光通讯系统的制作方法

文档序号:7569626阅读:116来源:国知局
专利名称:光通讯系统的制作方法
技术领域
本发明涉及一种采用例如红外线的光通讯系统。更具体地说,涉及一种通过向一定面积的空间发射一束例如红外线类的光束,实现从一对收发设备中的一个收发设备到另一个收发设备之间通讯的空间光通讯系统。
在采用例如红外线的空间光通讯中,潜在的远程通讯区域被设置成在假设的使用条件下,具有尽可能宽的范围,并且用于光发射的光发射元件其强度被调整到足以覆盖这个潜在的通讯区域。
在一个用于单向发射的红外线遥控器(遥控器)中,为了使遥控器上安装的红外发光二极管的发光强度的值达到能确实地控制房间中通常要控制的装置,用于光发射的驱动电流是预先设定的。并且为了方便遥控器的操作,要设置遥控器的方向性使之有足够的宽度。
这种采用例如红外光射线的光通讯具有多项优点,首先因为它的调整量比电磁波通讯小,所以自由度高,其次由于收发仅在通讯双方的视野范围内进行,所以数据的安全性好并且不存在信号外泄的危险,此外制造这种收发单元的价格要比制造电磁波通信单元的价格低。根据这些考虑,可以预计采用红外线的空间光通讯,不仅能用于上面提到的红外线遥控器等单元向空间光通讯,而且能在诸如设置在房间内的计算机之间或计算机和外部设备之间的双向光通讯中得到应用。
在具有固定光发射强度的空间光通讯中,在许多情况下,实际的光通讯距离S比上面提到的潜在的光通讯范围要短得多。结果就造成通讯本身不需要的能量消耗。这样带来了一个缺点,即在电池驱动的便携式光通讯设备中,电池的寿命将会缩短。此外,在使用一个以上光通讯单元的情况下,还会出现对附近正在工作的另一个空间光通讯产生干扰或阻碍其工作的危险。
另外,要求这种光发射单元,诸如红外发光二极管,具有允许通讯在一定角度范围内进行的方向特性。这样,在没有通讯配对方的方向上也会有信号光发射。这种能量就是空间光通讯原本不需要的能量。并且这种能量还有影响附近其它空间光通讯工作的危险,例如,对设置在房间内的其它空间光通讯收发单元产生干扰。
因此,本发明的一个目的是要提供一种光通讯系统,在该系统中可将用于光通讯的发光元件的发光强度调节到通讯要求的值以便节省能源,和有效地防止通讯干扰。
本发明的另一个目的是要提供一种能够减少能源消耗的光通讯系统。
一方面,本发明提供一种光通讯系统,在其第一收发单元的发送部分具有一个发光装置,在其第二收发单元的接收部分有一个光接收装置。第二收发单元对其光接收装置接收的光强进行检测,并将此接收光的强度信息发送到第一收发单元,同时第一收发单元响应接收光的强度信息,对光发射装置的发光强度作出调整。这样,就可能依据光通讯进行的实际状态调节光发射强度,从而节省通讯需要的能量,延长便携式设备中电池的使用寿命。此外,这样还可以减小空间光通讯中的干扰或阻碍,使得在有限的空间中增加空间光通讯操作的次数成为可能。
另一方面,本发明提供一种光通讯系统,在它的第一收发单元中具有方向可变的光发射装置,在它的第二收发单元中具有接收光信号的光接收装置。第二收发单元检测光接收装置的接收光强度,并将有关该接收光强的信息送给第一收发单元。第一收发单元对第二收发单元来的有关接收光强度的信息作出响应,可变地控制方向可调的光发射装置的方向性。这样就可能将方向性限制在空间光通讯要求的方向上,从而达到减少能源消耗和减小影响其它空间光通讯操作的干扰或阻碍的目的,同时又能不影响方向可变的光发射装置的定位功能,保持很宽的方向性。
接收光强度信息的传送最好用光来实现,同时最好将光发射装置的光发射强度调节到实现有效稳定通讯所需要的最小值。
以下将对附图作一简要说明。


图1以方框图方式表示了一个按照本发明的实施例构成的光通讯系统。
图2表示随光发射强度的改变,信号在空间光通讯中可以达到的范围。
图3示意性地表示一个按照本发明的另一个实施例构成的光通讯系统。
图4示意性地表示一个按照本发明的再一个实施例构成的光通讯系统。
图5表示在空间光通讯中信号在不同的方向可以到达的范围。
图6表示方向可变的光发射部分的方向性的一个具体例子。
图7是一个方向可变的光发射单元的简略前视图。
图8是一个可变方向性的光发射单元的简略侧视图。
图9以方块图表示了一个按照本发明的另一个实施例构成的光通讯系统。
图1是一个表示按照本发明的光通讯系统实施例的方框图。
参见图1,第一收发单元10包括一个光发射驱动控制电路12,它使提供给输入端11的通讯信号被发送,以及一个发送单元13,它接收光发射驱动控制电路12来的驱动控制信号。第一收发单元10还包括一个接收单元14,用于接收外部来的通讯,以及一个接收处理电路15,用于接收处理接收单元14来的信号。接收处理电路15的接收信号通过输出端16取出。该收发单元10的发送单元13具有诸如红外发光二极管类光发射装置,它响应光发射驱动控制电路12来的信号发射光束。
图1中的第二收发电路20包括一个发送驱动控制电路22,用于对提供给输入端21的通讯信号进行发送驱动控制,以及一个发送单元23,它接收发送驱动控制电路22来的驱动控制信号。该第二收发单元20还包括一个构成光接收单元24的光接收元件27,以及一个光信号接收处理电路25,光接收单元24被设计成专门接收由第一收发单元10的光发射元件17来的空间光通讯光束,例如红外光,而光信号接收处理电路25用于接收处理自接收单元24的接收元件27来的光信号。从光信号接收处理电路25来的接收信号从输出端26上取出。
图1中的第二收发单元20的光信号接收处理电路25中,装有一个接收光强检测电路28,用于检测接收单元24的光接收元件27接收到的光强度。由接收光强检测电路28检测出的接收光强度信息,被送入发送驱动控制电路22并且同输入端21来的通讯信号一道作为发送驱动信号送入发送单元23。发送单元23将诸如电磁波,红外线或类似的信号发送给第一嵋发单元10的接收单元14。需要说明的是,虽然在第二收发单元20的发送单元23和第一收发单元10的接收单元14之间的通讯可以用电磁波,红外线或任何其它的形式进行,但是最好还是用诸如红外光射线类的光进行空间光通讯。由第一收发单元10的接收单元14在信号接收中获得的接收信息和由接收处理电路15在信号处理中获得的接收光强度信息,都被送入光发射驱动控制电路12内部的光发送强度调节电路18。该光发送强度调节电路18不断地调节发送单元13的光发射元件17的光发射强度。
在进行光通讯时,第一收发单元10的光发射驱动控制电路12中的光发射强度调节电路18,使光发射元件17以最大的光发射强度发光去启动通讯。然后光发射强度调节电路18响应作为通讯配对方的第二收发单元20来的接收光强度信息,对光发射强度不断进行调节,以便达到确保稳定通讯的最小光发射强度。在这种情况下,在通讯期间光强度从最大光发射强度逐步变弱;反之,光强度也可以从最小光发射强度逐步增强,或者从中等光发射强度开始变化。
假如将第一光收发单元10和第二光收发单元20之间的相对位置固定,那么只要在最初把光发射强度调节到最佳值就可以了,不必在每次通讯启动时再对光发射强度进行调节。
采用这种方式调节光发射强度有以下优点若通讯在具有光发射元件的收发单元31和具有光接收元件的收发单元32a之间进行,且收发单元31中光发射元件的光发射强度处于最大值,而此时如果在光信号的覆盖范围35内,有三个收发单元32a、32b和32c,那么在这种情况下就会出现通讯信号干扰问题。此外,还会浪费电能消耗。如果能依据收发单元32a来的光接收强度信息将收发单元31的光发射元件的光发射强度调节到需要的最小值,这时就可以认为在光信号覆盖范围34内只存在收发单元32a,这样收发单元31对附近正在进行的其它光通讯操作形成的干扰危险大大减小了。同时,能量消耗也减小到需要的最小值。这对于便携式电池驱动型接收装置延长电池服务寿命是特别有意义的。
图3表示一个采用两个收发单元进行双向空间光通讯的光通讯系统的例子,其中的发送和接收单元分别采用光发射装置和光接收装置。
参见图3,提供给第一收发单元40的输入端41的通讯信号被送入光发射驱动控制电路42。此电路42控制装在发送部分43上的光发射元件47,使其光发射能响应通讯信号。在光接收部分44上的光接收元件57接收从外部来的空间光通讯的光信号,例如红外线,并将接收到的光送入光信号接收处理电路45。此电路45对光接收元件57来的光信号进行接收处理,并将被处理过的接收信号送入输出端46。光信号接收处理电路45还通过接收光强检测电路58检测接收光的强度,并将检测的光强度作为接收光强信息送入光发射驱动控制电路42。接收光强信息同输入端41来的通讯信号一起作为光信号被发送部分43的光发射元件47发送。包含在从外部馈入的光信号中的接收光强度信号被光信号接收处理电路45取出,然后提供给光发射驱动控制电路42中的光强调节电路48。电路48响应接收光信号中的接收光强度信息,将发送部分43中光发射元件47的光发射强度调节到最佳值。
在图3中,第二收发单元50与第一收发单元40有类似的结构。因此其中的相应部分用同样数字的附图标号表示,为简略起见,省略相应的说明。
在该第一和第二收发设备40和50之间的空间光通讯中,把由作为通讯配对方的第二收发装置50中光接收元件57接收到的表示光强度的光强度信息,作为第二收发装置50的光发射元件47的光信号中的一部分送入第一收发单元40的光接收元件57,并且被第一收发装置40的光信号接收处理电路45取出作为接收光强度信息,以便此后提供给光发射驱动控制电路42的光强调节电路48,并借此将第一收发单元40中光发射元件47的光发射强度调节到最佳值。类似地,第一收发单元40中光接收元件57的接收光强度作为从该第一收发单元40发出的光信号的一部分,被送入第二收发单元50,用于将第二收发单元50的光发射元件47的光发射强度调节到最佳值。
下面参照第一收发单元40,对调节光发射强度的最佳方法作一直观的说明。利用第一收发单元40的光强调节电路48,将光发射元件47的光发射强度,从启动通讯时的最大值逐渐地调低。在对第二收发单元50上变化的接收光强度进行校验的同时,使降低的光发射强度停止在与能够维持稳定通信的最小接收光强度对应的值上。例如可以设定驱动电流以便维持光发射元件47的光发射强度。可以用相似的方式调节第二收发单元50的光发射强度。
本发明的方法不限于从通讯启动的最大值逐步降低光发射强度的方式。例如,在通讯启动时也允许光发射从光发射强度的最小值开始,当光发射强度增大时,监视通讯配对方的光接收强度,并将光发射强度调节到最佳值。此外也可以选择在通讯启动时,使光发射从最大光发射强度和最小光发射强度之间的中间光发射强度开始,为了决定光发射强度应当增大还是减小,应对通讯配对方的光接收强度进行监视和校验,根据监视和校验的结果将光发射强度调节到最优值。
在图3所示的实施例中,由于双向空间光通讯是在第一收发单元40和第二收发单元50之间进行,不需要借助电磁波,因而完全由光通讯实现了双向通讯。这种通讯因为调节量比电磁波通讯小所以有较高的自由度,同时因为收发仅在通讯各方的视野范围内发生,所以数据的安全性优良,不会有向外泄漏信号的危险。此外,这种收发单元可以用比电磁波通讯情况下较低的造价制成。
此外,本实施例还能产生同图1所示的实施例相类似的令人期望的效果,即可以用发送所必须的最小能量进行空间光通讯,这样,由于与本空间光通信相邻的其它空间光通讯的干扰或障碍可以被降到最小,从而在有限的空间范围内可以无干扰地进行大量的空间光通讯操作。
上面描述的实施例并不对本发明构成限制。例如,尽管上面的实施例中,发送单元的光发射元件和接收单元的光接收元件互相是分开构成的,实际上它们也可以用集成整体的光发送和光接收光学单元构成。
图4以方块图的方式表示了按照本发明的光通讯系统的另一个实施例。
参见图4,一个用于空间光通讯的第一收发单元110包括一个控制器111,一个可变方向性的驱动电路112和一个可变方向性的光发射单元113,通讯信号经过控制器111输入驱动电路112,光发射驱动电路112用来驱动光发射单元113进行光发射。第一收发单元110还包括接收单元114和接收处理电路115,前者用于接收信号,后者用于接收处理从接收单元114来的信号,并输出一个接收信号和如后面说明的接收光的强度信息,并将该接收信号和接收光的强度信息发送给控制器111。具体地说,接收光的强度信息被发送给控制器111中的方向性控制器116。该方向性控制器116控制可变方向性光发射单元113的出射光方向。在许多情况中,方向性控制器116的功能是由控制器111中的CPU以软件方式执行的。
第二收发单元120,作为空间光通讯中与第一收发单元单元110相应的通讯配对方,包括一个发送驱动电路122,用于对输入端121提供的通讯信号进行发送驱动控制,以及一个发送单元123,它被馈入从发送驱动电路122来的信号。第二收发单元120还包括一个光接收单元124,用于接收从第一收发单元110的可变方向性光发射单元113来的光信号,以及一个光信号接收处理电路125,用于接收处理从光接收单元124来的信号。从光信号接收处理电路125来的接收信号,经过输出端126被取出。在光信号接收处理电路125中装有一个接收光强检测电路128,用于检测光接收单元124接收的光强度。接收光强检测电路128检测到的接收光强信息被送入发送驱动电路122,并且在此后与输入端121来的通讯信号一起作为发送驱动信号馈送给发送单元123。该发送单元123将电磁波,红外线或其它形式的信号发送给第一收发单元110的接收单元114。第二收发单元120的发送单元123和第一收发单元110的光接收单元114之间的通讯可以用电磁波,红外线或其它类似信号进行。在所有这些形式的信号中,最好采用借助红外线进行的空间光通讯。由第一收发单元110的接收单元114在接收中获得的接收信息和被接收处理电路115接收处理的接收光的强度信息,都被送入控制器111中的方向性控制器116。
第一收发单元110中的方向性控制器116监控在第二收发单元120中的接收光强度。为了找到使光接收强度最大的方向,在启动通讯的同时应改变可变方向性光发射单元113的方向性。在将可变方向性光发射单元113设定到最佳方向,即使接收光强度最大的方向以后,就可以进行原有通讯信号的空间光通讯。如果把第一收发单元110和第二收发单元120的相对位置加以固定,那么只在在起初将方向性设置到最佳状态就可以了,不需要在每次通讯启动时再去调节和设置方向性。
这样调节光发射强度具有下列优点如果通讯在具有光发射元件的收发单元131和具有光接收元件的收发单元132a之间进行,而且将收发单元131中光发射元件的方向性设置在较宽的值,那么在光信号覆盖范围134内如果有三个收发单元132a、132b和132c的话,这时将会出现通讯的信号干扰或信号障碍问题。此外,电能的消耗也会浪费。如果根据来自收发单元132a的光接收强度信息改变收发单元131中光发射元件的方向性,则该方向确定的光信号覆盖范围133如图5所示,这时可以认为在光信号覆盖范围134内,仅存在收发单元132a,这样收发单元131妨碍附近其它正在进行的光通信操作的危险就几乎不存在了,同时能源消耗也能减少到所需的最小值。
对可变方向的光发射单元的方向性进行改变时,最好在如图6所示的不同的窄方向之间切换,不要改变宽度,例如从较宽的方向变换为窄的方向或者反之。也就是说,在图6中,可变方向的光发射单元135具有包含不同方向的多个较窄方向138a、138b、……可变方向的光发射单元135的方向变化是通过在这些方向138a、138b、……之间进行选择切换实现的。
参见图7和8,下面将对可变方向的光发射单元135的结构进行说明。
在这些图中,一个单透镜136被安装在由多个光发射元件137组成的矩阵阵列上,由此使光发射元件137具有不同方向的多方向性,这样便构成了一个可变方向的光发射单元135。在本说明例中,5×5=25个红外发光二极管以矩阵结构排列作为光发射元件137,所以光发射元件137具有较窄的方向性,其半值角约在5度左右。这样对附近空间光通讯线路的影响和干扰就变得极其小,使得在有限的空间内能够同时进行大量的通讯操作。可变方向的光发射单元135的方向性半值角可达25度左右,具有这种可变方向的光发射单元135的收发单元安装十分容易,无需进行校正定位。而且,由于只有25个光发射单元中的一个被选择进行光发射,所以光发射所需的能量可以减少到常规系统所需的1/25左右。
假如将上述可变方向的光发射单元135作为图4中第一收发单元110的可变方向的光发射单元113使用,则首先应发送一个参考信号,同时图4中控制器111的方向控制器116在光发射单元137之间切换,并将在图4中所示的作为通讯配对方的第二收发单元120上的光接收强度与选择的光发射元件137的光强度进行比较,用来选定具有最大光接收强度的光发射元件。事实上,这个选定的光发射元件的方向性,同图4中所示的作为通讯配对方的第二收发单元120的位置所在的方向是一致的。
因此,图4中的空间光通讯系统采用图7和8所示的可变方向的光发射单元135后,具有很宽的方向性,它不会在安装时对第一收发单元110和第二收发单元120的定位造成损害。在空间光通讯中,可以仅利用必需的方向性,有利于减少能源消耗和降低对其它空间光通讯的影响和干扰。
现在用几个说明例,对图7和8中所示的可变方向性光发射单元135的多个光发射元件137的切换选择方法进行说明。
第一种方法是对全部光发射元件137进行顺序扫描,选择出在光接收侧给出最大光发射强度的光发射元件。
在这种情况下,由图4中第一收发单元110的控制器111的方向控制器116,按照预定顺序对光发射元件137进行扫描。例如,可以从图7中最上排的光发射元件137开始,从左上角的光发射元件横扫到右端的光发射元件。然后,从上部第二排左端继续以类似的方式进行扫描,横扫到最右角。然后移到第三排左端继续扫描。重复这一操作过程,直到扫描到用于发送预定信号的右下角的光发射元件为止。同时,对图4中的第二收发单元120检测到的,作为通讯配对方接收到的每一个光发射元件的接收光强度进行比较,这样通过第一收发单元110的控制器111的方向控制器116进行的切换扫描选择,就能选定具有最大接收光强度的光发射元件。
为了使作为通讯配对方的第二收发单元120能够确定是哪一个光发射元件已经被切换扫描选择到,可以设想在对全部元件扫描的过程中,发送具有被选择切换的光发射元件编码,例如带有元件号码的信号。这样,第二收发单元120就能把光发射元件的号码和相应的光接收强度有机地存贮起来,并通过比较光接收强度,测定出最大的光接收强度,然后将与这个最大光接收强度有关的元件号码返回给第一收发单元110。
这种测定最大光接收强度的方法可以通过下述步骤实现。首先在存贮器中存贮一组被扫描到的光发射元件的号码和光接收强度,将接着被扫描到的光发射元件的光接收强度和存贮在存贮器中的光接收强度进行比较,并将第一和第二组中较大的一个存贮在存贮器中。重复这一操作程序,直到扫描结束。扫描结束时留在存贮器中的这组元件号码和接收光强度中的接收光强度对应最大接收光强度。这种测定最大接收光强度的方法可在第一收发单元110中以相类似的方式进行。
选择在光接收侧将给出最大光发射强度的光发射元件的第二种方法,是以区段为基础对光发射元件137进行扫描。
在这种情况下,图7所示的排成5×5矩阵的光发射元件137,按照每列五个光发射元件的形式被分成几个区段,并且按列到列进行扫描。这样,先选出具有最大接收光强的列。然后,顺序扫描被选出的列中的五个光发射元件137。利用这种方法,仅仅只需进行十次切换操作,即切换5列和在选出的列中切换5次元件,这样在选择具有最大光发射强度的元件时,能够缩短所需的时间。这种检测最大光发射强度的方法可以根据要求或在第一收发单元110一侧,或在第二收发单元120一侧进行。
下面说明第三种切换选择的方法。在第三种方法中,不在同一直线上的三个光发射元件被顺序切换发光,并对产生的三个接收光强度相互进行比较。在这种切换中,将要给出最大接收光强度的光发射元件的数目限制到4。如果光接收侧的单元处于规定的角度范围内,就可以唯一地确定发光元件,这样可以缩短选择所需的时间。
除了上述的那些方法以外,还可以设想出多种多样的切换选择方法。
在上面的说明和描述中,空间光通讯是在一对收发单元之间至少有单向通讯情况下采用的。然而,空间光通讯也可被用于双向通讯。现在参见图9,对双向通讯的实施例进行说明。
在图9中,第一收发单元140和第二收发单元150互相有相似的结构。第一收发单元140的部件用141、142、……等标号表示,而第二收发单元150的部件用151、152,…等标号表示。
图9的第一收发单元140包括控制器141,光发射驱动电路142和可变方向的光发射单元143,其中光发射驱动电路142经控制器141被馈入一个通讯信号而可变方向的光发射单元143由光发射驱动电路142驱动进行光发射。第一收发单元140还包括一个用于接收光信号的光接收单元144和一个光信号接收处理电路145,该电路用于接收和处理从光接收单元144来的光信号。可变方向的光发射单元143由光发射部分143B和切换部分143A组成,前者具有可向不同方向发射的多个光发射元件,后者用于对光发射部分143B的光发射元件进行切换。接收处理电路145向控制器141输出在光接收部分144上的接收信号和接收光强度信息。在第二收发单元150上的接收光强度信息或具有最大的接收光强度的元件号码的信息,都可能包含在接收信号中。控制器141输出一个执行上述扫描的切换命令信号,或一个切换到同最大接收光强度相关的方向上去的切换命令信号,并将输出信号送到可变方向的光发射单元143的切换部分143A。
第二收发单元150,作为第一收发单元140的空间光发送的通讯配对方,具有同第一收发单元140相似的结构。所以,第二收发单元150的部件用标号151、152、……来表示,以便和第一收发单元的标号141、142、……相对照,并且为简单起见其中相应的说明将省略。
双向空间光通讯的进行,如图9所示,在进行要求的光通讯以前,先在收发单元140和150中进行方向切换控制和接收光强度检测,以便选定收发单元140、150两者的最佳光发射元件。
本发明的内容并不局限于上面描述的实施例。例如,在图7和8的可变方向的光发射单元中,是用单透镜给光发射元件提供不同的方向的。然而,也可以通过把光发射元件安装成有不同的安装角来提供不同的方向。尽管在上述实施例中,光发射元件被排成5×5的矩阵结构,但也可以将两个以上的光发射元件排成任意的结构,例如排成任一种线性结构。此外,光发射元件的方向半值角也不一定局限于5度,而可以是任意度数。尽管在上述实施例中,光发射和光接收单元被设计成分立的单元,但是也可以采用一个单一的发送和接收光学组件。
权利要求
1.一个光通讯系统包括一个第一收发装置和一个第二收发装置,所述的第一收发装置包括一个具有第一光发射装置的第一发送部分;一个第一接收部分,用于接收从所述的第二收发装置来的发送信号;一个调节装置,用于调节从所述的光发射装置来的发射光的光发射强度;和所述的第二收发装置包括一个第二接收部分,具有一个第二光接收装置;一个光强检测装置,用于检测在所述光接收装置上的接收光的光强;一个第二发送部分,用于把由所述的光强检测装置检测到的有关光强信息,发送到所述的第一收发单元;其中所述的调节装置按照发送给第一收发单元的,由所述光强检测装置检测到的光强信息,对所述光发射装置的光发射强度进行调节。
2.一种按照权利要求1的光通讯系统,其中所述的第一收发装置在所述的第一接收部分具有一个第一光接收装置。
3.一种按照权利要求1所述的光通讯系统,其中所述的第二收发装置在所述的第二发送部分具有一个第二光发射装置。
4.一种如权利要求1所述的光通讯系统,其中所述调节装置控制所述第一光发射装置,以使该第一光发射装置以最小发射强度向所述第二收发装置的光接收装置发射光学信号。
5.一个光通讯系统包括一个第一收发装置和一个第二收发装置,所述的第一收发装置包括一个第一发送部分,具有一个方向可变的第一光发射装置;一个第一接收部分,用于接收从所述的第二收发装置来的发送信号;一个方向控制装置,用于控制所述第一光发射装置的方向;以及所述的第二收发装置包括一个第二接收部分,具有一个第二光接收装置;一个光强检测装置,用于检测在所述第二光接收装置上接收的光信号的强度;一个第二发送部分,用于向所述第一收发装置发送被所述第二光强检测装置检测到的有关光强的信息;其中所述方向控制装置按照被所述光强检测装置检测到的有关抵达所述第一收发装置的光强信息,控制所述第一光发射装置的方向。
6.一个如权利要求5所述的光通讯系统,所述的第一收发装置在其第一接收部分具有一个第一光接收装置。
7.一个如权利要求5所述的光通讯系统,所述第二收发装置在其第二发送部分具有一个第二光发射装置。
8.一个如权利要求5所述的光通讯系统,其中所述方向控制装置控制所述的第一光发射装置的方向,以使在所述的第二光接收装置上接收到的光信号的光强最大。
9.一个如权利要求5所述的光通讯系统,其中所述的第一光发射装置包括多个光发射器件,所述的光发射器件每个之间的方向性是不同的,借助对所述的多个光发射器件的切换使发射的方向性改变。
10.一个如权利要求9所述的光通讯系统,对所述多个光发射器件进行切换,从中选择出一个使在所述第二光接收装置上接收的光信号强度最大。
全文摘要
一光通讯系统,第一收发单元10发送部分13中光发射元件17受光发射驱动控制电路12控制,其光发射强度由光发射强度调节电路18调节。第二收发单元20接收部分24的光接收元件27的接收光强由光信号接收处理电路25中接收光强检测电路28检测,并经发送驱动控制电路22和发送部分23送出,使第一收发单元10接收部分14能收到。接收光强信息由接收处理电路15取出并供给电路18。该电路响应接收光强信息,调节元件17发射光强为维持稳定光通讯所需最低值。
文档编号H04B10/10GK1154024SQ9611333
公开日1997年7月9日 申请日期1996年8月31日 优先权日1995年8月31日
发明者高松宏行 申请人:索尼公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1