检测电路、电源电路及照明装置制造方法

文档序号:8072952阅读:101来源:国知局
检测电路、电源电路及照明装置制造方法
【专利摘要】本发明提供一种能够利用简单电路来辨别导通角控制的有无及导通角控制的种类的检测电路、电源电路及照明装置。根据实施方式,提供一种检测电路,其包括第1比较器及第2比较器、以及辨别部。第1比较器包括:第1输入端子,其用于输入第1检测用电压;第2输入端子,其用于输入第1阈值电压;以及第1输出端子,其输出第1输出信号。第2比较器包括:第3输入端子,其用于输入第2检测用电压;第4输入端子,其用于输入高于第1阈值电压的第2阈值电压;以及第2输出端子,其输出第2输出信号。辨别部根据第1输出信号与第2输出信号的时间差,辨别交流电压的导通角控制的有无、以及导通角控制是相位控制方式还是反相位控制方式。
【专利说明】检测电路、电源电路及照明装置

【技术领域】
[0001] 本发明的实施方式涉及一种检测电路、电源电路及照明装置。

【背景技术】
[0002] 存在一种检测电路,其检测交流电压的导通角控制的有无及导通角控制的种 类。存在一种电源电路,其包含检测电路,进行根据检测电路的检测结果的控制,并将电 力供给至负载。这种电源电路例如可用于照明装置,所述照明装置包括含有发光二极管 (Light-emitting diode,LED)等照明光源的照明负载。人们期望在检测电路中,能够利用 更简单的电路来辨别导通角控制的有无及导通角控制的种类。
[0003] [现有技术文献]
[0004] [专利文献]
[0005] [专利文献1]美国专利申请公开第2011/0012530号说明书


【发明内容】

[0006] 本发明的实施方式提供一种能够利用更简单的电路来辨别导通角控制的有无及 导通角控制的种类的检测电路、电源电路及照明装置。
[0007] 根据本发明的实施方式,提供一种检测电路,其包括第1比较器(comparator)、第 2比较器及辨别部。所述第1比较器包括:第1输入端子,其用于输入基于交流电压而形成 的交流或脉动流(pulsating flow)的第1检测用电压;第2输入端子,其用于输入第1阈 值电压;以及第1输出端子,其输出具有第1状态及第2状态的第1输出信号,所述第1状 态表示所述第1检测用电压未达所述第1阈值电压,所述第2状态表示所述第1检测用电 压为所述第1阈值电压以上。所述第2比较器包括:第3输入端子,其用于输入基于所述交 流电压而形成的交流或脉动流的第2检测用电压;第4输入端子,其用于输入高于所述第1 阈值电压的第2阈值电压;以及第2输出端子,其输出具有第3状态及第4状态的第2输出 信号,所述第3状态表示所述第2检测用电压未达所述第2阈值电压,所述第4状态表示所 述第2检测用电压为所述第2阈值电压以上。所述辨别部根据所述第1输出信号与所述第 2输出信号的时间差,辨别所述交流电压的导通角控制的有无、及所述导通角控制是相位控 制方式还是反相位控制方式。
[0008] [发明的效果]
[0009] 本发明提供一种能够利用更简单的电路来辨别导通角控制的有无及导通角控制 的种类的检测电路、电源电路及照明装置。

【专利附图】

【附图说明】
[0010] 图1是示意性地表示实施方式的照明装置的方框图。
[0011] 图2是示意性地表示实施方式的电源电路的电路图。
[0012] 图3(a)?图3(d)是示意性地表示实施方式的控制部的动作的图表。
[0013] 图4(a)?图4(d)是示意性地表示实施方式的控制部的动作的图表。
[0014] 图5(a)?图5(d)是示意性地表示实施方式的控制部的动作的图表。
[0015] [符号的说明]
[0016] 2:交流电源
[0017] 3:调光器
[0018] 4、5、6、7、8、30a、30b、30c、30d :端子
[0019] 10:照明装置
[0020] 12:照明负载(负载)
[0021] 14:电源电路
[0022] 16:照明光源
[0023] 20:电力转换部
[0024] 21 :控制部
[0025] 22:控制用电源部
[0026] 23:电流调整部
[0027] 24 :分支路径
[0028] 25 :电源供给路径
[0029] 26:滤波电容器
[0030] 28:检测电路
[0031] 30:整流电路
[0032] 32:平滑电容器
[0033] 34 :直流电压转换部
[0034] 40 :配线部
[0035] 40a、40b :配线
[0036] 41、42、43 :整流元件
[0037] 44、45、61、71、72、73、74、75、76 :电阻
[0038] 46、47:电容器
[0039] 48 :调节器
[0040] 50 :齐纳二极管
[0041] 51 :半导体元件
[0042] 51D :漏极电极
[0043] 51G:栅极电极
[0044] 51S :源极电极
[0045] 62 :开关元件
[0046] 81 :第1比较器
[0047] 81a :第1输入端子
[0048] 81b :第2输入端子
[0049] 81c :第1输出端子
[0050] 82 :第2比较器
[0051] 82a :第3输入端子
[0052] 82b :第4输入端子
[0053] 82c:第2输出端子
[0054] 83 :辨别部
[0055] CGS、CTL:控制信号
[0056] LE1 :第1输出信号S1的上升边缘
[0057] LE2 :第2输出信号S2的上升边缘
[0058] MT1 :第1微小时间
[0059] MT2:第2微小时间
[0060] MT3:第3微小时间
[0061] VCT:交流电压
[0062] Vdet:检测用电压
[0063] VDC、VRE:直流电压
[0064] VDD:驱动电压
[0065] Vthl :第1阈值电压
[0066] Vth2 :第2阈值电压
[0067] VIN:电源电压
[0068] S1 :第1输出信号
[0069] S2 :第2输出信号
[0070] t:时间
[0071] TE1 :第1输出信号S1的下降边缘
[0072] TE2 :第2输出信号S2的下降边缘
[0073] Toff:遮断区间
[0074] Ton :导通区间
[0075] 八七1:第1时间差
[0076] Λ t2:第2时间差

【具体实施方式】
[0077] 以下,一面参照附图,一面说明各实施方式。
[0078] 再者,附图是示意图或概念图,各部分的厚度与宽度的关系、部分间的大小的比率 等不一定与实际情况相同。并且,即使在表示相同部分的情况下,也存在彼此的尺寸或比率 因附图而进行不同表示的情况。
[0079] 再者,在本申请说明书及各图中,对关于已出现的图的与前述事物相同的要素标 注相同的符号,并适当省略详细说明。
[0080] 图1是示意性地表示实施方式的照明装置的方框图。
[0081] 如图1所示,照明装置10包括照明负载12(负载)及电源电路14。照明负载12 例如包括发光二极管(LED)等照明光源16。照明光源16例如也可以为有机发光二极管 (Organic light-emitting diode, 0LED)等。
[0082] 电源电路14与交流电源2及调光器3连接。再者,在本申请说明书中,所述"连 接",是指电性连接,也包括不进行物理性连接的情况或经由其它要素来连接的情况。
[0083] 交流电源2例如为商用电源。调光器3自交流电源2的交流的电源电压VIN生成 经导通角控制的交流电压VCT。电源电路14将自调光器3供给的交流电压VCT转换为直流 电压VDC并输出至照明负载12,藉此使照明光源16点灯。并且,电源电路14与经导通角控 制的交流电压VCT同步地,进行照明光源16的调光。再者,调光器3是视需要来设置,可以 省略。当未设置调光器3时,将交流电源2的电源电压VIN供给至电源电路14。
[0084] 调光器3的导通角控制中,例如存在相位控制(leading edge)方式及反相位控制 (trailing edge)方式,所述相位控制方式是控制在自交流电压的零交叉(zero cross)起 至交流电压的绝对值变为最大值的期间进行导通的相位,所述反相位控制方式是控制在自 交流电压的绝对值变为最大值起至交流电压进行零交叉的期间进行遮断的相位。
[0085] 进行相位控制的调光器3的电路构成简单,可处理比较大的电力负载。但是,当使 用三端双向可控硅开关元件(triac)时,轻负载动作困难,如果产生电源电压暂时下降的 所谓电源下降(dip),则容易陷入不稳定动作。并且,在连接电容性负载时,会产生涌入电流 (inrush current),因此具有与电容性负载的兼容性差等的特征。
[0086] 另一方面,进行反相位控制的调光器3即使为轻负载也可以进行动作,即使连接 电容性负载也不会产生涌入电流,并且即使产生电源下降,动作也稳定。但是,电路构成复 杂,温度容易上升,因此不适于重负载。并且,具有连接电感性负载时产生电涌(surge)等 的特征。
[0087] 在本实施方式中,作为调光器3,例示了串联地插入于用于供给电源电压VIN的一 对电源线中的一条电源线的端子4、端子6之间的构成,但是也可以为其它构成。
[0088] 电源电路14包括电力转换部20、控制部21、控制用电源部22及电流调整部23。 电力转换部20将经由电源供给路径25而供给的交流电压VCT转换为与照明负载12对应 的规定电压值的直流电压VDC,并供给至照明负载12。
[0089] 控制用电源部22包括与电源供给路径25连接的配线部40。配线部40包括:配 线40a,其与输入端子4连接;以及配线40b,其与输入端子5连接。控制用电源部22将经 由配线部40而输入的交流电压VCT转换为与控制部21对应的直流的驱动电压VDD,并将所 述驱动电压VDD供给至控制部21。
[0090] 电流调整部23包含与电源供给路径25电性连接的分支路径24,可对导通状态与 非导通状态进行切换,所述导通状态是使流经电源供给路径25的电流的一部分流入至分 支路径24的状态,所述非导通状态是使流经电源供给路径25的电流的一部分不流入至分 支路径24的状态。由此,电流调整部23例如对流入至电源供给路径25的电流进行调整。 在本例中,电流调整部23的分支路径24经由控制用电源部22而与电源供给路径25连接。 分支路径24也可以不经由控制用电源部22,而直接连接于电源供给路径25。再者,在非导 通状态下,也包含对动作无影响的微小电流流入至分支路径24的情况。非导通状态例如是 流入至分支路径24的电流小于导通状态的状态。
[0091] 控制部21检测交流电压VCT的导通角。控制部21生成与检测到的导通角相对应 的控制信号CTL,并将所述控制信号CTL输入至电力转换部20。电力转换部20生成具有与 所输入的控制信号CTL相对应的电压值的直流电压VDC。即,控制部21对利用电力转换部 20转换为直流电压VDC进行控制。并且,控制部21根据检测到的导通角而生成控制信号 CGS,并将所述控制信号CGS输入至电流调整部23,藉此控制电流调整部23的导通状态与非 导通状态之间的切换。如上所述,控制部21根据检测到的导通角来控制电力转换部20及 电流调整部23,藉此与调光器3的导通角控制同步地,对照明光源16进行调光。在控制部 21中,例如可使用微处理器(micro processor)。
[0092] 并且,在控制部21中,设置有检测电路28。检测电路28检测交流电压VCT的导通 角控制的有无及导通角控制的种类。检测电路28检测交流电压VCT的导通角控制是相位 控制还是反相位控制。即,检测电路28检测是否连接有调光器3。并且,当连接有调光器3 时,检测所述调光器3是进行相位控制的调光器还是进行反相位控制的调光器。交流电压 VCT的导通角的检测例如是根据检测电路28的检测结果来进行。控制部21根据检测电路 28所检测到的导通角控制的有无及所述导通角控制的种类,控制电力转换部20及电流调 整部23。
[0093] 图2是示意性地表示实施方式的电源电路的电路图。
[0094] 如图2所示,电力转换部20包括整流电路30、平滑电容器32及直流电压转换部 34。
[0095] 整流电路30例如由二极管电桥(diode bridge)所构成。整流电路30的输入端 子30a、输入端子30b与一对输入端子4、输入端子5连接。对整流电路30的输入端子30a、 输入端子30b,经由调光器3而输入经相位控制或经反相位控制的交流电压VCT。整流电 路30例如对交流电压VCT进行全波整流,并使全波整流后的脉动流电压产生于高电位端子 30c与低电位端子30d之间。
[0096] 平滑电容器32连接于整流电路30的高电位端子30c与低电位端子30d之间。平 滑电容器32使藉由整流电路30而整流的脉动流电压变得平滑。由此,在平滑电容器32的 两端,出现直流电压VRE (第1直流电压)。
[0097] 直流电压转换部34连接于平滑电容器32的两端。由此,将直流电压VRE输入至 直流电压转换部34。直流电压转换部34将直流电压VRE转换为电压值不同的直流电压 VDC(第2直流电压),并将所述直流电压VDC由电源电路14的输出端子7、输出端子8输 出。照明负载12与输出端子7、输出端子8连接。照明负载12藉由自电源电路14供给的 直流电压VDC,而使照明光源16点灯。
[0098] 直流电压转换部34与控制部21连接。控制部21对直流电压转换部34输入控制 信号CTL。直流电压转换部34例如根据控制信号CTL,使直流电压VRE压降。由此,直流电 压转换部34例如将直流电压VRE转换为与照明负载12的规格或调光器3的调光度相对应 的直流电压VDC。
[0099] 直流电压转换部34例如包含场效晶体管(Field Effect Transistor, FET)等开 关元件,藉由使开关元件接通(on)与断开(off)而使直流电压VRE压降。控制部21例如将 规定开关元件的接通与断开的时序(timing)的占空信号(duty signal)作为控制信号CTL 而输入至直流电压转换部34。由此,可将直流电压VDC的电压值调整为与控制信号CTL的 占空比相对应的值。直流电压转换部34例如为降压型的直流电(direct current,DC)-直 流电转换器(converter)。
[0100] 电源电路14更包含滤波电容器(filter condenser) 26。滤波电容器26连接于输 入端子4、输入端子5之间。即,滤波电容器26与电源供给路径25相连接。滤波电容器26 例如去除交流电压VCT中所含的噪声(noise)。
[0101] 控制用电源部22包括整流元件41?整流元件43,电阻44、电阻45,电容器46、电 容器47,调节器(regulator) 48,齐纳二极管(zener diode) 50及半导体元件51。
[0102] 整流元件41、整流元件42例如为二极管。整流元件41的阳极(anode)经由配线 40a连接于整流电路30的一个输入端子30a。整流元件42的阳极经由配线40b连接于整 流电路30的另一个输入端子30b。
[0103] 对于半导体元件51,例如可使用场效晶体管或氮化镓高电子迁移率晶体管 (GaN-High Electron Mobility Transistor,GaN-HEMT)等。以下,将半导体兀件 51 设为 场效晶体管进行说明。在本例中,半导体元件51是增强型(enhancement type)的η沟道 (channel)场效晶体管。半导体元件51包含源极(source)电极51S、漏极(drain)电极 51D及栅极(gate)电极51G。漏极电极51D的电位设定为高于源极电极51S的电位。栅极 电极51G用于对第1状态及第2状态进行切换,所述第1状态是电流流入至源极电极51S 与漏极电极51D之间的状态,所述第2状态是流入至源极电极51S与漏极电极51D之间的 电流小于第1状态的状态。在第2状态下,电流实质上不流入至源极电极51S与漏极电极 51D之间。半导体元件51既可为p沟道型,也可为耗尽(cbpletion)型。例如,当将半导 体元件51设为p沟道型时,漏极电极51D成为第1主电极,源极电极51S成为第2主电极。 艮P,在P沟道型的情况下,源极电极51S的电位设定为高于漏极电极51D的电位。
[0104] 半导体元件51的漏极电极51D连接于整流元件41的阴极(cathode)及整流元件 42的阴极。即,半导体元件51的漏极电极51D经由整流元件41、整流元件42而连接于电 源供给路径25。半导体元件51的源极电极51S连接于电阻44的一端。半导体元件51的 栅极电极51G连接于齐纳二极管50的阴极。并且,半导体元件51的栅极电极51G经由电 阻45而连接于整流电路30的高电位侧的输出端子即高电位端子30c。
[0105] 电阻44的另一端连接于整流元件43的阳极。整流元件43的阴极连接于电容器 46的一端及调节器48的一端。调节器48的另一端连接于控制部21及电容器47的一端。
[0106] 伴随着交流电压VCT的施加而产生的一个极性的电流经由整流元件41流入至半 导体兀件51的漏极电极51D。另一方面,伴随着交流电压VCT的施加而产生的另一极性的 电流经由整流元件42流入至半导体元件51的漏极电极51D。由此,对半导体元件51的漏 极电极51D,施加对交流电压VCT进行全波整流而成的脉动流的电压。
[0107] 对齐纳二极管50的阴极,经由电阻45,施加藉由平滑电容器32进行平滑而得的 直流电压VRE。由此,对半导体元件51的栅极电极51G,施加与齐纳二极管50的击穿电压 (breakdown voltage)相对应的实质上为固定的电压。伴随于此,实质上为固定的电流流入 至半导体元件51的漏极-源极间。如上所述,半导体元件51作为恒定电流元件而发挥作 用。半导体元件51对流入至配线部40的电流进行调整。
[0108] 电容器46使自半导体元件51的源极电极518经由电阻44及整流元件43而供给 的脉动流的电压变得平滑,从而将脉动流的电压转换为直流电压。调节器48自所输入的直 流电压生成实质上为固定的直流的驱动电压VDD,并输出至控制部21。电容器47例如用于 去除驱动电压VDD的噪声等。由此,将驱动电压VDD供给至控制部21。
[0109] 这时,如上所述,将半导体元件51的漏极电极51D连接于电源供给路径25,并将 半导体元件51的栅极电极51G连接于整流电路30的高电位端子30c。即,对半导体元件 51的漏极电极51D施加交流电压VCT,对半导体元件51的栅极电极51G施加直流电压VRE。 由此,例如,可以使半导体元件51的动作稳定。可以抑制关于整流元件41、整流元件42的 负载。可以将经稳定的驱动电压VDD供给至控制部21。作为结果,能够使控制部21的动作 稳定。再者,施加至半导体元件51的漏极电极51D的电压只要是未藉由平滑电容器32而 变得平滑的电压即可。例如,也可以为经由整流电路30而整流后的脉动流电压。施加至半 导体元件51的栅极电极51G的电压只要为藉由平滑电容器32而加以平滑的电压即可。例 如,也可以为直流电压VDC。
[0110] 电流调整部23包括电阻61及开关元件62。在开关元件62中,例如可使用场效晶 体管或氮化镓高电子迁移率晶体管等。以下,将开关元件62设为场效晶体管来进行说明。
[0111] 电阻61的一端连接于半导体元件51的源极电极51S。电阻61的另一端连接于开 关元件62的漏极。开关元件62的栅极连接于控制部21。控制部21对开关元件62的栅极 输入控制信号CGS。对于开关元件62,例如使用常断(normally-off)型。例如,藉由将自 控制部21输入的控制信号CGS自低切换为高,而使开关元件62自断开状态变为接通状态。
[0112] 当使开关元件62为接通状态时,例如,经由整流元件41、整流元件42及半导体元 件51,流经电源供给路径25的电流的一部分流入至分支路径24。即,通过使开关元件62 为接通状态,电流调整部23变为导通状态,通过使开关元件62为断开状态,电流调整部23 变为非导通状态。
[0113] 开关元件62的源极、齐纳二极管50的阳极、电容器46的另一端、及电容器47的 另一端连接于整流电路30的低电位端子30d。即,控制用电源部22的地线(ground)及电 流调整部23的地线与直流电压转换部34的输入侧的地线变为共用。另一方面,控制部21 的地线连接于输出端子8。即,控制部21的地线与直流电压转换部34的输出侧的地线变为 共用。由此,例如,可使控制部21的动作更稳定。
[0114] 在电源电路14中,进而设置有电阻71?电阻76。电阻71的一端连接于半导体元 件51的漏极电极51D。电阻71的另一端连接于电阻72的一端。电阻72的另一端连接于 整流电路30的低电位端子30d。
[0115] 电阻73的一端连接于整流电路30的高电位端子30c。电阻73的另一端连接于电 阻74的一端。电阻74的另一端连接于整流电路30的低电位端子30d。
[0116] 电阻75的一端连接于整流电路30的高电位端子30c。电阻75的另一端连接于电 阻76的一端。电阻76的另一端连接于整流电路30的低电位端子30d。
[0117] 在检测电路28中,设置有第1比较器81、第2比较器82及辨别部83。第1比较 器81包括第1输入端子81a、第2输入端子81b及第1输出端子81c。第2比较器82包括 第3输入端子82a、第4输入端子82b及第2输出端子82c。
[0118] 第1比较器81的第1输入端子81a连接于电阻71与电阻72的连接点。由此,对 第1比较器81的第1输入端子81a输入与电阻71、电阻72的分压比相对应的脉动流的电 压,作为用于检测导通角控制的有无及所述导通角控制的种类的第1检测用电压。第1检 测用电压例如也可以为整流前的交流的电压。如上所述,第1输入端子81a是用于输入基 于交流的电源电压VIN或交流电压VCT而形成的交流或脉动流的第1检测用电压的端子。
[0119] 第1比较器81的第2输入端子81b连接于电阻73与电阻74的连接点。由此,对 第1比较器81的第2输入端子81b,输入与电阻73、电阻74的分压比相对应的直流的电压, 作为第1阈值电压Vthl。第1阈值电压Vthl的电压值低于第1检测用电压的最大值。例 如,以第1阈值电压vthl的电压值低于第1检测用电压的最大值的方式,来设定电阻73、电 阻74的分压比。如上所述,第2输入端子81b是用于输入第1阈值电压Vthl的端子。
[0120] 第1比较器81的第1输出端子81c输出第1输出信号。第1输出信号具有第1状 态及第2状态,所述第1状态表示第1检测用电压未达第1阈值电压Vthl,所述第2状态表 示第1检测用电压为第1阈值电压Vthl以上。在本例中,第1输入端子81a为倒相输入端 子,第2输入端子81b为非倒相输入端子。因此,本例的第1输出信号,当第1检测用电压 未达第1阈值电压Vthl时,变为高(第1状态),当第1检测用电压为第1阈值电压Vthl 以上时,变为低(第2状态)。
[0121] 也可以与上述相反,将第1输入端子81a设为非倒相输入端子,将第2输入端子 81b设为倒相输入端子。这时,当第1检测用电压未达第1阈值电压Vthl时,第1输出信号 变为低(第1状态),当第1检测用电压为第1阈值电压vthl以上时,第1输出信号变为高 (第2状态)。
[0122] 第2比较器82的第3输入端子82a连接于电阻71与电阻72的连接点。由此,对 第2比较器82的第3输入端子82a,输入与电阻71、电阻72的分压比相对应的脉动流的电 压,作为用于检测导通角控制的有无及所述导通角控制的种类的第2检测用电压。第2检 测用电压例如也可以为整流前的交流的电压。第3输入端子82a是用于输入基于交流的电 源电压VIN或交流电压VCT而形成的交流或脉动流的第2检测用电压的端子。在本例中, 第2检测用电压与第1检测用电压实质上为相同。第2检测用电压也可以为与第1检测用 电压不同的电压。
[0123] 第2比较器82的第4输入端子82b连接于电阻75与电阻76的连接点。由此,对 第2比较器82的第4输入端子82b,输入与电阻75、电阻76的分压比相对应的直流的电压, 作为第2阈值电压Vth2。第2阈值电压Vth2的电压值低于第2检测用电压的最大值。并 且,第2阈值电压Vth2高于第1阈值电压Vthl。例如,第2阈值电压Vth2的绝对值高于第 1阈值电压Vthl的绝对值。例如,以第2阈值电压Vth2低于检测用电压Vdet的最大值,而 且高于第1阈值电压Vthl的方式,来设定电阻75、电阻76的分压比。如上所述,第4输入 端子82b是用于输入第2阈值电压Vth2的端子。
[0124] 第2比较器82的第2输出端子82c输出第2输出信号。第2输出信号具有第3状 态及第4状态,所述第3状态表示第2检测用电压未达第2阈值电压Vth2,所述第4状态表 示第2检测用电压为第2阈值电压Vth2以上。在本例中,第3输入端子82a为倒相输入端 子,第4输入端子82b为非倒相输入端子。因此,本例的第2输出信号,当第2检测用电压 未达第2阈值电压Vth2时,变为高(第3状态),当第2检测用电压为第2阈值电压Vth2 以上时,变为低(第4状态)。
[0125] 也可以与上述相反,将第3输入端子82a设为非倒相输入端子,将第4输入端子 82b设为倒相输入端子。这时,当第2检测用电压未达第2阈值电压Vth2时,第2输出信号 变为低(第3状态),当第2检测用电压为第2阈值电压Vth2以上时,第2输出信号变为高 (第4状态)。
[0126] 再者,第2比较器82的高及低的第2输出信号的极性也可以与第1比较器81的 第1输出信号的极性相反。例如,也可以设为当第1检测用电压为第1阈值电压Vthl以上 时,第1比较器81的第1输出信号设定为低,当第2检测用电压为第2阈值电压Vth2以上 时,第2比较器82的第2输出信号设定为高。第1阈值电压Vthl例如为IV左右。第2阈 值电压Vth2例如为3V左右。以下,将第1检测用电压及第2检测用电压统称为检测用电 压 Vdet。
[0127] 辨别部83与第1比较器81的第1输出端子81c及第2比较器82的第2输出端 子82c分别连接。辨别部83根据第1比较器81的第1输出信号及第2比较器82的第2 输出信号,进行导通角控制的有无及所述导通角控制的种类的辨别。辨别部83例如根据第 1输出信号与第2输出信号的时间差来进行辨别。
[0128] 图3(a)?图3(d)是示意性地表示实施方式的控制部的动作的图表。
[0129] 在图3(a)?图3(d)中,表示未对输入至电源电路14的交流电压进行导通角控制 的情况下的控制部21的动作例。所谓未进行导通角控制的情况,例如是指未连接调光器3, 而将交流电源2的电源电压VIN输入至电源电路14的情况。未进行导通角控制的情况中, 例如也考虑调光器3的调光度极小的情况。所谓未进行导通角控制的情况,例如为将实质 上正弦波的交流电压输入至电源电路14的状态。控制部21反应于来自控制用电源部22 的驱动电压VDD的供给而启动之后,使检测电路28的辨别部83辨别导通角控制的有无及 所述导通角控制的种类。
[0130] 图3(a)?图3(d)的横轴为时间t。
[0131] 图3(a)的纵轴为检测用电压Vdet。
[0132] 图3(b)的纵轴为第1比较器81的第1输出信号S1。
[0133] 图3(c)的纵轴为第2比较器82的第2输出信号S2。
[0134] 图3 (d)的纵轴为控制信号CGS的电压值。
[0135] 辨别部83根据第1输出信号S1、第2输出信号S2及各输出信号S1、S2的时间差, 来进行对导通角控制的有无及所述导通角控制的种类的辨别。更具体而言,辨别部83根据 第1输出信号S1的下降边缘(falling edge)TE1、第1输出信号S1的上升边缘(rising edge)LEl、第2输出信号S2的下降边缘TE2、第2输出信号S2的上升边缘LE2及各边缘的 时间差,来进行对导通角控制的有无及所述导通角控制的种类的辨别。
[0136] 在本例中,当检测用电压Vdet为第1阈值电压Vthl以上时,第1输出信号S1变 为低。并且,当检测用电压Vdet为第2阈值电压Vth2以上时,第2输出信号S2变为低。
[0137] 这时,在交流电压的半波的部分,各边缘按照第1输出信号S1的下降边缘TE1、第 2输出信号S2的下降边缘TE2、第2输出信号S2的上升边缘LE2及第1输出信号S1的上 升边缘LE1的顺序发生变化。因此,辨别部83将第1输出信号S1的下降边缘TE1与第1 输出信号S1的上升边缘LE1之间的部分辨别为交流电压的半波的部分。
[0138] S卩,在本例中,第1输出信号S1的下降边缘TE1是第1输出信号S1自第1状态切 换为第2状态的第1切换点。第2输出信号S2的下降边缘TE2是第2输出信号S2自第3 状态切换为第4状态的第2切换点。第2输出信号S2的上升边缘LE2是第2输出信号S2 自第4状态切换为第3状态的第3切换点。第1输出信号S1的上升边缘LE1是第1输出 信号S1自第2状态切换为第1状态的第4切换点。
[0139] 辨别部83对第1输出信号S1的下降边缘TE1与第2输出信号S2的下降边缘TE2 之间的第1时间差Λ tl进行计时。并且,辨别部83对第2输出信号S2的上升边缘LE2与 第1输出信号S1的上升边缘LE1之间的第2时间差Λ t2进行计时。辨别部83对各时间 差Λ tl、Λ t2的计时例如可以使用控制部21的内部时钟来进行,也可以在控制部21的外 部设置计时器(timer)等来进行。
[0140] 如图3(a)?图3(d)所示,在无导通角控制的情况下,在第1输出信号S1的下降 边缘TE1与第2输出信号S2的下降边缘TE2之间、及第2输出信号S2的上升边缘LE2与 第1输出信号S1的上升边缘LE1之间,会产生规定的时间差。因此,辨别部83对第1时间 差Atl及第2时间差At2进行计时,当各时间差Atl、At2分别为规定值以上时,辨别为 未进行导通角控制。例如,当各时间差Λ tl、Λ t2分别为0.5msec以上时,辨别部83辨别 为未进行导通角控制。
[0141] 辨别部83例如定期实施辨别,直至电源电压VIN或交流电压VCT的输入停止为 止。再者,辨别部83的辨别例如可以每次在电源电压VIN或交流电压VCT的每个半波进行, 也可以在每规定数目个半波进行。
[0142] 当藉由辨别部83而辨别为无导通角控制时,控制部21生成具有与无导通角控制 的情况相对应的占空比的控制信号CTL,并将所生成的控制信号CTL输入至直流电压转换 部34。由此,照明光源16以与电源电压VIN相对应的亮度进行点灯。
[0143] 并且,当检测用电压Vdet的电压值未达第1阈值电压Vthl时,控制部21将控制 信号CGS设定为高(使电流调整部23为导通状态)。并且,当检测用电压Vdet的电压值 为第1阈值电压Vthl以上时,控制部21将控制信号CGS设定为低(使电流调整部23为非 导通状态)。即,控制部21在电源电压VIN或交流电压VCT未达下限值时使电流调整部23 为导通状态,在电源电压VIN或交流电压VCT为下限值以上时使电流调整部23为非导通状 态。
[0144] 当藉由辨别部83而辨别为无导通角控制时,控制部21使将电流调整部23自导通 状态切换为非导通状态的时序,比检测用电压Vdet的电压值自未达第1阈值电压Vthl的 状态切换为第1阈值电压Vthl以上的状态的时序延迟仅第1微小时间MT1。
[0145] 例如,设为在将三端双向可控硅开关元件用于以相位控制方式进行导通角控制的 调光器3,并且将LED用于照明光源16的状态下,辨别为无导通角控制。LED的消耗电流低 于白炽灯泡等的消耗电流。因此,当不进行上述动作时,在交流电压VCT为规定值以下的状 态下,无法流入为了接通三端双向可控娃开关元件所需要的保持电流(holding current), 从而有时调光器3的动作变得不稳定。
[0146] 与此相对,在本实施方式的电源电路14中,藉由如上所述那样控制电流调整部23 的动作,可以在规定值以下的交流电压VCT下,使为了接通三端双向可控硅开关元件所需 要的保持电流流入至电流调整部23(分支路径24)。由此,可以使调光器3的动作稳定。并 且,藉由使电流调整部23的切换时序延迟仅第1微小时间MT1,可以使调光器3的动作更稳 定。
[0147] 在本例中,使用第1阈值电压Vthl来确定控制信号CGS的切换时序。即,在本例 中,使用第1阈值电压Vthl作为下限值。下限值也可以为与第1阈值电压Vthl不同的值 的电压。例如,也可以另外设置用于确定控制信号CGS的切换时序的比较器。
[0148] 图4(a)?图4(d)是示意性地表示实施方式的控制部的动作的图表。
[0149] 在图4(a)?图4(d)中,表示以相位控制方式对输入至电源电路14的交流电压进 行导通角控制的情况下的控制部21的动作例。图4(a)?图4(d)的各个横轴及纵轴与图 3(a)?图3(d)的各个横轴及纵轴相同。
[0150] 如图4(a)?图4(d)所示,在相位控制方式的导通角控制的情况下,第1输出信号 S1的下降边缘TE1与第2输出信号S2的下降边缘TE2之间的第1时间差Λ tl变得极小。 例如,第1时间差Λ tl未达0. 5msec。因此,辨别部83对第1时间差Λ tl及第2时间差 At2进行计时,当第1时间差Λ tl未达规定值,而且第2时间差Λ t2为规定值以上时,辨 别为进行了相位控制方式的导通角控制。辨别部83例如在第1时间差Λ tl未达0. 5msec, 而且第2时间差Λ t2为0. 5msec以上时,辨别为进行了相位控制方式的导通角控制。
[0151] 当藉由辨别部83而辨别出相位控制方式的导通角控制时,控制部21根据辨别部 83的辨别结果,进行交流电压VCT的导通角的检测。控制部21例如将第1输出信号S1被 设定为低的区间判断为调光器3的导通角控制的导通区间Ton。并且,控制部21将第1输 出信号S1被设定为高的区间判断为调光器3的导通角控制的遮断区间Toff。由此,控制 部21根据导通区间Ton与遮断区间Toff的比率,检测交流电压VCT的导通角。导通角的 检测也可以根据第2输出信号S2来进行。导通角的检测也可以根据与第1阈值电压Vthl 及第2阈值电压Vth2不同的阈值来进行。
[0152] 控制部21在检测交流电压VCT的导通角之后,生成具有与所述导通角相对应的占 空比的控制信号CTL,并将所生成的控制信号CTL输入至直流电压转换部34。由此,根据以 相位控制方式被控制导通角的交流电压VCT,对照明光源16进行调光。
[0153] 与无导通角控制的情况相同,控制部21在检测用电压Vdet的电压值未达第1阈 值电压Vthl的情况下,将控制信号CGS设定为高。控制部21在检测用电压Vdet的电压值 为第1阈值电压Vthl以上的情况下,将控制信号CGS设定为低。并且,当藉由辨别部83而 辨别出为相位控制方式的导通角控制时,控制部21使将电流调整部23自导通状态切换为 非导通状态的时序,比检测用电压Vdet的电压值自未达第1阈值电压Vthl的状态切换为 第1阈值电压Vthl以上的状态的时序延迟仅第2微小时间MT2。
[0154] 由此,在进行了相位控制方式的导通角控制的情况下,可以使调光器3的动作稳 定。第2微小时间MT2例如与第1微小时间MT1实质上为相同。第2微小时间MT2也可以 与第1微小时间MT1不同。
[0155] 图5 (a)?图5 (d)是不意性地表不实施方式的控制部的动作的图表。
[0156] 在图5(a)?图5(d)中,表不以反相位控制方式对输入至电源电路14的交流电压 进行导通角控制的情况下的控制部21的动作例。图5(a)?图5(d)的各个横轴及纵轴与 图3(a)?图3(d)及图4(a)?图4(d)各个横轴及纵轴相同。
[0157] 如图5(a)?图5(d)所示,在反相位控制方式的导通角控制的情况下,第2输出信 号S2的上升边缘LE2与第1输出信号S1的上升边缘LE1之间的第2时间差Λ t2变得极 小。例如,第2时间差Λ t2未达0.5msec。因此,辨别部83对第1时间差Λ tl及第2时间 差Λ t2进行计时,当第1时间差Λ tl为规定值以上,而且第2时间差Λ t2未达规定值时, 辨别为进行了反相位控制方式的导通角控制。辨别部83例如在第1时间差Λ tl为0. 5msec 以上,而且第2时间差Λ t2未达0. 5msec的情况下,辨别为进行了反相位控制方式的导通 角控制。
[0158] 当藉由辨别部83而辨别出反相位控制方式的导通角控制时,控制部21进行交流 电压VCT的导通角的检测。控制部21例如将第1输出信号S1被设定为低的区间判断为调 光器3的导通角控制的导通区间Ton。并且,控制部21将第1输出信号S1被设定为高的区 间判断为调光器3的导通角控制的遮断区间Toff。由此,控制部21根据导通区间Ton与遮 断区间Toff的比率,检测交流电压VCT的导通角。
[0159] 控制部21在检测交流电压VCT的导通角之后,生成具有与所述导通角相对应的占 空比的控制信号CTL,并将所生成的控制信号CTL输入至直流电压转换部34。由此,在反相 位控制方式中,也可以根据被控制导通角的交流电压VCT,对照明光源16进行调光。
[0160] 当检测用电压Vdet的电压值未达第1阈值电压Vthl时,控制部21将控制信号 CGS设定为高。当检测用电压Vdet的电压值为第1阈值电压Vthl以上时,控制部21将控 制信号CGS设定为低。
[0161] 当藉由辨别部83而辨别出为反相位控制方式的导通角控制时,控制部21使将电 流调整部23自非导通状态切换为导通状态的时序,比检测用电压Vdet的电压值自第1阈 值电压Vthl以上的状态切换为未达第1阈值电压Vthl的状态的时序提早仅第3微小时间 MT3。
[0162] 控制部21例如预先存储前一个检测到的半波的导通区间Ton的时间,并以比所述 时间提早仅第3微小时间MT3的时序,将电流调整部23自非导通状态切换为导通状态。
[0163] 在反相位控制方式中,存在如下情况:由于滤波电容器26等中所蓄积的电荷的影 响,导致导通区间Ton长于调光器3的实际的导通区间。如果导通区间Ton长于实际的导 通区间,那么例如控制信号CTL的占空比会发生变化,从而照明光源16的调光的程度会发 生变化。
[0164] 藉由使电流调整部23为导通状态,使流经电源供给路径25的电流的一部分流入 至分支路径24,可以将滤波电容器26等中所蓄积的电荷引出至电流调整部23。由此,在电 源电路14中,可以更确实地检测经反相位控制的交流电压VCT的导通角。能够以更高精度 进行照明光源16的调光。并且,如上所述,藉由使切换电流调整部23的时序提早仅第3微 小时间MT3,可以更适当地引出滤波电容器26等中所蓄积的电荷。可以进一步提高导通角 的检测精度。
[0165] 例如,存在如下检测电路,其利用模拟至数字转换器(analog-to-digital converter)等对输入电压波形的边缘进行检测,并根据电压倾斜度等,来检测导通角控制 的有无及所述导通角控制的种类。但是,在这种检测电路中,需要存储器等,电路变得复杂。 例如,微型计算机(micro computer)等具有的某种程度的性能是必需的。
[0166] 与此相对,在本实施方式的检测电路28中,可以根据第1比较器81及第2比较 器82的各自的输出信号S1、输出信号S2,来辨别导通角控制的有无及所述导通角控制的种 类。在检测电路28中,例如,不需要存储器等。如此一来,在检测电路28中,可以利用简单 电路来适当地辨别导通角控制的有无及所述导通角控制的种类。
[0167] 在上述实施方式中,是将各比较器81、82分别设置于控制部21。各比较器81、82 例如也可以设置于控制部21的外部,将各输出信号S1、S2输入至控制部21。例如,也可以 将辨别部83设置于控制部21的外部。检测电路28例如也可以设置于控制部21的外部。
[0168] 在上述实施方式中,揭示了照明负载12作为负载,但是并不限于此,例如可以为 加热器(heater)等需要导通角控制的任意的负载。在上述实施方式中,揭示了用于照明装 置10中的电源电路14作为电源电路,但是并不限于此,而可以为与需要导通角控制的负载 相适应的任意的电源电路。电力转换部20所转换的电压并不限于直流电压,例如既可以为 有效值(effective value)不同的交流电压,也可以为脉动流电压。电力转换部20所转换 的电压例如只要根据所连接的负载来设定即可。
[0169] 以上已说明本发明的若干实施方式及实施例,但是所述实施方式或实施例是作为 示例起提示作用,并不意图限定发明的范围。所述新颖的实施方式或实施例可以通过其它 各种方式来实施,在没有脱离发明主旨的范围内,可以进行各种省略、替换、变更。所述实施 方式或实施例或者其变形包含于发明的范围或主旨内,并且包含于权利要求书中所记载的 发明及其同等的范围内。
【权利要求】
1. 一种检测电路,其特征在于包括: 第1比较器,其包括: 第1输入端子,其用于输入基于交流电压而形成的交流或脉动流的第1检测用电压; 第2输入端子,其用于输入第1阈值电压;以及 第1输出端子,其输出具有第1状态及第2状态的第1输出信号,所述第1状态表示所 述第1检测用电压未达所述第1阈值电压,所述第2状态表示所述第1检测用电压为所述 第1阈值电压以上; 第2比较器,其包括: 第3输入端子,其用于输入基于所述交流电压而形成的交流或脉动流的第2检测用电 压; 第4输入端子,其用于输入高于所述第1阈值电压的第2阈值电压;以及 第2输出端子,其输出具有第3状态及第4状态的第2输出信号,所述第3状态表示所 述第2检测用电压未达所述第2阈值电压,所述第4状态表示所述第2检测用电压为所述 第2阈值电压以上;以及 辨别部,其根据所述第1输出信号与所述第2输出信号的时间差,辨别所述交流电压的 导通角控制的有无、以及所述导通角控制是相位控制方式还是反相位控制方式。
2. 根据权利要求1所述的检测电路,其特征在于: 所述辨别部根据第1切换点与第2切换点之间的第1时间差、第3切换点与第4切换 点之间的第2时间差,来进行所述辨别,在所述第1切换点所述第1输出信号自所述第1状 态切换为所述第2状态,在所述第2切换点所述第2输出信号自所述第3状态切换为所述 第4状态,在所述第3切换点所述第2输出信号自所述第4状态切换为所述第3状态,在所 述第4切换点所述第1输出信号自所述第2状态切换为所述第1状态。
3. 根据权利要求2所述的检测电路,其特征在于: 当所述第1时间差及所述第2时间差分别为规定值以上时,所述辨别部辨别为未进行 所述导通角控制。
4. 根据权利要求2所述的检测电路,其特征在于: 当所述第1时间差未达所述规定值且所述第2时间差为所述规定值以上时,所述辨别 部辨别为进行了相位控制方式的所述导通角控制。
5. 根据权利要求2所述的检测电路,其特征在于: 当所述第1时间差为所述规定值以上且所述第2时间差未达所述规定值时,所述辨别 部辨别为进行了反相位控制方式的所述导通角控制。
6. -种电源电路,其特征在于包括: 根据权利要求1至权利要求5中任一项所述的检测电路; 电力转换部,其将所述交流电压转换为不同的电压,并将转换后的所述电压供给至负 载;以及 控制部,其根据所述辨别部的所述辨别的结果,检测所述交流电压的导通角,并且根据 检测到的所述导通角,控制所述电力转换部对电压的转换。
7. 根据权利要求6所述的电源电路,其特征在于: 更包括电流调整部,所述电流调整部包括电性连接于供给所述交流电压的电源供给路 径的分支路径,并可对第1路径状态及第2路径状态进行切换,所述第1路径状态是使流经 所述电源供给路径的电流的一部分流入至所述分支路径的状态,所述第2路径状态是流入 至所述分支路径的电流小于所述第1路径状态的状态, 所述控制部在所述交流电压未达下限值时,使所述电流调整部为导通状态,在所述交 流电压为所述下限值以上时,使所述电流调整部为非导通状态。
8. -种照明装置,其特征在于包括: 照明负载,其包括照明光源;以及 根据权利要求6所述的电源电路。
【文档编号】H05B37/02GK104066227SQ201310421732
【公开日】2014年9月24日 申请日期:2013年9月16日 优先权日:2013年3月19日
【发明者】北村纪之 申请人:东芝照明技术株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1