对来自发送信道的模拟信号,特别是通过电力线通信来运载的信号,进行处理的方法

文档序号:10660783阅读:307来源:国知局
对来自发送信道的模拟信号,特别是通过电力线通信来运载的信号,进行处理的方法
【专利摘要】本发明的各个实施例涉及对来自发送信道的模拟信号,特别是通过电力线通信来运载的信号,进行处理的方法。本发明提供了一种对来自发送信道的信道模拟信号进行处理的方法,该方法包括:信道模拟信号的模拟/数字转换(CAN);以及同步处理,该同步处理包括滤波处理(MFL),该滤波处理包括,从来自所述模拟/数字转换的信道数字信号(SNC)的自回归模型在时域中实时地确定预测滤波器的系数的受限数量,以及通过其系数是预测滤波器的系数的数字有限脉冲响应滤波器实时地对时域中的信道数字信号进行滤波;以及使用经滤波的信道数字信号(SNF)和参考信号(SREF)检测至少一个指示(IND),该至少一个指示允许识别所述帧结构中的至少一个位置。
【专利说明】
对来自发送信道的模拟信号,特别是通过电力线通信来运载 的信号,进行处理的方法
技术领域
[0001] 本发明的各个实施例及其实施方案涉及通信信道上的信息发送(transmit);并且 特别地,当此信道是电力线时,涉及通过电力线通信(或PLC)的信息发送;并且更具体地,涉 及当该信号受到窄带噪声信号(窄带干扰源)的影响时,改进在接收时对该等信号的处理。
【背景技术】
[0002] 本发明的各个实施例及其实施方案与对借助于电力线的通信进行规定的各种标 准相兼容,特别地但不局限于标准PLC-G3、PRIME(电力线智能计量演进)或者标准IEEE 190卜2〇
[0003] 电力线通信技术旨在通过充分利用电力网的现有基础设施来传输数字数据。值得 注意的是,该技术允许实现电表的远程读数、电动车辆与充电终端之间的交换、或者管理和 控制电力网(智能电网)。
[0004] 电力线通信(PLC)技术特别地并入了借助于窄带电力线通信的通信(或者N-PLC), 窄带电力线通信通常被定义为在不超过500KHZ的发送频率下操作的电力线上的通信。
[0005] 因此,N-PLC通信通常使用由欧洲电工标准委员会(CENELEC)或者联邦通信委员会 (FCC)特别限定的频带。
[0006] 因此,就CENELEC A频带(3-95kHz)而言,在PR頂E标准中其发送频率介于42KHZ与 89KHz之间,而对于PLC-G3标准该发送频率介于35KHz与91KHz之间。
[0007] 在这些频带中,通过电力线通信来运载信号的电缆处于非常恶劣的环境中。它们 特别地经受白噪声、有色噪声或者噪声脉冲类型的干扰。此外,它们没有受到针对任何干扰 的保护。出于此原因,任何FM/AM无线电信号或任何无线通信都可能导致,在窄带PLC通信所 使用的有用频带内存在这些信号的谐波。
[0008] 此外,电力网的性质和特性是事先未知的,并且随时间的推移可能发生变化。因 此,当用户连接任何给定设备(例如,吹风机或洗衣机)时,电力线上可能产生干扰。从而,这 样会导致强频率谐波的传播,该谐波可能也位于PLC通信的可用频带内。
[0009]因此,这种噪声信号(其通常是窄带噪声信号(窄带干扰源),换言之,具有比有用 信号的频带更小的频带)会干扰连接到电力线的接收器的同步阶段,在此期间,接收器必须 能够同步,以便特别地定位由该有用信号所运载的符号帧的有用数据的开端。
[0010] Brian Michael Donlan于2005年1月31日在美国弗吉尼亚州布莱克斯堡发表的题 为"Ultra-wideband Narrowband Interference Cancellation and Channel Modeling for Communications"的论文中描述了用于消除超宽带(UWB)信号中的窄带噪声信号(特别 是在频谱扩展(扩展频率)的情况下)的各种技术。
[0011] 本文中提及的一些技术使用了预测滤波器,从而,在从所接收的信号中减去噪声 信号之前,估计此噪声信号。
[0012] 本文中的提及的信号所呈现的特性,与采用电力线来通信的通信中所使用的信号 非常不同。实际上,UWB信号(以及,特别是采用直接序列扩展频谱的信号)呈现如下特性:将 所发送信号的功率扩展到宽的频带上,以便将该功率隐匿(bury)在环境噪声中或者在其他 通信内。因此,UWB信号的功率谱密度(或PSD)通常限定为小于-41 dBm/MHz。
[0013] PLC通信中所使用的信号是根据多载波调制被调制的信号,例如,正交载波上的正 交调制(0FDM调制:正交频分多路复用,根据本领域技术人员通用的术语),但是仅使用了可 用载波的较大集合中的载波子集。
[0014] 因此,例如,就CENELEC A频带而言,在PRIME标准中,反向傅里叶变换的和直接 (direct)傅里叶变换的大小等于512,而仅仅97个副载波(副载波86到182)用于发送。
[0015] 就CENELEC A频带而言,在PLC-G3标准中,反向傅里叶变换和直接傅里叶变换的大 小等于256,而仅仅使用了36个负载波(负载波23到58)。
[0016] 此外,在同步阶段期间,重要的是:不得丢失来自信道的任何符号,即便是在信道 受噪声影响的情况下。

【发明内容】

[0017] 根据一个实施例及其实施方案,提供了对来自发送信道的模拟信号的处理方法, 该处理方法使得能够改进同步阶段的性能特性,无论该模拟有用信号是否受来自至少一个 窄带噪声信号的噪声的影响。
[0018] 根据另一个实施例及其实施方案,本发明的目的也在于改进在同步之后对帧的剩 余部分的解码的性能特性。
[0019] 根据一个实施例及其实施方案,为了促进接收器的同步,特别是在有用信号受来 自至少一个窄带噪声信号的噪声的影响时,预测滤波器的系数将从信号的自回归模型在时 域中实时地确定,并且在时域中的由数字有限脉冲响应(或者FIR)滤波器对信号实时地滤 波,该数字有限脉冲响应滤波器的系数是预测滤波器的系数。
[0020] 因此,这与现有技术中的滤波方法不同,在现有技术中,在从来自信道的信号中减 去噪声信号之前,估计该噪声信号,这就需要在时间和相位两者上的完美同步,而这在实践 中难以实现,特别是在如下的相位同步的情况下,对于该相位同步而言重要的是:一方面不 得丢失任何符号,而另一方面不得引入相位误差。
[0021] 根据此实施例及其实施方案,替代了首先估计噪声信号然后减去所估计的噪声信 号,对来自信道的整个信号进行滤波,而无论该信号是否包含噪声信号,这就使得能够执行 非相干处理,换言之,在估计噪声信号的时刻与将此噪声信号从全局信号中减去的时刻之 间不需要时间和相位上的完美同步。
[0022] 因此,接收器将能够通过使用经滤波的信号和参考信号(例如,已知的信号)来同 步。
[0023] 根据一个方面,因此,提供了一种对来自发送信道(例如,电力线)的信道模拟信号 进行处理的方法。
[0024]信道模拟信号能够包括在可用载波的集合中的子集上调制的有用信号,例如,符 合PR頂E或G3-PLC标准的有用信号。
[0025]该有用信号根据帧结构运载至少一个符号帧,并且该有用信号可能受来自至少一 个窄带噪声信号的噪声的影响。
[0026]通常,噪声信号是包含在有用信号的频带内的单个频率下的噪声尖峰,但是,更一 般地,窄带噪声信号是其频带小于有用信号的频带的噪声信号。
[0027]因此,在给定时刻,信道模拟信号可能非常完美,不包括任何有用信号或者仅仅包 括至少一个噪声信号、或者无噪声的有用信号或者受噪声影响的有用信号。
[0028] 因此,根据此方面的方法包括:对信道模拟信号的模拟数字转换、以及包括滤波处 理的同步处理。
[0029] 例如,待经历该模拟/数字转换的信道模拟信号,可以是直接来自信道的模拟信 号,或者,在通常的情况下,是由连接到发送信道的模拟输入级(特别地,包括带通滤波器、 低通滤波器和放大器)提供的模拟信号。
[0030] 滤波处理包括:从来自所述模拟/数字转换的信道数字信号的自回归模型,在时域 上实时地确定预测滤波器的系数的受限数量;以及通过其系数是预测滤波器的系数的数字 有限脉冲响应滤波器,在时域上对信道数字信号实时地进行滤波。
[0031] 对其执行滤波处理的信道数字信号不一定是直接来自模拟/数字转换的数字信 号,而是可能例如是来自模拟/数字转换并且可能已经进行了欠采样的数字信号。
[0032] 在可用载波集合中的载波子集上调制的信号,与UWB信号或者具有扩展频谱的信 号的特性完全不同。实际上,它们确实特别地呈现比UWB信号或者具有扩展频谱的信号高得 多的功率水平,并且因此优选地在滤波期间采取预防措施,以便避免在不存在窄带噪声的 情况下完全滤掉有用信号。
[0033] 确实,特别鉴于可用载波集合(反向或直接傅里叶变换的大小)中的仅仅一些载波 用于调制,滤波器的系数数量优选地受限,以便避免在不存在噪声信号的情况下有用信号 衰减过高。
[0034] 换言之,滤波器的系数的数量有利地小于或等于所选择的受限数量,从而形成有 限脉冲响应滤波器;在存在噪声信号的情况下,该有限脉冲响应滤波器的频率响应包括在 噪声信号的频带下的点阻(notch);并且在不存在噪声信号的情况下,该有限脉冲响应滤波 器的频率响应在有用信号的频带中以如下方式具有相对平坦的轮廓,从而使得有用信号的 衰减能够小于所选值,例如6dB,该所选值无疑是取决于具体的应用的。
[0035] 系数的数量将进一步优选地等于该受限数量,以便更简便地将具有不同音调的可 能的若干窄带噪声信号纳入考量。
[0036]本领域技术人员将能够根据具体应用和所需特性来改变系数的受限数量,以便在 不存在噪声信号的情况下,提供有用信号的最大可接受衰减。
[0037] 但是,发明人已经发现,当每个符号都包括周期性前缀时,滤波器的系数的可接受 受限数量的数量级是以样本数量的形式表示的周期性前缀的长度的四分之三的数量级,并 且优选地一半的数量级。
[0038] 这里要回顾的是,周期性前缀主要使得能够消除符号间干扰,并且是一种包括复 制符号的一部分并且将其置于该符号的上游的技术。
[0039] 在实践中,得自信号的自回归模型的预测滤波器的极点成为有限脉冲响应滤波器 的零点。因此,FIR滤波器可以仅衰减与这些零点相对应的频率。
[0040]因此,以进一步限制有用信号在滤波期间的衰减的方式,有利的是:在信道数字信 号的最大频率的2到5倍(优选地,2到3倍)的范围内的处理频率下,计算预测滤波器的系数。
[0041] 这就使得从而有用信号能够被滤波器视作相对于噪声信号的一种白噪声,而如果 处理频率远高于信道数字信号的最大频率,则不可能出现这种情况。
[0042] 滤波器的系数以及滤波本身的确定,在时域中且实时地确定,换言之,随着信道模 拟信号的到达而渐进地(progress ively)确定。这就可能避免了丢失任何符号,无论该信号 是否受噪声影响。
[0043] 根据此方面的方法还包括:通过使用经滤波的信道数字信号和参考信号,来检测 至少一个指示,该指示使得能够识别所述帧结构中的至少一个位置。
[0044] 所述指示可以例如是从帧的前置(preamble)序列中对已知符号的识别,并且参考 信号可以是该已知符号,因此,该检测例如通过移动相关性操作来执行。
[0045] 根据一个实施例,对所述系数的所述实时的确定以及所述实时的滤波包括:将所 述数字信号的样本整理成连续的样本组,通过使用当前的样本组来确定当前的系数块,以 及将有限脉冲响应滤波器应用于所述当前组,该有限脉冲响应滤波器具有所述当前的系数 块,从而使得获得了经滤波的当前样本组。
[0046] 根据一个实施例,每个帧包括前置序列,该前置序列包括已知符号、并且在帧的剩 余部分之前,并且滤波处理被至少应用于,在至少一个帧的前置序列内检测所述至少一个 指示。
[0047] 当发送完全地异步时,换言之,当接收器不知道连续帧之间的时间间隔时,尤其有 利是:将滤波处理操作至少应用于检测每个帧的前置序列上的所述指示。
[0048] 对于经滤波的数字信号,无法得知,该经滤波的数字信号是受噪声影响的有用信 号、还是得自无噪声的有用信号。因此,尤其有利的是:在检测到所述指示之后,执行对噪声 信号是否存在的验证,例如,基于未经滤波的有用信号的至少一个已知符号。确实,这样将 使得能够改进对帧的其他符号的处理。
[0049] 该验证可以包括:对所述未经滤波的已知符号进行直接傅里叶变换处理,以及对 每个载波的功率的分析。
[0050] 该验证例如对前置序列的符号执行。
[0051] 之后,在不存在噪声信号的情况下,有利的是:帧的剩余部分的处理在未经滤波的 信道数字信号上执行,该处理使得能够对未经滤波(换言之,未衰减)的信号执行对帧的剩 余部分的符号的解码。
[0052]另一方面,在存在噪声信号的情况下,对帧的剩余部分的处理在对经滤波的信道 数字信号执行。
[0053]该剩余部分的处理包括直接傅里叶变换处理、对每个载波提供调制系数值(每个 符号分别包括与载波关联的调制系数或"仓")的解映射处理、以及对每个调制系数的所述 值的置信度指示符的确定(软判决)。因此特别有利的是,将与其频率与噪声信号的频率相 对应的载波相关联的调制系数的置信度指示符逼近零点。
[0054] 这样使得当使用了 Viterbi型的解交织器-解码器对(或者基于软判决的其他任何 解码器)时,解码的性能特性能够得到显著的改进。
[0055] 为了不过多地干扰解码,另外优选的是:在帧的剩余部分的处理期间,将滤波器的 系数的值冻结。
[0056] 根据另一个方面,提供了一种接收器,该接收器包括:
[0057] 输入级,该输入级被设计成连接到发送信道,并且被配置成递送来自发送信道的 信道模拟信号,该信道模拟信号能够包括可用信号,该可用信号在可用载波集合的子集上 进行调制、根据帧结构运载至少一个符号帧、并且可能受来自至少一个窄带噪声信号的噪 声的影响,
[0058] 模拟/数字转换级,该模拟/数字转换级用于执行信道模拟信号的模拟/数字转换, 以及
[0059]处理级,该处理级包括:滤波装置,该滤波装置包括计算模块,该计算模块被配置 成,从来自模拟/数字转换级的信道数字信号的自回归模型,实时地确定预测滤波器的系数 的受限数量;数字有限脉冲响应滤波器,该数字有限脉冲响应滤波器的系数是预测滤波器 的系数,用于在时域中实时地执行信道数字信号的滤波;以及检测装置,该检测装置被配置 成使用经滤波的数字信号和参考信号检测至少一个指示,该至少一个指示使得能够识别所 述帧结构中的至少一个位置。
[0060] 根据一个实施例,每个符号包括周期性前缀,并且滤波器的系数的数量小于或等 于受限数量,该受限数量的数量级是以样本数量的形式表示的周期性前缀的长度的四分之 三的数量级,并且优选地一半的数量级。
[0061] 根据一个实施例,计算模块被配置成,在所述信道数字信号的最大频率的2到5倍 (优选地,2到3倍)的范围内的处理频率下,计算预测滤波器的系数。
[0062]根据一个实施例,该处理级包括:整理装置,该整理装置被配置成将所述信道数字 信号的样本重组成连续的样本组;该计算模块被配置成使用当前的样本组来确定当前的系 数块;以及数字滤波器,该数字滤波器被配置成在输入处接收所述当前的样本组,从而递送 经滤波的当前的样本组。
[0063]根据一个实施例,每个帧包括前置序列,该前置序列包括已知符号、并且在帧的剩 余部分之前,并且该处理级包括控制装置,该控制装置被配置成将所述信道数字信号至少 递送给滤波装置,以便在至少一个帧的前置序列内检测所述至少一个指示。
[0064]根据一个实施例,该控制装置被配置成将所述信道数字信息至少递送给滤波装 置,以便检测装置在每个帧的前置序列内检测所述至少一个指示。
[0065]根据一个实施例,该接收器还包括验证装置,该验证装置被配置成,在检测到所述 至少一个指示之后,基于未经滤波的有用信号的至少一个符号,验证所述噪声信号是否存 在。
[0066]根据一个实施例,该验证装置包括:直接傅里叶变换级,该直接傅里叶变换级被配 置成对所述至少一个符号执行直接傅里叶变换处理;以及分析装置,该分析装置被配置成 执行每个载波的功率的分析。
[0067]根据一个实施例,该验证装置被配置成对来自前置序列的至少一个符号执行所述 验证。
[0068]根据一个实施例,该处理级还包括附加处理装置,该附加处理装置被配置成执行 所述每个帧的剩余部分的处理,并且在不存在噪声信号的情况下,该控制装置被配置成将 所述帧的剩余部分直接递送给该附加处理装置,而不经过滤波装置。
[0069]根据一个实施例,每个符号包括分别与载波相关联的调制系数,该附加处理装置 包括:直接傅里叶变换级;解映射装置,该解映射装置对每个载波提供所述调制系数的值; 以及确定模块,该模块能够对每个调制系数确定所述值的置信度指示符;以及强制装置,该 强制装置被配置成,在存在所述噪声信号的情况下,将与其频率与噪声信号的频率相对应 的载波相关联的调制系数的置信度指示符强制设置为零。
[0070] 根据一个实施例,该控制装置被配置成在所述帧的剩余部分的处理期间,禁用滤 波器的系数的计算模块(冻结滤波器的系数)。
[0071] 根据一个实施例,有用信号是根据0FDM调制进行调制的信号。
[0072]此外,发送信道可以是电力线,有用信号则可以是借助于电力线通信而运载的信 号。
[0073]根据另一个方面,独立于同步的应用,提供了一种来自发送信道的信道模拟信号 的滤波方法,该信道模拟信号能够包括有用信号,例如,在可用载波集合的子集上被调制的 有用信号,并且该有用信号可能受来自至少一个窄带噪声信号的噪声的影响,该方法包括: 信道模拟信号的模拟/数字转换;以及滤波处理,该滤波处理包括从来自所述模拟/数字转 换的信道数字信号的自回归模型,在时域上实时地确定预测滤波器的系数,以及通过其系 数是预测滤波器的系数的数字有限脉冲响应滤波器,在时域上对信道数字信号实时地进行 滤波。
[0074]有利的是:根据上文所述对系数的数量进行限定,并且/或者在信道数字信号的最 大频率的2到5倍(优选地,2到3倍)的范围内的处理频率下,计算预测滤波器的系数。
[0075]根据另一个方面,提供了一种接收器,该接收器被设计成连接到发送信道,并且包 括装置,例如上文限定的装置,该装置被配置成执行这样的滤波方法。
【附图说明】
[0076] 通过仔细阅读对本发明的非限定实施例及其实施方案的详细说明以及附图之后, 将清楚地了解本发明的其他优点和特征,在附图中:
[0077] 图1到图10是本发明的各个实施例及其实施方案的示意图。
【具体实施方式】
[0078] 现在,将在通过电力线通信(PLC)来进行信息发送的框架下,描述各个实施例及其 实施方案,但是,本发明并不限于这种类型的应用。
[0079]在以下说明部分中,每次以非限定示例的方式提及PLC-G3或PRME标准时,将假设 这是针对CENELEC A频带(3-95kHz)而言的。
[0080] 现在参见图1,以便示意性地示出发送器的一个示例,该发送器能够通过电力线通 信来在电力线LE上发送有用信号SU。
[0081] 例如,发送信道包括编码器ENC,例如,卷积型编码器,该编码器用于从源编码装置 接收待发送的数据。交织装置INTL连接到编码器的输出,该交织装置的后面是"映射"装置, 该映射装置依据变换方案来将位变换成符号,该变换方案取决于所使用的调制类型,例如, BPSK型的调制,或者更普遍地,QAM调制。
[0082] 每个符号包含与载波相关联的调制系数,这些载波将被相应地调制。符号提供在 处理装置MTFI的输入处,该处理装置被设计成执行反向快速傅里叶变换(IFFT)操作。
[0083] 更具体地,参见图2,应注意的是:经调制的载波形成可用载波集合ENS(该集合与 反向傅里叶变换的大小相对应)的载波子集SNS。
[0084]因此,在PLC-G3标准中,反向傅里叶变换的大小等于256,而子集SNS中的经调制的 载波被23至58的秩(rank)所包括,该秩与在35到91KHz的范围内的频带F1-F2相对应。此处 的采样频率等于400KHz,致使载波之间的间隔等于1.5625KHZ,因而使得频率正交((FDM调 制)。
[0085]在PRHffi标准中,反向傅里叶变换的大小等于512,而子集SNS中的载波的数量等于 97,这样就为有用信号提供了在42到89KHz之间延伸的频带。
[0086 ]与未使用的载波相关联的调制系数等于0。
[0087] 时域上的0FDM信号在处理装置MTFI的输出处生成,并且装置MCP向时域上的每个 0FDM符号在0FDM符号的报头中添加周期性前缀,该周期性前缀是位于该符号末尾的特定数 量的样本的副本。
[0088] 例如,在PLC-G3标准中,对于400KHz的样本频率,周期性前缀的长度是30个样本, 而在PRHffi标准中,对于250KHz的样本频率,该周期性前缀的长度是48个样本。
[0089]该信号随后在数字/模拟转换器CAN中转换,然后在级ETA中处理,该级通常被本领 域技术人员使用术语"模拟前端"表示,在该级中,对该信号特别地进行功率放大,然后在电 力线LE上发送。
[0090] 在接收中,更具体地,参见图3,可从图中看出,其中的接收器RCP包括模拟输入级 ET1,该模拟输入级ET1的输入端子BE连接到电力线LE。
[0091] 模拟输入级ET1通常包括带通滤波器BPF、低通滤波器LPF、以及放大装置AMP。级 ET1的输出连接到模拟/数字转换级CAN,该模拟/数字转换级的输出连接到处理级ET2的输 入。
[0092]此处的处理级ET2包括自动增益控制装置AGC,该自动增益控制装置使得级ET1的 放大装置AMP的增益值能够被控制。
[0093] 在模拟级ET1的输出处以及在模拟/数字转换级CAN的输入处提供的信号SAC,是指 来自发送信道(电力线)LE的信道模拟信号。
[0094] 作为非限定性示例,这样的信道模拟信号SAC的频谱如图4中示意性地图示。
[0095]可从图中看出,该信号SAC包括有用信号SU,该有用信号运载从发射器发射的数 据,并且该有用信号的频带位于与经调制的载波的数量相对应的频率F1与F2之间。
[0096]信号SAC还可能包括窄带噪声信号SB,该窄带噪声信号将可能干扰有用信号SU。
[0097] 通常,噪声信号SB包括位于频率F3下的单个音调。但在实践中,该噪声信号可能分 布在具有频率F3的载波上,并且也可能分布在若干相邻载波上。
[0098] 可以看出的是:信号SU是穹顶形的形状,在不存在信号的情况下,该穹顶的电平远 高于信道的AWGN噪声的电平。另一方面,噪声信号SB的电平高于有用信号SU的电平。
[0099] 现在重新参见图3,可以看出的是:处理级ET2还包括低通滤波器LPF2,后跟(尽管 不是独立的)欠采样装置MSCH。装置MSCH的上游的信号的采样频率用Fs表示,而装置MSCH的 输出处的信号的采样频率用Fss表示。
[0100]装置MSCH的输出处的信号SNC因此在此是指从信道模拟信号SAC的模拟/数字转换 得到的信道数字信号,并且如下文更详细地描述,该信道数字信号将特别地在滤波装置MSL 中进行滤波处理。
[0101] 在下一个部分中,频率Fc是指处理频率,在该处理频率下,将特别地计算滤波装置 MFL的滤波器的系数。
[0102] 例如,在G3-PLC标准中,对于256的FFT大小,指定的采样频率Fs是400KHZ。
[0103]尽管可以在等于400KHZ的采样频率Fs的处理频率Fc下执行所有滤波操作,但是在 小于Fs的频率Fss下对信号进行欠采样,并且在等于Fss的处理频率Fc下执行所有滤波操 作,使得能够减小处理级(特别是滤波装置)的执行复杂程度,并且也使得能够在相对于256 的指定大小的较小大小下执行直接快速傅里叶变换(FFT)处理。
[0104]更详细地回到滤波装置MFL的结构以及并入到处理级ET2中的其他装置之前,现在 更详细地参见图5,以便例如在PLC-G3标准的框架中,说明帧运载符号的结构。
[0105] 帧TRM包括前置序列PRM,该前置序列在此包括八个已知符号SYNCP,后跟反向 SYNCM符号,反向SYNCM符号自身后跟半符号SYNCM。
[0106] 帧TRM随后包括报头(前置序列)HD,后跟字段PLD,该字段包含待解码的有用数据, 该有用数据被本领域技术人员更熟知的术语是"有效载荷"。
[0107] 报头HD的符号特别地包含用于对字段PLD中的数据的解码的控制信息、以及待在 字段PLD中解码器的字节的数量。
[0108] 帧TRM的前置序列PRM使得接收器能够同步,换言之,待获取的指示,使得能够恢复 帧的结构以便能够识别报头HD的开端。
[0109]滤波装置MFL将至少在接收器的同步阶段期间使用,并且潜在地,如下文更详细地 描述,在证明存在噪声信号的情况下,可能在对帧TRM的剩余部分(报头和字段PLD)的解码 的阶段期间使用。
[0110]滤波装置MFL将从信道数字信号SNC的自回归模型,实时地确定预测滤波器的系 数,然后将通过数字有限脉冲响应滤波器,在时域中实时地对信道数字信号进行滤波,该数 字有限脉冲响应滤波器的系数是预测滤波器的系数。
[0111]如本领域技术人员所公知,信号可以通过使用自回归滤波器卷积的白噪声来进行 建模。该模型的参数(预测滤波器的系数以及预测误差的方差)可以基于信号的自协方差, 通过求解Yule Walker方程式来进行估计:
[0113]
是η阶自回归模型的预测滤波器的η个系数,并且是预测误差 的方差。符号*表示复共辄。
[0114]自协方差序列Rn+i = [r0 ri…rn]可以通过下式来进行估计:
[0116]其中y是输入信号的N个样本的序列。
[0117] 一般来说,N必须是足够大,以便包括信号的所有周期性内容,并且以便提供随机 的任何非周期性内容。
[0118]但是,在实践中,N可以等于符号的大小,可能是欠采样的,该符号的大小也与傅里 叶变换的大小相对应。
[0119] 存在用于求解Yule Walker方程的多种算法。可能被特别地提及的是:Levinson算 法,或者Durbin-Watson算法或者Burg算法,或者最小二乘法型的算法。
[0120] 出于此目的,本领域技术人员将特别地能够参考John G.Proakis发表的题为 "Digital Communications"(第3版)的书中的附件A的第879页,或者同一本书中的第11-4-2和 11_1_2 章。
[0121] 使用Levinson算法时,后者是例如根据以下顺序逐个计算系数的递归算法:
[0123] 对m = 〇至n重复:
[0124] Am+i = [rm+i ··· ri]Am
[0128] -旦确定预测滤波器的系数An,那么构建有限脉冲响应滤波器(FIR滤波器),该有 限脉冲响应滤波器在z中的传递函数由下式限定:
[01 29] 1+AlZ i+A2Z 2+A3Z 3H----
[0130] 在此公式中,FIR滤波器的系数An是上述的自回归模型的预测滤波器的系数An。
[0131] 有利的是:滤波器的系数集合是受限的,换言之,小于或等于受限数量,并且优选 地等于该受限数量。
[0132] 确实,特别是鉴于有用信号仅仅是在可用载波集合的载波子集上调制的这一事 实,滤波器的系数的数量过大可能导致在滤波期间,特别是在不存在噪声信号的情况下,存 在?目号装减过大的风险。
[0133] -般来说,该系数的受限数量由本领域技术人员选择,并且将具体的应用和规范 纳入考量,因此,如图6中示意性的图示,在存在窄带噪声信号的情况下,滤波器的频率响应 Η1具有在噪声信号的频率F3的邻域中的点阻,并且从而在不存在噪声信号的情况下,该滤 波器的频率响应Η2以这样的方式在有用信号的频带F1、F2中具有相对平坦的轮廓,从而获 得小于可接受的受限衰减的信号的衰减。
[0134] 该可接受的受限衰减取决于实施方案、以及各个处理装置支持的动态特性。本领 域技术人员将能够根据这些条件选择该可接受的受限衰减。
[0135] 但是,作为非限制性的示例,该可接受的受限衰减可以是约6dB级的。
[0136] 在实践中,为了满足该条件,例如,考虑到所使用的处理频率Fc,滤波器的系数的 数量的数量级可以选择为小于或等于以样本数量的形式表示的周期性前缀的长度的四分 之三的数量级,并且优选地一半的数量级。
[0137] 在PLC-G3标准中,对于400KHZ的采样频率Fs,周期性前缀的长度是30个样本。
[0138] 因此,对于PLC-G3标准,例如,可以选择等于15Fc/Fs的系数的数量。
[0139] 在实践中,如图7中所示,在时域上实时地执行的滤波处理包括对样本进行分组 (步骤70),从而形成N个样本的当前组GR。
[0140]之后,在步骤71中,通过针对在从0到系数数量的有限值之间变化的m,依据上述序 列,执行Levinson算法,来计算预测滤波器的系数。
[0141] 之后,在步骤72中,在时域上的N个样本的当前组GR使用有限脉冲响应滤波器进行 滤波,该有限脉冲响应滤波器的系数是刚刚计算得出的预测滤波器的系数。
[0142] 从而得出N个经滤波的样本的组GRF。
[0143] 此外,特别有利的是:滤波器的系数的处理频率Fc相对于信道数字信号(可能是欠 采样的信号)的最大频率而言不至于过高(等于频率Fs,或者在欠采样的情况下,等于频率 Fss) 〇
[0144] 确实,如果处理频率Fc相对于该最大频率而言过高,则信道数字信号将不被视作 相对于噪声信号的"白"噪声,并且可能存在有用信号的衰减过大的风险。
[0145] 因此,处理频率Fc可以在这样的范围内选择,信道数字信号的最大频率的2到5倍 (优选地,2到3倍),在该频率下计算滤波器的系数。
[0146] 在实践中,如图8中所示,滤波装置MFL功能性地包括:装置MGR,该装置MGR被配置 成将样本整理成样本组;模块MCL,该模块MCL用于计算预测滤波器的系数;以及模块FIR,该 模块执行有限脉冲响应滤波器。
[0147] 在实践中,这些各个装置和模块可以例如由微处理器内的软件来实施。
[0148] 再次更具体地参见图3,可从图中看出:滤波装置MFL提供的经滤波的数字信号SNF 特别地被同步装置MSYNC使用,该同步装置具有本身已知的传统结构,以便使得接收器RCP 能够同步,换言之,例如,以如下的方式识别帧的结构及其定时,从而能够正确地解码报头 HD和字段PLD。
[0149] 更确切地说,同步装置MSYNC执行经滤波的数字信号SNF与参考信号SREF之间的移 动相关性处理操作,在当前情况下,参考信号SREF是帧的已知符号,例如前置序列的已知符 号,诸如符号SYNCP。
[0150]在此处所描述的示例中,代表帧结构以及已应用的同步的指示IND,将例如是前置 序列的最后一个符号SYNCP与符号SYNCM之间的转变的发生。
[0151] 该指示IND将发送到处理级ET2的附加处理装置MTRS,从而使得能够解码帧的字段 PLD和报头HD的符号。
[0152] 但是,通过简单地观测经滤波的数字信号,难以或者甚至不可能知道,该经滤波的 数字信号是来自受噪声影响的有用信号,还是来自无噪声的有用信号。
[0153] 尽管如此,如下文更详细的描述,特别有利的是:知道该信息,从而进一步改进帧 的剩余部分的解码的性能特性。
[0154] 出于此目的,处理级ET2包括验证装置MVRF,该验证装置被配置成,一旦已经执行 同步,验证有用信号内是否存在噪声信号。
[0155] 更确切地说,该验证将对未经滤波的信道数字信号SNC的前置序列执行,更具体地 说,对前置序列的一个符号(例如,未经滤波的符号SYNCP)执行。
[0156]如图9中所示,在步骤86中,以这样的方式执行直接快速傅里叶变换FFT,从而执行 从时域到频域的变换,之后,在步骤91中,对在傅里叶变换的输出处获取的频谱线执行功率 分析。
[0157]出于此目的,在步骤92中,检验特定频率线是否有大于固定阈值TH的功率或电平。 [0158]如果频谱中的频率线均没有大于阈值TH的电平,则应得出结论:信道数字信号SNC 内不存在噪声信号SB。
[0159] 在相反的情况下,如果至少一条线具有大于阈值ΤΗ的功率,则得出结论:存在窄带 噪声信号SB。
[0160] 此外,该分析还使得能够得知噪声信号的频谱中的位置,换言之,哪些是相关的 仓。
[0161]因此,如图3中示意性的图示,验证装置MVRF包括装置MTFD,该装置被配置成与分 析装置MAL-起,执行直接傅里叶变换处理。在实践中,此处的这些装置可以也由例如微处 理器内的软件实施。
[0162] 此外,从下文中可以看出,有利的是:装置MTFD是在附加处理装置MTRS内已存在的 装置。
[0163] 对于接下来的处理部分,换言之,帧的剩余部分的符号的解码,如果上述验证的结 果是该信号SNC实际上不受来自窄带噪声信号SB的噪声的影响,则帧的剩余部分的符号的 解码将对未经滤波的信道数字信号SNC执行。另一方面,如果验证显示存在噪声信号,则帧 的剩余部分的处理将继续对由滤波装置MFL提供的经滤波的数字信号SNF执行。
[0164] 出于此目的,此处说明性地对应于多路复用器MUX的控制装置,将启用或禁用滤波 装置MFL,以执行帧的剩余部分的后续处理;该多路复用器受信号SC控制,该信号由连接到 验证装置MVRF的输出的控制模块MC提供、并且代表是否存在噪声信号。
[0165] 控制模块可以例如由逻辑电路构成,或者可以由软件实施。
[0166] 更确切地说,如图3中示意性地图示,在不存在噪声信号的情况下,信道数字信号 SNC直接递送给附加处理装置MTRS,而在存在噪声信号SB的情况下,经滤波的数字信号SNF 递送给附加处理装置MTRS。
[0167] 现在更具体地参见图10,可从图中看出:这些补充的处理装置MTRS包括装置MCPR, 该装置MCPR被配置成从每个符号提取周期性前缀,后跟装置Μ??),该装置Μ??)被配置成执 行直接快速傅里叶变换FFT。
[0168] 装置MIFD后跟解映射装置DMP,该解映射装置DMP为每个载波提供调制系数(仓)的 对应值。这些解映射装置DMP后跟模块MCSM,该模块MCSM被配置成针对每个调制系数确定所 述值的置信度指示符("软判决")。该模块是传统且本身已知的模块,使用例如LogMAP型算 法。
[0169] 附加处理装置MTRS还包括解交织装置DINTL,该解交织装置DINTL后跟解码器DCD, 例如,该解码器DCD是Viterbi型解码器,后跟能够执行奇偶检测的装置CRC。装置CRC的输出 连接到装置MTRS的输出端子BS,该输出端子BS连接到形成接收器的MAC层的装置。
[0170]附加处理装置MTRS在输入处接收经滤波的数字信号时,换言之,在信道数字信号 SNC上存在噪声信号的情况下,特别有利的是:将与其上存在噪声信号的仓相关联的置信度 指示符(软判决)、以及可能与邻域仓相关联的置信度指示符,设置成零。确实,该等零软判 决被视作在V i t erb i解码器中实施的纠错算法的中性判决。
[0171 ]这样使得能够进一步改进解交织器-解码器对的解码的性能。
[0172]出于此目的,处理装置MTRF包括强制装置MFC,该强制装置MFC被配置成执行此强 制设置到零。
[0173]再次重申,在实践中,附加处理装置MTRS的所有这些装置和模块可以由微处理器 内的软件来实施。
[0174]此外,为了在启用了滤波装置MFL的情况下不干扰帧的剩余部分的解码,优选的是 针对要固定的FIR滤波器的系数对帧的剩余部分进行解码,换言之,不与帧的剩余部分的解 码一起渐进地更新FIR滤波器的系数。
[0175] 出于此目的,控制模块MC可以向计算模块MCL提供信号SCI,以冻结滤波器的系数。
[0176] 根据本发明的一个方面,因此,可以显著地改进同步阶段的性能以及帧的符号的 解码的性能,特别是在存在窄带噪声信号的情况下,这些窄带噪声信号的电平可以高达高 于有用0FDM信号的电平50到60dB,而当前标准只要求在存在电平仅超出有用信号20dB的噪 声信号的情况下,进行稳健的解码。
【主权项】
1. 一种对来自发送信道的信道模拟信号进行处理的方法,所述信道模拟信号(SAC)能 够包括在可用载波的集合的子集上被调制的有用信号(SU),所述有用信号根据帧结构运载 至少一个符号帧、并且可能受来自窄带中的至少一个噪声信号(SB)的噪声的影响, 所述方法包括: 所述信道模拟信号的模拟/数字转换(CAN);以及 同步处理,所述同步处理包括: 滤波处理(MFL),所述滤波处理包括:从来自所述模拟/数字转换的信道数字信号(SNC) 的自回归模型,在时域中实时地确定预测滤波器的系数的受限数量;以及通过其系数是所 述预测滤波器的系数的数字有限脉冲响应滤波器,在时域中对所述信道数字信号实时地进 行滤波;以及 通过使用经滤波的信道数字信号(SNF)和参考信号(SREF),检测至少一个指示(IND), 所述至少一个指示允许识别所述帧结构中的至少一个位置。2. 根据权利要求1所述的方法,其中每个符号包括周期性前缀,并且所述滤波器的所述 系数的数量小于或等于受限数量,该受限数量的数量级是以样本数量的形式表示的所述周 期性前缀的长度的四分之三的数量级,并且优选地一半的数量级。3. 根据权利要求1或2所述的方法,其中在所述信道数字信号(SNC)的最大频率的2到5 倍的范围内的处理频率下,优选地2到3倍的范围内的处理频率下,计算所述预测滤波器的 所述系数。4. 根据前述权利要求中的任一项所述的方法,其中对所述系数的所述实时的确定以及 所述实时的滤波包括: 将所述数字信号的样本整理(70)成连续的样本组(GR), 通过使用当前的样本组,来确定(71)当前的系数块,以及 将具有所述当前的系数块的所述有限脉冲响应滤波器应用(72)于所述当前组,从而获 得经滤波的当前样本组(GRE)。5. 根据前述权利要求中的任一项所述的方法,其中 每个帧包括前置序列(PRM),所述前置序列包括已知符号、并且位于所述帧的剩余部分 (HD、PLD)之前,并且 所述滤波处理被至少应用于,在至少一个帧的所述前置序列内检测到所述至少一个指 不。6. 根据权利要求5所述的方法,其中,所述滤波处理至少应用于,在每个帧的所述前置 序列内检测所述至少一个指示(IND)。7. 根据前述权利要求中的任一项所述的方法,所述方法还包括,在检测到所述至少一 个指示之后,基于未经滤波的有用信号的至少一个符号,来验证(MVRF)所述噪声信号是否 存在。8. 根据权利要求7所述的方法,其中所述验证包括对所述至少一个符号(SYNCP)的直接 傅里叶变换处理(90)、以及每个载波的功率的分析(91)。9. 根据与权利要求5或6相结合的权利要求7或8所述的方法,其中所述验证是对所述前 置序列的至少一个符号(SYNCP)执行。10. 根据权利要求9所述的方法,所述方法还包括对每个帧的所述剩余部分的处理,并 且其中在不存在所述噪声信号的情况下,对未经滤波的信道数字信号执行所述帧的所述剩 余部分的所述处理(MTRS)。11. 根据权利要求9所述的方法,其中每个符号包括分别与所述载波相关联的调制系 数,并且所述方法还包括:在存在所述噪声信号的情况下,对所述经滤波的信道数字信号执 行所述帧的所述剩余部分的处理(MTRS),并且包括:直接傅里叶变换处理;解映射处理,所 述解映射处理对每个载波提供所述调制系数的值;以及对每个调制系数确定所述值的置信 度指示符;以及将与其频率与所述噪声信号的频率相对应的载波相关联的所述调制系数的 所述置信度指示符强制设置为零。12. 根据权利要求11所述的方法,其中,所述滤波器的所述系数的所述值在所述帧的所 述剩余部分的所述处理期间被冻结。13. 根据前述权利要求中的任一项所述的方法,其中,所述有用信号是根据OFDM调制进 行调制的信号。14. 根据前述权利要求中的任一项所述的方法,其中,所述发送信道是电力线(LE),并 且所述有用信号是通过电力线通信运载的信号。15. -种接收器,所述接收器包括: 输入级(ET1),所述输入级被设计成连接到发送信道(LE),并且被配置成递送来自所述 发送信道的信道模拟信号(SAC),所述信道模拟信号能够包括在可用载波的集合的子集上 被调制的有用信号(SU),所述有用信号根据帧结构运载至少一个符号帧、并且可能受来自 窄带中的至少一个噪声信号(SB)的噪声的影响; 模拟/数字转换级(CAN),所述模拟/数字转换级用于执行所述信道模拟信号的模拟/数 字转换;以及 处理级(ET2),所述处理级包括 滤波装置(MFL),所述滤波装置包括: 计算模块(MCL),所述计算模块被配置成从来自所述模拟/数字转换的信道数字信号 (SNC)的自回归模型,实时地确定预测滤波器的系数的受限数量,以及 数字有限脉冲响应滤波器(FIR),所述数字有限脉冲响应滤波器的系数是所述预测滤 波器的系数,用于在时域中对所述信道数字信号实时地进行滤波,以及 检测装置(MSYNC),所述检测装置被配置成,通过使用经滤波的信道数字信号(SNF)和 参考信号(SREF),检测至少一个指示(IND),所述至少一个指示允许识别所述帧结构中的至 少一个位置。16. 根据权利要求15所述的接收器,其中每个符号包括周期性前缀,并且所述滤波器的 系数的数量小于或等于受限数量,所述受限数量是以样本数量的形式表示的所述周期性前 缀的长度的大约四分之三,优选地大约一半。17. 根据权利要求15或16所述的接收器,其中,所述计算模块(MCL)被配置成,在所述信 道数字信号的最大频率的2到5倍的范围内的处理频率下,优选地2到3倍的范围内的处理频 率下,计算所述预测滤波器的系数。18. 根据权利要求15到17中的任一项所述的接收器,其中所述滤波装置包括:整理装置 (MGR),所述整理装置被配置成将所述信道数字信号的样本组合成连续的样本组;所述计算 模块(MCL),被配置成使用当前的样本组来确定当前的系数块;以及数字滤波器(FIR),所述 数字滤波器被配置成在输入处接收所述当前的样本组,从而递送经滤波的当前的样本组。19. 根据权利要求15到18中的任一项所述的接收器,其中 每个帧包括前置序列(PRM),所述前置序列包括已知符号、并且位于所述帧的剩余部分 之前,并且 所述处理级(ET2)包括控制装置(MC、MUX),所述控制装置被配置成将所述信道数字信 号至少递送给所述滤波装置,以便在至少一个帧的所述前置序列内检测所述至少一个指 不。20. 根据权利要求19所述的接收器,其中所述控制装置(MC、MUX)被配置成将所述信道 数字信息至少递送给所述滤波装置,以便所述检测装置在每个帧的所述前置序列内检测到 所述至少一个指示。21. 根据权力要求19或20所述的接收器,所述接收器还包括验证装置(MVRF),所述验证 装置被配置成,在检测到所述至少一个指示(IND)之后,基于未经滤波的有用信号的至少一 个符号,验证所述噪声信号是否存在。22. 根据权利要求21所述的接收器,其中,所述验证装置包括:直接傅里叶变换级 (MTFD),所述直接傅里叶变换级被配置成对所述至少一个符号执行直接傅里叶变换处理; 以及分析装置(MAL),所述分析装置被配置成执行每个载波的功率的分析。23. 根据与权利要求19或20相结合的权利要求21或22所述的接收器,其中所述验证装 置(MVRF)被配置成对所述前置序列的至少一个符号执行所述验证。24. 根据权利要求23所述的接收器,其中所述处理级(ET2)还包括附加处理装置 (MTRS),所述附加处理装置被配置成执行对每个帧的所述剩余部分的处理,并且在不存在 所述噪声信号的情况下,所述控制装置(MC、MUX)被配置成将所述帧的所述剩余部分直接递 送给所述附加处理装置(MTRS),而不经过所述滤波装置(MFL)。25. 根据权利要求23所述的接收器,其中,每个符号包括分别与所述载波相关联的调制 系数,所述处理级还包括附加处理装置,所述附加处理装置被配置成执行对每个帧的所述 剩余部分的处理,所述附加处理装置(MTRS)包括:直接傅里叶变换级(MTFD);解映射装置 (DMP),所述解映射装置对每个载波提供所述调制系数的值;以及模块(MCSM),所述模块能 够对每个调制系数确定所述值的置信度指示符;以及强制装置(MFC),所述强制装置被配置 成,在存在所述噪声信号的情况下,将与其频率与所述噪声信号的频率相对应的载波相关 联的所述调制系数的置信度指示符强制设置为零。26. 根据权利要求25所述的接收器,其中,所述控制装置(MC)被配置成,在所述帧的所 述剩余部分的所述处理期间,禁用用于计算所述滤波器的所述系数的所述模块(MCL)。27. 根据权利要求15到26中的任一项所述的接收器,其中,所述有用信号是根据OFDM调 制被调制的信号。28. 根据权利要求15到27中的任一项所述的接收器,其中,所述发送信道是电力线 (LE),所述有用信号是通过电力线通信运载的信号。
【文档编号】H04L25/03GK106027439SQ201510860006
【公开日】2016年10月12日
【申请日】2015年11月30日
【发明人】M·瓦利斯, Y·布夫特, P·德马雅
【申请人】意法半导体(鲁塞)公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1