的实施例并不意在限制本文所述的概念的范围。在下面的描述中,非发光可变透射设备将被描述为在汇流条上的电压处于0v至3v范围内的条件下进行操作。此类描述用于简化本文所述的概念。其他电压可以与非发光可变透射设备配合使用,或者在电致变色叠堆内的层的组成或厚度改变时使用。汇流条上的电压可以均为正电压(1v至4v)、均为负电压(-5v至-2v)、或负电压与正电压的(-1v至2v)的组合,因为汇流条之间的电压差比实际电压更重要。此外,汇流条之间的电压差可小于或大于3v。在阅读本说明书之后,技术人员将能够确定用于不同操作模式的电压差,以满足特定应用的需求或期望。实施例为示例性的,并非旨在限制所附权利要求的范围。

图3包括基底300、层叠堆322、324、326、328和330以及覆盖基底300的汇流条344和348的一部分的剖视图。在一个实施例中,基底300可包括玻璃基底、蓝宝石基底、氧氮化铝基底或尖晶石基底。在另一个实施例中,基底300可包括透明聚合物,诸如聚丙烯酸类化合物、聚烯烃、聚碳酸酯、聚酯、聚醚、聚乙烯、聚酰亚胺、聚砜、聚硫化物、聚氨酯、聚醋酸乙烯酯,其他合适的透明聚合物,或前述聚合物的共聚物。基底300可以是柔性的,也可以不是柔性的。在特定实施例中,基底300可为浮法玻璃或硼硅酸盐玻璃,其厚度在0.5mm至4mm的范围内。在另一个特定实施例中,基底300可包括超薄玻璃,该超薄玻璃为厚度在50微米至300微米范围内的矿物玻璃。在特定实施例中,基底300可用于形成的许多不同的非发光可变透射设备,并且可以被称为母板。

在描述它们的形成之前,描述了这些层的组成和厚度。透明导电层322和330可包括导电金属氧化物或导电聚合物。实例可包括氧化锡或氧化锌,其中任一种可掺杂有三价元素(诸如al、ga、in等)、氟化锡氧化物或磺化聚合物(诸如聚苯胺、聚吡咯、聚((3,4-亚乙二氧基噻吩))等)。在另一个实施例中,透明导电层322和330可包括金、银、铜、镍、铝或它们的任意组合。透明导电层322和330可具有相同或不同的组成。

该组层还包括电致变色叠堆,该电致变色叠堆包括设置在透明导电层322和330之间的层324、326和328。层324和328为电极层,其中一层为电致变色层,并且另一层为离子存储层(也称为反电极层)。电致变色层可包括无机金属氧化物电化学活性材料,诸如wo3、v2o5、moo3、nb2o5、tio2、cuo、ir2o3、cr2o3、co2o3、mn2o3或它们的任意组合,并且具有在50nm至2000nm的范围内的厚度。离子存储层可包括相对于电致变色层或ta2o5、zro2、hfo2、sb2o3或它们的任意组合所列出的任何材料,并且还可包括氧化镍(nio、ni2o3或两者的组合)和li、na、h或其他离子,并且具有在80nm至500nm的范围内的厚度。离子导电层326(也称为电解质层)设置在电极层324和328之间,并且具有在20微米至60微米范围内的厚度。离子导电层326允许离子通过该层迁移,并且不允许大量电子通过。离子导电层326可包括硅酸盐,其包含或不含锂、铝、锆、磷、硼;硼酸盐,其包含或不含锂;钽氧化物,其包含或不含锂;基于镧系元素的材料,其包含或不含锂;另一种锂基陶瓷材料;等等。离子导电层326为任选的,并且当存在时,可通过沉积形成,或者在沉积其他层之后,通过两个不同层诸如电极层324和328的部分反应形成,以形成离子导电层326。在阅读本说明书之后,技术人员将理解,在不脱离本文所述的概念的范围的情况下,层322、324、326、328和330可使用其他组成和厚度。

层322、324、326、328和330可在基底300上方形成,而含有或不含任何中间图案化步骤,避免在形成所有层之前破坏真空或使中间层暴露于空气。在一个实施例中,层322、324、326、328和330可连续沉积。可使用物理气相沉积或化学气相沉积形成层322、324、326、328和330。在特定实施例中,溅射沉积层322、324、326、328和330。

在图3所示的实施例中,透明导电层322和330中的每个包括去除部分,使得汇流条344和348彼此不发生电连接。此类去除部分的宽度通常为20nm至2000nm。在特定实施例中,汇流条344经由透明导电层322电连接至电极层324,而汇流条348经由透明导电层330电连接至电极层348。汇流条344和348包括导电材料。在一个实施例中,汇流条344和348中的每个可使用印刷在透明导电层322上方的导电油墨(例如银玻璃料)形成。在另一个实施例中,汇流条344和348中的一者或两者可包括金属填充的聚合物。在一个特定实施例(未示出)中,汇流条348为非穿透汇流条,其可包括金属填充的聚合物,该聚合物在透明导电层330之上并且与层322、324、326和328间隔开。用于金属填充的聚合物的前体可具有足够高的粘度,以避免前体流过下层中的裂缝或其他微观缺陷,否则导电油墨可能产生问题。在该特定实施例中,不需要对下透明导电层322进行图案化。

在所示的实施例中,非发光可变透射设备的宽度wec为对应于透明导电层322和330的移除部分之间的横向距离的尺寸。ws为介于汇流条344和348之间的叠堆的宽度。ws与wec的差值为至多5cm、至多2cm或至多0.9cm。因此,叠堆的大部分宽度对应于非发光可变透射设备的操作部分,该操作部分允许使用不同的透射状态。在一个实施例中,此类操作部分为非发光可变透射设备的主体并且可占据汇流条344和348之间的区域的至少90%、至少95%、至少98%或更多。

图4包括基底300和非发光可变透射设备410的顶视图,该非发光可变透射设备包括相对于图1所述的层图3所述的层。3.汇流条344沿基底300的侧面402布置,而汇流条348沿侧面404布置,其中侧面404与侧面402相对。汇流条344和348中的每个具有在侧面406和侧面408之间延伸大部分距离的长度,其中侧面408与侧面406相对。在一个特定实施例中,汇流条344和348中的每个具有介于侧面406和408之间的距离的至少75%、至少90%或至少95%的长度。汇流条344和348的长度彼此基本上平行。如本文所用,基本上平行旨在表示汇流条344和348的长度彼此平行的角度在10度以内。沿长度方向,汇流条中的每个具有基本上均匀的横截面积和组成。因此,在此类实施例中,汇流条344和348沿其相应的长度方向具有基本上恒定的单位长度电阻。

现在注意图1所示的包含窗用玻璃和非发光可变透射设备的系统的安装、构造和使用,该窗用玻璃和非发光可变透射设备类似于相对于图3和图4所示和所述的窗用玻璃和非发光可变透射设备。在另一个实施例中,采用其他设计的窗用玻璃和非发光可变透射设备。

图5包括用于操作图1所示的系统100的方法的流程图。操作图2所示的系统200的方法将是类似的。在框502开始,该方法可包括提供一个或多个非发光可变透射设备、一个或多个路由器以及一个或多个控制器,所述一个或多个控制器耦接至一个或多个窗用玻璃和一个或多个路由器。在一个实施例中,非发光可变透射设备、路由器和控制器可如图1所示彼此连接,并且所用的非发光可变透射设备类似于图3和图4所示和所述的非发光可变透射设备。此外,为便于安装和连接,如本文所述的母连接器和公连接器可用于将路由器连接至控制器。而且,公连接器或母连接器可用于将非发光可变透射设备连接至控制器。如果特定部件失效、受损或以其他方式需要更换,公连接/母连接使得移除并且更换特定部件相对简单。此外,公连接/母连接便于系统的初始安装和后续重新构造。

继续方法500的描述,在框522处,方法可包括接收功率信息,该功率信息与窗用玻璃的非发光可变透射设备相关联。该功率信息在路由器120处接收。该信息可包含在每个设备上的id标签内、在结合这些设备提供的查找表内、由建筑管理系统110提供的信息或外部来源中。另选地,该信息可通过模拟方法获得,该模拟方法例如与这些设备中的每个相关联的电阻。该信息可手动输入建筑管理系统中,并且在初始构造、重新构造系统100的同时或在重启系统的过程中,建筑管理系统110可将该信息推送至路由器120。

在框524处,方法可包括确定控制器的电力需求。这一确定可基于在上述框522处接收的功率信息来实现。具体地,确定电力需求可包括接收功率信息,该功率信息与如图1所示的位于窗用玻璃中的非发光可变透射设备相关联。该信息可包括耦接至控制器的非发光可变透射设备的额定功率。从每个控制器的角度来看,控制器的电力需求可为耦接至该特定控制器的非发光可变透射设备的额定功率之和。在另一方面,确定电力需求可包括分析信号以确定位于某些窗用玻璃中的非发光可变透射设备的电特性。在另一个实施例中,可将一些电力分配至控制器,因为一些电力将在其穿过控制器时发生损耗,并且控制器可执行一些操作(例如,确定下游非发光可变透射设备的电力需求、确定施加于非发光可变透射设备的电压等)。例如,对于每个控制器处的电力损耗,可分配1w。

转到框526,该方法可包括将对应于在步骤524处确定的电力需求的电力分配至控制器。对于控制器中的每个,可根据电力需求定制分配。例如,每个控制器可具有80w的额定功率,并且路由器可具有500w的额定功率并且具有八个耦接至路由器的80w的控制器。基于额定功率,控制器数量与其额定功率的乘积(8x80w=640w)大于路由器的额定功率。然而,控制器可具有10w、20w、80w、80w的电力需求,并且其余部分可具有40w的电力需求。因此,基于非发光可变透射设备的额定功率,即使当全部非发光可变透射设备正在接收最大功率时,路由器仅需向非发光可变透射设备提供350w。因此,电力的分配基于控制器控制下游非发光可变透射设备所需的电力,而非控制器的额定功率。通过这种方式,如果需要或期望,全部非发光可变透射设备均可在全功率下运行。

转到决定542,该方法可包括确定系统是否发生改变。系统的改变可包括添加包含非发光可变透射设备的另一个窗用玻璃、移除包含非发光可变透射设备的窗用玻璃或将包含非发光可变透射设备的特定窗用玻璃更换为包含具有不同电力需求的非发光可变透射设备的窗用玻璃。

改变可包括添加、移除或更换控制器或路由器。改变可进一步包括重新构造耦接至任何一个或多个控制器的非发光可变透射设备。例如,控制器136可改变为具有两列耦接至控制器的非发光可变透射设备,并且控制器136可改变为具有两列耦接至该控制器的非发光可变透射设备。改变可包括由图1的构造切换至图2,反之亦然。

当调试或重新调试图1的系统100时,可执行如上文所述的方法。当系统100最初安装并且首次通电时,可进行调试。当系统100重新构造、电力中断或重置后,可进行重新调试。根据该方法,调试或重新调试序列可先于正常操作系统100、200,所述系统包括路由器、控制器和窗用玻璃,该窗用玻璃包括非发光可变透射设备。因此,应宽泛地理解系统的改变。

在决定542处,如果系统发生改变,则方法可返回至框522并且如上文所述继续实施。相反,在决定542处,如果系统未发生改变,则方法可结束。

与包含非发光可变透射设备的其他系统相比,如上文所述的实施例可提供益处。使用公连接/母连接可有助于快捷方便地更换、添加或移除系统内的部件。无需任何工具即可更换控制器或路由器。对比系统可需要螺丝刀、电焊枪、电工胶带等。此外,公连接/母连接显著地节省改变构造所需的时间。对于传输至非发光可变透射设备的整个信号路径,无需追踪单独的导线。显著减小了误布线的可能性。

在系统的任何初始调试或任何后续的重新调试过程中,系统可构造为将电力分配至控制器。即使当控制器的额定功率之和超过对应的路由器的额定功率时,系统也允许耦接至路由器的全部非发光可变透射设备同时接收全功率。

对比技术可包括在耦接至路由器的控制器的额定功率之和不超过对应的路由器的额定功率的情况下,仅向控制器提供电力。使用如前文所述的带有八个控制器的实例,路由器可仅向八个控制器中的六个提供电力,因为八个控制器的额度功率之和(8x80w,640w)超过了路由器的额定功率(500w)。因此,耦接至两个控制器的非发光可变透射设备可不接收任何电力。因此,将不对一些非发光可变透射设备进行操作。

另一个对比技术可将成比例的量的电力分配至控制器。使用相同的八个控制器构造时,每个控制器可接收对应于控制器的额定功率乘以路由器的额定功率除以耦接至路由器的控制器的额定功率之和的电力。使用公式,分配至控制器的电力为:

80wx(500w/640w)=62.5w,

其中80w对应于控制器的额定功率,500w对应于路由器的额定功率,并且640w对应于耦接至路由器的控制器的额定功率之和。具有80w的电力需求的两个控制器无法在全功率下运行。因此,相比于耦接至其他六个控制器的非发光可变透射设备,耦接至这两个控制器的非发光可变透射设备将需要更长的时间以改变状态。

本文所述的方法允许全部耦接的非发光可变透射设备同时接收全功率。对比技术中的每一项都无法提供对非发光可变透射设备的此类控制。因为未将电力分配至与非发光可变透射设备对应的控制器,或者具有相对较高的电力需求的控制器可能仅接收一部分所需要的电力并且导致非发光可变透射设备具有不同的切换速率不同,因此无法操作非发光可变透射设备。

许多不同的方面和实施例都是可能的。以下描述了那些方面和实施例中的一些。在阅读本说明书之后,本领域的技术人员会理解,那些方面和实施例仅是说明性的,并不限制本发明的范围。示例性实施例可以根据下文列出的任何一个或多个实施例。

实施例1.一种系统,包括:第一非发光可变透射设备;第一控制器,该第一控制器耦接至第一非发光可变透射设备,并且构造为向第一非发光可变透射设备提供电力,其中第一控制器包括第一连接器;路由器,该路由器构造为向第一控制器提供电力和控制信号,其中路由器包括第二连接器;以及第一电缆,该第一电缆包括在第一电缆不同端部的第三连接器和第四连接器,其中:第一连接器和第三连接器彼此耦接,该第一连接器为公连接器或母连接器,并且第三连接器为公连接器或母连接器中的另一方;以及第二连接器和第四连接器彼此耦接,该第二连接器为公连接器或母连接器,并且第四连接器为公连接器或母连接器中的另一方。

实施例2.根据实施例1所述的系统,进一步包括第二电缆,其中:第一非发光可变透射设备进一步包括第五连接器;第一控制器进一步包括第六连接器;并且第二电缆包括在第二电缆不同端部的第七连接器和第八连接器,其中第五连接器和第七连接器彼此耦接,该第五连接器为公连接器或母连接器,并且第七连接器为公连接器或母连接器中的另一方;以及第六连接器和第八连接器彼此耦接,该第六连接器为公连接器或母连接器,并且第八连接器为公连接器或母连接器中的另一方。

实施例3.一种系统,包括:窗用玻璃,该窗用玻璃包括可变透射设备;控制器,该控制器耦接至窗用玻璃并且构造为向可变透射设备提供电力;路由器,该路由器耦接至控制器,其中路由器构造为向控制器提供电力和控制信号;以及逻辑元件,该逻辑元件构造为:确定耦接至路由器的控制器的电力需求;并且将对应于电力需求的电力分配至控制器。

实施例4.一种控制系统的方法,包括:提供系统,该系统包括第一非发光可变透射设备、第一控制器、路由器和第一电缆,其中:第一控制器耦接至第一非发光可变透射设备,并且包括第一连接器;路由器包括第二连接器;并且第一电缆包括在第一电缆不同端部的第三连接器和第四连接器,其中:第一连接器和第三连接器彼此耦接,该第一连接器为公连接器或母连接器,并且第三连接器为公连接器或母连接器中的另一方;并且第二连接器和第四连接器彼此耦接,该第二连接器为公连接器或母连接器,并且第四连接器为公连接器或母连接器中的另一方;经由第一电缆将控制信号和电力从路由器传输至第一控制器;并且将电力的至少一部分从第一控制器传输至第一非发光可变透射设备。

实施例5.根据实施例4所述的方法,其中提供系统包括提供以下系统,该系统包括:非发光可变透射设备,该非发光可变透射设备包括第一非发光可变透射设备;以及控制器,这些控制器包括第一控制器,其中每个控制器耦接至(1)路由器和(2)非发光可变透射设备中的至少一个。

实施例6.根据实施例5所述的方法,进一步包括确定用于控制器的电力需求;并且将对应于电力需求的电力分配至控制器。

实施例7.一种控制可变透射设备的方法,包括:确定用于控制器的电力需求,该控制器耦接至路由器,其中:窗用玻璃包括可变透射设备;控制器耦接至窗用玻璃并且构造为向可变透射设备提供电力;并且路由器耦接至控制器,其中路由器构造为向控制器提供电力和控制信号;并且将对应于电力需求的电力分配至控制器。

实施例8.根据实施例6或7所述的方法,其中确定电力需求并且在调试或重新调试序列的过程中执行电力分配。

实施例9.根据实施例8所述的方法,其中在正常操作系统之前调试或重新调试序列,该系统包括路由器、控制器和非发光可变透射设备。

实施例10.根据实施例5至9中任一项所述的方法,其中确定电力需求包括:接收与非发光可变透射设备相关联的功率信息;分析信号以确定非发光可变透射设备的电特性;或者接收与非发光可变透射设备中的至少一个相关联的功率信息,并且分析信号以确定另一个非发光可变透射设备的电特性。

实施例11.根据实施例1至10中任一项所述的系统或方法,其中第一连接器、第二连接器、第三连接器和第四连接器中的任何一个为以太网连接器或通用串行总线连接器。

实施例12.根据实施例1至3中任一项所述的系统,其中系统包括:非发光可变透射设备,包括第一非发光可变透射设备;以及控制器,这些控制器包括第一控制器,并且构造为向非发光可变透射设备中的至少一个提供电力,其中每个控制器耦接至(1)路由器和(2)非发光可变透射设备中的至少一个,其中路由器构造为向控制器提供电力和控制信号。

实施例13.根据实施例5至10和实施例12中任一项所述的系统或方法,其中系统进一步包括逻辑元件,该逻辑元件构造为:确定耦接至路由器的控制器的电力需求;并且将对应于电力需求的电力分配至控制器。

实施例14.根据实施例5至10、实施例12和实施例13中任一项所述的系统或方法,其中控制器和路由器中的每个具有最大额定功率,并且控制器的最大额定功率之和大于路由器的最大额定功率。

实施例15.根据实施例14所述的系统或方法,其中系统构造为使得耦接至控制器的全部可变透射设备可同时接收全功率。

实施例16.根据实施例5至10和实施例12至15中任一项所述的系统或方法,其中控制器中的至少两个控制器具有不同的电力需求,并且所述至少两个控制器具有不同的电力分配。

实施例17.根据实施例16所述的系统或方法,其中至少两个控制器具有相同的最大额定功率。

实施例18.根据实施例5至10和实施例12至17中任一项所述的系统或方法,其中对于每个控制器,电力需求为耦接至每个控制器的可变透射设备的最大额定功率之和。

实施例19.根据实施例1至18中任一项所述的系统或方法,其中第一控制器的电力和控制信号构造为通过第一电缆内的不同导体进行传输。

实施例20.根据实施例1至19中任一项所述的系统或方法,其中系统构造为使得电力经由第一电缆的第一导体双绞线进行传输,并且控制信号通过第一电缆的第二导体双绞线进行传输。

实施例21.根据实施例1至19中任一项所述的系统或方法,其中系统构造为使得第一控制器的电力的至少一部分和控制信号的至少一部分通过第一电缆的相同导体进行传输。

实施例22.根据实施例1至21中任一项所述的系统或方法,其中路由器进一步包括电力输入端口和控制信号端口,并且路由器构造为经由电力输入端口接收电力并且向第一控制器提供电力;以及接收控制信号并且向第一控制器提供控制信号。

实施例23.根据实施例22所述的系统或方法,其中路由器进一步包括耦接至电力输入端口的交流至直流转换器。

实施例24.根据实施例22或23所述的系统或方法,其中路由器进一步包括部件,该部件构造为使经由电力输入端口接收的电源电压减小至通过控制器端口传输的电源电压。

实施例25.根据实施例24所述的系统或方法,其中部件为变压器或调压器。

实施例26.根据实施例22至25中任一项所述的系统或方法,进一步包括建筑管理系统,该建筑管理系统经由控制信号端口耦接至路由器。

实施例27.根据实施例5至10和实施例12至26中任一项所述的系统或方法,其中控制器包括主控制器和从属控制器;并且路由器耦接在主控制器与从属控制器之间。

实施例28.根据前述实施例中任一项所述的系统或方法,其中第一电缆构造为传输至少4w的功率。

实施例29.根据前述实施例中任一项所述的系统或方法,其中第一电缆构造为传输至多200w的功率。

实施例30.根据前述实施例中任一项所述的系统或方法,其中第一电缆构造为支持至少3mb/s的数据速率。

实施例31.根据前述实施例中任一项所述的系统或方法,其中第一电缆构造为支持至多100gb/s的数据速率。

需注意,并非所有上述一般说明或实例中的行为都是必需的,可能不一定需要具体行为的一部分,并且除描述的那些行为外,还可执行一个或多个进一步的行为。此外,所列活动的次序不一定是执行它们的次序。

为清楚起见,本文在单独实施例的语境下描述的某些特征也可以在单个实施例中组合提供。相反地,为简明起见而在单个实施例的上下文中描述的各种特征也可单独地提供,或以任何子组合的方式来提供。此外,对以范围表示的值的引用包括该范围内的每个值和所有各值。

上面已经参考具体实施例描述了益处、其他优点及问题的解决方案。然而,益处、优点、问题的解决方案及可使任何益处、优点或解决方案被想到或变得更加显著的任何特征都不被认为是任何或所有权利要求的关键、所需或必要的特征。

本文所述的实施例的说明书和图示旨在提供对各种实施例的结构的一般理解。说明书和图示并不旨在用作对使用了本文所述的结构或方法的装置和系统的所有元件和特征的详尽和全面的描述。单独的实施例也可在单个实施例中以组合的方式来提供,并且相反地,为简明起见而在单个实施例的上下文中描述的各种特征也可单独地提供,或以任何子组合的方式来提供。此外,对以范围表示的值的引用包括该范围内的每个值和所有各值。只有在阅读本说明书之后,许多其他实施例对于技术人员才是显而易见的。通过本公开内容可以利用和得到其他实施例,使得可在不脱离本公开的范围的情况下进行结构替换、逻辑替换或其他改变。因此,本公开应被视为例示性的而非限制性的。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1