一种基于分集的无速率码联合度数动态译码方法

文档序号:9219600阅读:421来源:国知局
一种基于分集的无速率码联合度数动态译码方法
【技术领域】
[0001] 本发明涉及无线通信信道编码领域,具体涉及一种基于分集的无速率码联合度数 动态译码方法。
【背景技术】
[0002] 无线通信利用电磁波承载信号,在自由空间中传播信息,可以摆脱地形的限制,不 受传输线缆的束缚,具有极佳的机动性。与此同时,如何对传输的数据信息进行差错控制, 对抗噪声干扰以及实现准确的数据重现成为无线通信的一个重要问题。具备纠错能力的信 道编码技术即是解决此问题的关键。在信道编码过程中,编码的主要运用是对传输的数据 信息提供保护,通过对数据信息增加一定数量受到控制的冗余位,以有效地对抗信道的噪 声和干扰,使得传输的数据信息所产生的差错可以被接收机检测和纠正,通过译码从接收 信号中最大限度地恢复出原始数据信息。信道编码技术始于1948年Shannon在贝尔技术 期刊上发表的"数字通信理论"一文,香农提出了著名的信道编码定理。之后,多种类型的 纠错编码方法相继问世,包括:汉明码、循环码、BCH码、RS码、卷积码、Turbo码和低密度奇 偶校验码(LDPC)码等。
[0003] 以上的纠错编码方法可以统称为码率固定的前向纠错编码。在前向纠错编码的设 计中,通常需要位于发送端的编码器预先根据估计得到信道状态信息,设计一个合适且固 定的码率R来进行编码。然而固定码率编码技术存在两个问题:(1)发送端无法自适应无线 通信环境的复杂性和变化性,固定码率有可能无法保证数据的可靠传输,另一方面,也有可 能造成传输效率浪费;(2)与之应运而生的差错控制技术,通过引入一条特殊的反馈信道, 当传输的数据丢失时,由接收端向发送端反馈重传请求;当收发两端距离较远时,反馈信号 的传输时延不可避免,如果参与的通信用户数目较多,还会引起网络阻塞。
[0004] 无速率码是一种能够自适应信道状态变化,具有良好的编码增益同时又能够有效 减少反馈信息量的信道编码技术。相对于现有固定码率的编码方法,无速率码特指在编码 端无固定码率的编码。无速率码是一种无速率约束码,它具有三个重要的属性:(1)无速率 码的流属性:发送端可以源源不断地输出编码包,形成一个可以无限延续的编码包流,而 没有任何速率约束;(2)自适应链路适配:编码的码率不需要在数据传输前固定,编码包是 源源不断地产生的,实际传输的码率取决于接收端译码成功所需要的编码包个数,能自适 应信道状态的变化;(3)桶积水效应:接收端收集编码包,收集到数量足够多的编码包后即 能成功恢复出原始数据。
[0005] 由于无速率码具有以上优良的特性,因而在无线通信编码领域得到广泛运用。如 何提高无速率码迭代译码可靠性成为提高编码性能的一个研宄热点。目前已有较多基于 LDPC码的动态译码规划的研宄成果,其动态调度策略基本采用最大残余迭代优先策略,由 于其算法的局限性,会带来贪婪群现象和静默变量节点问题。基于这第一种现象,有学者提 出了限定残余置信传递策略,以制约饥饿元素和贪婪群组。针对第二个现象,采用静默节点 释放的残余置信传递调度策略,以保证所有变量节点都以相同的概率将自身的LLR信息传 递到迭代过程中去。由于无速率码和LDPC码具有极大的相似性,我们可以将LDPC的动态 译码策略移植到无速率码的编译码技术中。但是,基于最大残余迭代优先策略需要在每一 轮迭代过程中计算每个变量节点的残余置信度,以及接收概率,考虑无速率码的自适应以 及Tanner图庞大等特征,直接采用基于最大残余迭代优先策略会带来极其庞大的计算量, 译码时延高。因而我们需要寻求适合无速率码的独特的动态译码规划或者调度策略。
[0006] 目前,有学者提出了接收端采用无速率译码自适应机制,采用标准信号空间星座 点映射的16QAM或64QAM,首先计算来自信道的LLR信息,接收端根据误码率要求设计判决 区间,当变量节点来自信道LLR信息低于阈值时,则丢掉信息(Discarded)。即仅采用置信 度高的信道LLR信息参与迭代译码过程,丢弃置信度低的变量节点信息。由于译码忽略了 部分信道信息,因而迭代译码性能不可能达到最佳状态。

【发明内容】

[0007] 本发明的目的是克服现有无速率码迭代译码技术简单洪流迭代(并行迭代)或者 串行迭代的缺陷,提供一种基于分集的无速率码联合度数动态译码方法。该方法在信号空 间分集的基础上,联合度数对无速率码的BP迭代译码进行动态译码规划,在不牺牲带宽的 基础上,以低复杂度提高无速率码迭代译码收敛速度,降低误码率,提高通信性能。
[0008] 本发明的目的是通过以下技术方案来实现的:一种基于分集的无速率码联合度数 动态译码方法,发送端提供一无速率编码方式获得的传输码;将信号空间分集确定多层信 号空间子层,逐层增大信号空间子层内的相邻星座点的欧式距离;以及根据联合度数编码 调制方法对所述传输码进行调制,欧氏距离由大到小的信号空间子层分别对应调制所述传 输码中度数由大到小的编码比特;接收端接收调制后的传输码,根据串行分层动态译码规 划方法解调所述传输码,优先迭代欧氏距离较大的信号空间子层、且信号空间子层内部优 先迭代编码度数较大的校验节点以解析所述传输码。具体包括以下步骤:
[0009] (1)发送端对原始消息比特流{bQ,V",bu ???}进行无速率编码,得到待调制的传 输码的编码比特流{i%nv,mu…},并获取编码器无速率码的Tanner图度数分布信息D;
[0010] ⑵将M维调制信号空间分集形成多层信号空间子层,逐层增大信号空间子层相 邻星座点欧式距离《 …,用符号'Si,S2,……,表示信号空间分集 信号比特集合;
[0011] ⑶根据联合度数编码调制方法调制编码比特流…,mu…},欧氏距离较大 的信号空间子层调制度数较大的编码比特,欧氏距离较小的信号空间子层调制度数较小的 编码比特,经过调制后得到调制符号序列{X(1,Xl…,;联合度数编码调制方法如下:
[0012] maxD(S〇) ^minD(S1),
[0013] maxD(S1) ^minD(S2),
[0014] …
[0015]
[0016] 其中,SySpS2,……,表示信号空间子层信号比特集合;D以)表示信号空 间子层Si的调制编码比特的度数;
[0017] (4)将调制符号序列{X(l,Xl…,xu ???}进行上变频得到发送信号序列t(n),并将其 发送到信道中;
[0018] (5)经历AWGN加性白高斯信道,接收端接收到消息序列r(n),经过下变频得到基 带数字信号消息序列{yci,y:…,…},根据Tanner图,对基带数字信号消息序列yf ,yu ???}进行联合度数的串行分层动态译码,恢复出发送端的消息比特流。
[0019] 进一步地,所述步骤5中,所述联合度数的串行分层动态译码具体为:
[0020]A)初始化Tanner图中所有连接边的LLR(对数似然信息)信息;
[0021] Qv,c= 0,Rc,v= 0
[0022] 其中,Qv,。和R。,及别表示Tanner图中所有连接边在变量节点到校验节点方向的 LLR信息集合和校验节点到变量节点方向的LLR信息集合;
[0023] B)计算所有变量节点来自信道的LLR信息Leh,计算公式如下:
[0024]
[0025] 推导得到变量节点Xi来自信道的LLR信息LLRxi,计算公式如下:
[0026]
12345 其中,n和N分别是LDPC码和LT码的变量节点数目,{Xi= 0:a}表示调制比特xi =〇时所对应的星座点a的集合,{Xi= 1:a}表示调制比特xi= 1时所对应的星座点a的 集合,y是待译码的基带数字信号,〇 2是噪声方差; 2 C)BP译码迭代次数Iter从1到最大迭代次数IterMax,优先迭代欧氏距离大的信 号空间子层,即按照信号空间子层,……,S2,Si,&的顺序依次迭代;信号空间子层内 部优先迭代编码度数大的校验节点;按上述顺序依次迭代更新变量节点到校验节点的LLR 信息Qv,。,变量节点Vi到校验节点h的连接边的LLR信息计算公式如下: 3
[0029]
4 其中,N(^) \Cj表示除去校验节点cj自身的连接到变量节点vi的所有校验节点, %为校验节点Cj到变量节点v,的连接边的LLR信息,%.,e尺,; 5 D)按照步骤C)描述的迭代顺序依次迭代更新校验节点到变量节点的LLR信息 ,校验节点h到变量节点vi的连接边的LLR信息in计算公式如下:
[0032]
[0033] 其中,N(Cj)\Vi表示除去变量节点Vi自身的连接到校验节点c」的所有变量节点; 其中,双曲线函数tanh(x)的具体表达式为:
[0034]
[0035]石;s'l1Ler/」、丁守丁取人迭代次数IterMax,则进入步骤C),若迭代次数 Iter大于最大迭代次数IterMax,则进入步骤F);
[0036] F)计算所有变量节点的判决LLR信息,变量节点式如下:
[0037]
[0038] 其中,L(Vi)为变量节点Vi的判决LLR信息;
[0039] G)根据各变量节点的判决LLR信息L(v)进行判决,从而解析获得发送端发送的传 输码的消息比特流如丄….心.,
[0040]
[0041] 其中,$是第i号译码符号。
[0042] 进一步地,所述M维调制信号空间为M-PSK或MQAM或MASK空间。
[0043] 计算复杂度方面,本发明基于信号空间星座点分集,逐层增加相邻星座点的欧式 距离,联合度数编码调制,欧氏距离大的信号空间子层调制度数大的编码比特;设编码比特 长度,即发送信号数据块大小为D,则发送端只需要根据编码码字的度数进行联合调制映 射,复杂度为〇 (D);接收端进行联合度数动态译码规划方法,而动态调度译码不会带来额 外的译码复杂度开销。可见本发明方法的复杂度低。
[0044] 本发明适用于信道变化复杂、高速移动环境下的宽带传输无线通信系统。在复杂 的通信信道条件下,发送端编码器难以根据信道状态信息设置固定码率编码。码率太高,导 致接收端译码器无法成功译码,可靠性低;码率过低,造成通信资源浪费,效率低;无速率 码具有流属性,能源源不断发送编码比特,实现信道链路自适应匹配,能在保证通信可靠性 的前提下提高通信效率。其次,采用基于联合度数分集的无速率码动态译码方法可以大幅 度的提高无速率码的译码性能。
[0045] 本发明的有益效果是:本发明通过信号空间分集,联合无速率码的度数联合编码 调制映射,接收端采用动态译码规划,能够大幅度降低译码收敛的误码平台,更好地利用信 道LLR
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1