用于生产包层钢产品的方法与流程

文档序号:13764863阅读:146来源:国知局
用于生产包层钢产品的方法与流程

本发明涉及耐腐蚀金属产品的生产。本发明具体地但不排他地应用于包括腐蚀敏感钢芯的产品,该腐蚀敏感钢芯上施加有一种由不锈钢、镍铬合金、镍铜或铜镍合金构成的包层。目的在于,本发明应包括制备用于生产此类产品的坯料的方法以及坯料本身,因为此类坯料可能存在市场。



背景技术:

在工业中最常使用的通常简称为“钢”的腐蚀敏感性是熟知的,并且不应需要进一步讨论。相反地,不锈钢和上述合金的耐腐蚀性同样是熟知的。本发明原则上适用于由一种钢体构成的任何产品,该钢体比不锈钢或上述合金明显更易受腐蚀并且易于通过在此描述的技术对它施加由这些材料制成的包层。在本说明书中,单独使用的术语“钢”将指这样的钢,除非从上下文中明显看出这不是所意指的。具体地说,目的在于,术语“钢”应包括通常所称的碳钢。根据惯例,并且如在此使用的,术语“碳钢”包括它的不同等级,包括低碳钢、低合金工程钢和微合金钢。

术语“不锈钢”、“镍铬合金”以及“镍铜合金”是金属工业中熟知的名称,并且通常应用于分别含有显著量的铬、镍和铬、以及铜和镍的一系列合金。在镍铜合金中镍比铜多,相比之下,在“铜镍合金”中镍和铜的比例相反。属于这四个名字中的每一个的系列合金出现在可从其主要生产者获得的列表中。在本说明书中,术语“在此考虑的合金”是指这些合金中的任一种,除非从上下文中明显看出这不是所意指的。不锈钢等级AISI A304L已应用于迄今为止在试验中使用的坯料。然而,应当可以使用任何适合等级的不锈钢,这取决于由坯料生产的最终产品的需要。

已经有许多早先提出的用于生产上述类型的包层钢产品的建议。这些建议中最相关者描述于国际专利申请号WO2011/048364和WO2012/143668、以及美国专利6706416和其中引用的许多早期专利,包括美国专利5051315。这些早期的专利和专利申请全部属于本申请中指定的发明人卡卡切(Cacace)。

对这些早先建议的检验表明,在不锈钢包层与钢芯之间的界面处实现令人满意的冶金结合是有问题的。问题的根源是在包层与钢芯之间的界面处不锈钢中的铬在高温下发生氧化。

这些美国专利中描述的坯料的芯是由细碎的钢屑制成。另一方面,在这些国际专利申请中,芯是由实心钢制成。本发明还涉及具有实心钢芯的坯料。

在WO2011/048364中,坯料的芯被称为实心钢的“主体”。除非从上下文中出现相反的指示,否则术语“芯”和“主体”在整个说明书中可互换使用,以指示一种典型地但不必需是细长的并且可以是实心的、管状的或另外中空的主体。当坯料旨在用于生产围绕它的整个周边在外部具有包层的最终产品时,被放置在由不锈钢或在此考虑的其他合金之一制成的管(在此称为“包层管”)中。芯和包层管的横截面形状典型地为圆形或正方形。当芯被插入包层管中时,在两者之间存在界面,当坯料被加热和轧制或以其他方式加工成铁制品时它们在该界面处结合在一起。在WO2011/048364中,由清除金属(典型地为细碎的铝、钛或镁)构成的一个或多个元件邻近芯的每个端部被放置在包层管中。清除金属用于从界面处的残余空气中清除氧气和除惰性气体之外的所有其他气体,以防止界面处包层管中的铬的氧化。包层管典型地被密封以防止坯料外部的大气气体或炉气体渗透到界面。坯料的端部被加热达到清除金属变得具有活性的温度(在界面达到不锈钢以显著规模开始氧化的温度之前)。清除金属可以直接靠着芯的端部放置在包层管中,或者可以容纳在靠着芯的端部放置的钢筒中。在这两种情况下,包层管的端部都由在管的端部中焊接的钢密封板密封。

已发现这种布置在许多坯料的情况下是令人满意的,特别是对于较小尺寸的圆形坯料。然而,大多数现代轧机被设计成轧制较大尺寸的正方形坯料。在结合本申请进行的试验过程中,当使用一种在线轧机来轧制此类较大坯料时,出现了许多问题。

首先,以上述方式组装的坯料的端部在轧制期间、通常在将密封板保持在适当位置的焊缝处表现出失效的趋势,随之在界面处氧化。除了这种焊接失效,在试验过程中已发现,管端部在轧制的早期阶段具有横向扩展的趋势。这被称为“飞边(finning)”或“鱼尾状(fishtailing)”,并且通常导致坯料变得弯曲或扭曲。这可能导致坯料在轧机导向器中堵塞,这种情况称为“缠辊(cobbling)”,从而阻止进一步的轧制。

在包层坯料的情况下,飞边和鱼尾状两者都明显都起因于以下事实:包层管的端部突出远离芯的端部并且使得来自芯的支撑不足以抵抗在轧制过程中产生的力。WO2012/143668披露一种制备坯料的方法,该方法尤其解决了这个问题。在此方法中,将包层管的突出端向内型锻至小于芯的端部的横向尺寸的横向尺寸。此步骤具有密封焊缝不太脆弱的优点。此外,当轧制开始时,呈锥形的坯料端部仅在坯料已通过初始的大概两个或三个轧辊机架之后才与辊接触。在这个阶段,包层管可能已经变得充分地结合至芯,以便显著降低密封焊缝失效时发生氧化的可能性。此外,再次因为管端部是锥形的,所以在坯料的鼻部及尾部被裁剪之前不太可能由于飞边或鱼尾状而发生缠辊。在这方面,应当解释的是,剪切机被包括在所有的轧机中,确切地说是为了避免缠辊。按照轧机的常规惯例,在最大的压下量(reduction)之后,最可能发生缠辊,并且对于在线轧机,剪切机因此通常定位在前六个或七个粗轧行程或机架之后。

在WO2012/143668中披露的改进改善了这些问题。然而,在对于在线轧机中轧制的大的正方形坯料的随后试验过程中,已发现一些失效继续。在这些情况下,发现一些坯料的端部在离开炉子时,即,甚至在进入第一轧机机架之前,就已经断开。

在这些坯料中使用的清除金属是细碎的钛或铝。铝在650℃下熔化。在使用铝的坯料中,仔细研究后发现,在大约1200℃的温度(坯料离开炉子的温度)以及与较大坯料相关的较长均热时间的情况下,铝在这个阶段尽管处于真空状态下仍变得极具反应性。因此,现在认为铝侵蚀钢和不锈钢两者,从而在壁较薄的包层管上穿孔。

另一方面,钛在约600℃的温度下的空气中引燃并且利用“铝热剂”型反应燃烧,达到约3000℃的温度。在使用钛的坯料中,坯料端部的失效起初归因于在过量氧存在下钛的引燃,该引燃可能穿过密封焊缝中的针孔或裂纹。

应该强调的是,这些问题在对小的圆形坯料的试验过程中没有发生。

现在进一步的研究表明了在轧制过程中仍然发生的包层管端部的失效的两个可能原因。首先,似乎是,当与不锈钢包层管接触的钛被加热时,在这两者之间存在冶金反应,这导致钛即使在真空中也侵蚀且腐蚀包层管。该问题由于与较大坯料相关的长达4小时的长停留或均热时间以及900-1200℃的环境温度而恶化。此外,已发现,钢明显不以与不锈钢相同的方式被钛侵蚀。看来这种反应不是熟知的或被理解的。好象可能当使用铝代替钛时,可以预期相同的反应。

其次,申请人现在还注意到,当包层坯料于在线轧机中轧制时,与可逆式或越野式轧机相反,存在钢芯的尾端相对于包层管的端部在轴向方向上向外挤出的趋势。芯的中心部分经受比周边更大程度的这种挤出,这样使得芯的端面在该过程中变成凸的。当这种情况发生时,芯的端部推压存在于芯的尾端处的任何清除金属,并且这转而又强力地推压任何密封板或推压已被折叠在芯的端部上且焊接在一起以密封坯料的包层管的部分。这种力可以导致管的折叠部分被撕开或焊接失效。通过每个机架时的压下量越大,凸度将越明显,并且因此由芯施加的力越大。

已发现,于在线轧机中轧制的坯料的尾端比前端更频繁地破裂。尽管缠辊很少发生于从辊退出的因飞边或鱼尾状而变形的尾端,但尾端可以移开轧机“滑车”(诸如入口和出口导向器)或打破其轴向对准。这导致更频繁的生产中断。

相反地,芯的前端或“鼻部”的端面被向内凹入地牵拉。因此,该端面在轴向方向上被牵拉远离团块(briquette)以及远离在坯料前端处的密封构件。现在的中空包层管在前端缺少芯的支撑,并且这可能导致包层管在可以被飞剪机裁剪好之前发生飞边、破裂或缠辊。

WO2012/143668示出一种抵消在鼻部处的这种空隙形成的技术,该技术是通过将环形团块锚固至从芯的端面的中心轴向地突出的轴上。这种技术取得了有限的成功,这是因为当端面变成凹的时,在坯料的鼻端处施加在该轴上相当大的拉力,从而导致轴失效。该技术也被证明在坯料的尾端处在一定程度上是不够的,其中该轴相对于芯的周边成为细长的,从而导致团块随着尾端的凸度增加而渐增地与芯的面分离。

由于这些坯料中的清除金属在坯料的两端与包层管接触,这些问题可能已经因以下事实而加剧:包层管可能已经由于已提及的冶金反应而处于一种弱化状态。

考虑到申请人对越野式轧机的经验,于在线轧机中轧制的坯料的前端与尾端之间的这种行为差异是出人意料的。



技术实现要素:

本发明的目的是解决这些问题。

为此,从第一方面,本发明提供了一种坯料,该坯料包括由从包括不锈钢、镍铬、镍铜以及铜镍合金的组中选择的合金构成的包层构件、和被放置成具有与该包层构件的界面的钢体,该钢体具有一种其中设置有清除金属的构造以及用于在该界面处将该清除金属与该包层构件分开的装置。

从第二方面,本发明提供了一种形成坯料的方法,该坯料包括由从包括不锈钢、镍铬、镍铜以及铜镍合金的组中选择的合金构成的包层构件、和被放置成具有与该包层构件的界面的钢体,该方法包括以下步骤:为钢体提供一种构造,清除金属位于该构造中并且在界面处与包层构件分开。

从第三方面,本发明提供了一种形成耐腐蚀铁制品的方法,该方法包括以下步骤:提供一种体现本发明第一方面的坯料,密封坯料以防止坯料外部的气体渗透到界面,加热坯料并且加工坯料以形成铁制品。

从第四方面,本发明提供了一种由坯料形成耐腐蚀铁制品的方法,该坯料包括由从包括不锈钢、镍铬、镍铜以及铜镍合金的组中选择的合金构成的包层构件、和被放置成具有与该包层构件的界面的钢体,该方法包括以下步骤:为钢体提供一种构造,清除金属位于该构造中并且在界面处与包层构件分开;密封坯料以防止坯料外部的气体渗透到界面;加热坯料;并且加工坯料以形成铁制品。

从其他方面,本发明提供了一种铁制品,该铁制品是通过体现本发明的一种方法并且通过加工体现本发明的一种坯料而生产的。

在本发明的实施例中,钢体是细长的,并且构造可以是呈位于钢体的端面中或邻近钢体的端面的空腔的形式。

在本发明的一些实施例中,其中钢体是细长的,空腔可以形成在钢体的端面中或邻近钢体的端面并且向下倾斜,以便通过重力使包含在钢体内的任何熔融的清除金属不与包层构件接触。

钢体可以是细长的,并且空腔可以形成在钢体的端面中,清除金属在界面处通过围绕清除金属并且限定部分空腔的钢体的一部分与包层构件分开。可替代地,空腔可以形成为在钢体的端面处开口的凹部。该凹部可以形成在钢体的从包层突出的一部分中,清除金属位于该凹部内。在此类实施例中,通道典型地从凹部延伸至包层构件和钢体的界面。例如,包层构件的端部发生变形以覆盖在插入件上,该插入件覆盖空腔并且被定位成邻近钢体的该端面,覆盖空腔的插入件是由除了上述合金之外的金属制成的。在本发明的一个方面中,包层构件的该端部被焊接至覆盖空腔的插入件。覆盖空腔的插入件可被焊接至钢体。覆盖空腔的插入件可以是碟形的。在此类实例中,覆盖空腔的插入件的周边可以有利地离它被定位邻近的坯料的端部比离坯料的中心更近。可替代地,覆盖空腔的插入件的周边可以离它被定位邻近的坯料的端部比离坯料的中心更远。覆盖空腔的插入件典型地是由钢构成的。

钢体可以是细长的,并且空腔可以形成为邻近钢体的端面并且处于钢体的具有与包层构件的界面的一部分中。在本发明的这种形式的实例中,空腔插入件位于空腔中处于清除金属与包层构件之间,该空腔插入件是由除了上述合金之外的金属制成的。典型地,该空腔插入件是由钢构成的。

附图说明

现在将参照附图详细描述本发明的实施例,所有附图都是示意性的,并且其中:

图1至图5是包括插入不锈钢包层管中的钢体或芯的若干坯料中的每一个的一个端部的横截面侧视图;

图1A至5A分别是沿图1至5中的箭头A-A、B-B、C-C的视图;

图6是包括插入不锈钢包层管中的钢体或芯的另一坯料的一个端部的侧视图;

图7是又一种类似构造的坯料的一个端部的横截面侧视图;

图7A是沿图7中的A-A的截面图;

图8是用于形成具有不锈钢的内包层的一种管状最终产品的坯料的一个端部的侧视图;

图8A是沿图8中的箭头C-C的视图;

图9是用于形成钢板的一种坯料的端部的横截面侧视图,该坯料的一面包层有不锈钢;

图9A是图9所示坯料的平面图;图10是一种坯料的一端的横截面侧视图,该坯料包括分别以部分和完全封闭状态插入不锈钢包层管中的钢芯;

图10A是图10所示坯料的相对端的类似视图;

图11是作为图4和图4A的坯料的一个变型的一种坯料的一端的横截面侧视图;

图12是体现本发明的用于制造一种部分包层产品(诸如板)的一种坯料的一端的侧视图;

图13是图12所示坯料的端视图;

图13和图13A是图12和图12A的板的侧视图和端视图,其中试剂和封闭塞处于适当位置;并且

图14A-14G是通过加工附图中所示的不同坯料而生产的最终产品的横截面视图。

具体实施方式

在下面的实例的描述中,将坯料描述为具有由不锈钢构成的一种包层构件。然而,应当强调的是,包层构件可以由在此考虑的替代合金中的任一种构成或者包括在此考虑的替代合金中的任一种,因为这些合金中的一些或全部对如在此描述的氧化问题是同样敏感的。

首先参见图1和图1A,示出了坯料B1的一端,该坯料包括容纳在呈不锈钢管16形式的紧密配合的包层构件中的实心钢芯14。该坯料具有适于在常规的现代轧机中轧制的尺寸和形状。为了便于描述,图1和图1A中描述的实例是适于被轧制成实心成品的正方形坯料。此类产品的实例示于图8a、8b和8c中,分别示出了圆棒、方棒和扁棒。每个棒包括实心钢芯C,该实心钢芯与不锈钢的外包层S冶金结合。也可以将这些坯料轧制成段和其他长形产品。

当包层管16就位时,在芯的侧面20与包层管的内面22之间存在界面18。当坯料被加热和轧制(或以其他方式加工)以形成成品时,包层管在该界面处结合至芯。

芯14具有与坯料的纵向中心轴线X成直角的端面24。在坯料的最简单形式中,包层管在未到端面24时,邻近于芯的侧面20的可方便地称为焊区(land)25的部分处终止。然而,在将芯插入包层管中之前,典型地但不是必需地通过使用氧乙炔或等离子体切割器进行成形切削,在芯的每个侧面20中形成凹部30。每个凹部30跨越它形成于其中的面20。在此实例中,凹部垂直于轴线X,但是可以处于任何适合的角度。因此这些凹部在芯的拐角处相遇,并且四个凹部一起构成完全围绕芯延伸的复合凹部30A。

在图2所示的实例中,坯料端部的布置类似于图1所示的布置,除了芯设置有位于凹部30A与芯的端面24之间的另外的复合凹部30B。

在将芯插入包层管中之前,将清除金属33放置在凹部30A中,用于下面描述的目的。在本实例中,清除金属是钛(Ti),因为Ti在轧制温度以下不熔化。Ti可以有利地但不是必需地为颗粒的形式,这些颗粒被预压为形状可紧密配合在每个凹部30中的自支撑团块。在一个替代方案中,Ti可以是呈细规格线的形式,该细规格线围绕坯料卷绕以部分地填充复合凹部30B。无论清除金属采取什么形式,在凹部30中必须留有足够的空间,以使得呈钢带形式的屏障元件34能够被放置在清除金属之上,在芯被插入到包层管中之后夹在清除金属与包层管之间。该钢带必须足够宽松地配合在凹部中,以避免阻碍最初存在或随后放出的氧化性气体在随后加热坯料时被吸引至清除金属,如将说明的。为此,可能需要将钢带定位焊接或以其他方式固定在适当位置。可替代地,钢带可以是穿孔的。代替钢带,钢“丝绒”或任何其他适合的插入件可以用作屏障元件。屏障元件可以由任何适合的金属或除不锈钢外的其他材料或能够构成包层构件并且不以前述的有害方式与清除金属反应的任何金属构成。

屏障元件34具有作为屏障的重要功能,用于保持清除金属不与包层管接触,以便避免当坯料被加热时不锈钢与清除金属之间的前述破坏性反应。

在所示的实例中,凹部30的横截面是椭圆形的,但这不是必需的。它们可以是直线形、半圆柱形或任何其他适合的形状。

坯料的相对端的布置与参照图1至图8描述的布置相同。

在清除金属33和屏障元件34已被放置到这一个或多个凹部中并且钢芯已插入包层管中之后,包层管被递增地向下型锻以沿着芯的整个长度与侧面20紧密接触。这种型锻程序基本上与申请号WO 2012/143668中描述的相同,并且不需要在此重复。在图1所示的坯料的情况下,管端部26被用力压靠在焊区25上。然后包层管的端部26被角焊28至焊区,以便将包层管牢固地锚固至芯并且密封坯料以抵抗外部气体进入界面18。复合凹部30A被定位成与端面24相距一定距离,该距离足够大以确保焊缝28具有最大可能强度。

在图2所示的坯料的情况下,管的端部26被向内型锻至复合凹部30B中,在这里,它再次被焊接至芯。焊缝28'因此也位于凹部30B中。这种布置显著降低了当坯料被轧制时密封焊缝28'将失效的可能性。

此外,为了进一步降低焊接失效的可能性,芯可以在其末端处呈锥形,如虚线轮廓线32所示。该锥形还可以方便地通过氧乙炔或等离子体切割器在形成这一个或多个凹部的同时形成。焊缝28、28'也可以通过在将要形成焊缝28、28'的区域中向芯的表面预施加不锈钢“对接”焊接38来加强。

在图6所示的实例中,芯的端部基本上类似于图1所示的芯的端部。然而,包层管16的每一侧的端部被切割成如26'所示的V形。任何坯料的管端部在可能的情况下都可以以这种或任何类似的方式成角度,并且应进一步降低焊接失效的可能性。

另一个实施例在图7中示出。在细长坯料的这种布置中,钢芯714延伸超过不锈钢包层716到达端面724。包层716通过环形角焊缝728密封至芯714。凹部730从端面724延伸至芯714中。该凹部的深度使得它完全在从包层716突伸出的芯714的长度内延伸。从凹部730开始,轴向排气通道732从该凹部的内基部表面731延伸至包层716的径向向内的位置。多个横通道734从芯的外表面720横向穿过芯714(并且因此穿过芯714与护套716之间的界面722),以与轴向排气通道732相交。在此实施例中,提供两个横通道734,它们以彼此成直角的方式延伸穿过芯714,以在坯料的轴线处相交。

将诸如Ti的清除金属的团块724放置在凹部730中,并且用密封塞772填充凹部730的开口,该密封塞被焊接就位并且用角焊缝774密封。因此,通道732、734在团块742与界面722之间提供气密连通。

在图7所示的实例中,包层716具有大致正方形的横截面,大约146mm的正方形外部尺寸,并且芯714具有大致正方形的横截面,大约127mm的正方形外部尺寸。包层716延伸至相距端表面730为大约75mm。通道734的直径大约为12mm。凹部730是直径为大约63.5mm的圆柱形。在试验中使用的焊接合金是在预热情况下的Select Arc 82AP。合金组合物是具有约67%-74%Ni;19%Cr;以及2.6%Nb(铌)的Inconel Filler Metal ERNiCr3。因此它是耐热的并且应该具有比诸如309或312的SS焊接合金更大的高温强度。

与本文示例的其他坯料(包括图1和图2-7以及图10所示的那些)相同,基本上相同的构造可以用于具有圆形或其他横截面且具有更小或更大尺寸的坯料。

虽然在此所示的实例中的焊缝被描述为角焊缝,但是可以使用任何其他形式的焊接,诸如电阻焊接。

受过训练的读者将清楚,如图2A所示,圆形坯料1C具有执行复合凹部30A的功能的单个凹部30C。凹部30C是通过机械加工或任何其他适合的方法形成的。坯料1C也可以轧制成如图14A至图14C所示的实心成品。

图1-3和图6中所示的每种坯料的芯可以设置有轴向延伸的通道,例如以36处的虚线轮廓示出,与芯的轴线X重合。这个通道可能是将坯料加工成具有不锈钢外包层的管或其他成品管状产品所需要的。这种完成的管的实例在图14D中示出,并且包括管状内部钢部分50,不锈钢外包层52冶金结合至该内部钢部分上。用于此目的的技术和设备与用于将常规(未包层)坯料加工成管的那些技术和设备基本相同。它们是熟知的并且不需要在这里描述。

坯料现在已准备好被加热并加工成成品。WO2011/048364包含了这些过程的详细描述,这里不必详细地重复。应当充分注意的是,起初对坯料的端部进行加热以使团块中的钛变得有活性,以便在界面18处的不锈钢达到一定温度(在该温度下,包层管中的铬以显著规模发生氧化)之前清除坯料中残留的氧气和除惰性气体以外的其他气体。这些其他气体包括氮气、氢气、二氧化碳以及一氧化碳。它们从界面经过屏障元件34被吸引到凹部30A中,在那里它们通过钛被吸收为氧化物、氮化物、氢化物以及碳化物。钛在600℃下对于实现这个目标无疑是活性的,但是现在认为它甚至在约250℃下对于开始这个清除过程也可以是充分活性的。

已发现在一些情况下,足够简单的是将坯料放置在常规加热炉中以便激活所述的钛。其原因尚不完全清楚。只要包层管是冷的,由于前述的型锻操作,该包层管保持与芯紧密接触。此外,块状钢芯充当散热器,当将坯料放置在炉中时该散热器最初倾向于保持包层管是相对冷的。此外,如果钛被放置在于芯的端部中形成的空腔或通道中,诸如下面参考图4'、7-7A和10-12所述,则炉热应当快速传递至钛。在这种构造中,密封该通道的板典型地是由碳钢制成的且相对较薄,并且由于碳钢比不锈钢的传热速度快得多,因此将炉热迅速地传递至钛。

然而,如果刚刚描述的步骤证明不令人满意,那么可以在将坯料放置在炉中之前对坯料端部对进行预热。用于进行该预热的技术描述在WO2011/048364中。

图3至5以及图8所示的每种坯料与已经描述的包括钢体和不锈钢的包层构件的坯料相似。然而,在这些坯料的芯中使用不同的空腔来容纳清除金属。在所有这些坯料中,先前描述的复合凹部被通道40代替,这些通道在具有与包层构件的界面的钢体的面中钻出或以其他方式形成。在每个通道40中放置Ti的预成形团块42,随后在Ti与包层构件之间插入屏障元件44。在每种情况下,屏障元件44包括可能穿孔的薄钢板,或由钢丝绒制成的插塞。Ti和屏障元件44用于该目的并且起到已经描述的Ti和屏障元件34的作用。

在图3-4'中,坯料B2也是正方形的,其包括芯14a,该芯插入包层管16a中并且焊接28a至该包层管16a。此坯料适用于生产参见图14A至图14C所示和前面描述的相同类型的产品。

在图4所示的坯料B3中,包层管60的端部被型锻成向内呈锥形,并且焊接62至芯的锥形端64。先前以直角钻出从一个面18到另一个面穿过钢体的这些通道40在芯的中心处相交。Ti团块42被放置在每个通道中,并且钢屏障元件44被插入在Ti与包层管之间的通道中。

图4A示出了坯料B3的一种修改,其中这些通道40具有基本上更小的直径。轴向延伸的通道66被钻入芯的端面68中。Ti团块70被放置在此通道66中而不是通道40中,并且实心碳钢密封板72在通道66的外端中被焊接至芯。由于在本实施例中,Ti通过围绕通道66的芯的部分74与包层板分开,因此可以不必在通道40中插入屏障元件44。因此,通道仅仅用于允许最初存在的或在坯料中放出的除惰性气体之外的气体被吸引至Ti。

如图11所示,在此坯料的一种修改中,包层管60的端部64'被型锻成向内呈阶梯状。将包层管挤压至直的表面上而不是锥形表面上可产生更整洁的结果并且更容易实现。

在图5和图5A中,坯料B4包括所谓“近似网形(near net shape)”的芯14d,该芯被插入并焊接28d至包层管16d,该包层管最初为正方形(如图5A所示)但被向下型锻以便在芯被插入管中之后收紧(take up)芯14d的形状。坯料B4适于被轧制成诸如图8e所示的工字梁,其具有芯90和不锈钢包层92。

在图8中,坯料B5旨在被加工成一种管状管或类似产品,诸如图14F所示的管,其包括一个管状外部钢部分54,不锈钢内部包层56冶金结合至该管状外部钢部分。因此,坯料B5包括一种穿孔的或中空的钢坯14e,该钢坯设置有沿着坯料的中心轴线X设置的通道36'。不锈钢管16e插入该通道中,并在焊接28e至坯料之前轻微向外型锻成与通道36'接触。如前所述,用于生产此类内包层管的技术和设备与用于将常规(未包层)坯料加工成管的那些技术和设备基本相同。它们是熟知的并且不需要在这里描述。

在图9中,坯料B6旨在被加工成如图14G所示的具有不锈钢包层96的钢板94。坯料B6包括铸造或轧制的钢板坯14f,该钢板坯上放置有不锈钢包层板16f。板16f围绕板坯14f的整个周边焊接28f至板坯14f。再次说明,用于生产此类包层板的技术和设备与用于加工常规(未包层)板的那些技术和设备基本相同。它们是已知的并且不需要在这里描述。应注意,板坯14f中的通道40将被板16f遮蔽,因此在图9A的平面图中实际上是不可见的。图9A旨在示出围绕板坯14f的周边的通道40的位置。

板坯产品的一种替代坯料如图12和图13所示。这可以被认为是图9和图9A的坯料的修改,将对它们具有的不同特征进行描述。该坯料包括芯814和冶金结合的包层816。在此实施例中,试剂团块842位于朝向板坯814的外侧表面846开口的孔844中。孔844通过通道840连接至界面表面,该通道与该孔成直角地相交。在团块被插入孔中之后,将孔通过焊接的塞848封闭。

尽管通道40在这些实例中被示出为大体围绕芯的周边对准并且大体垂直于芯的面,但这不是必需的。使这些通道不对准或呈其他取向放置可以例如减少轧制期间坯料的翘曲或失效。

现在参考图10,示出了另一个坯料B7的一端,该坯料包括容纳在不锈钢包层管116中的实心钢芯114。此坯料B7具有与坯料B1相似的特性,并且因此可以具有圆形或正方形的横截面形状。仅作为举例,在型锻之后,坯料B1和B7可以是正方形的,具有标称146mm宽的侧边,并且可以长达约12m。包层管可以具有约9.52mm的壁厚,因此芯的每个侧面的标称尺寸为127mm。

芯114具有与芯的纵向中心轴线X成直角的端面120。在芯被插入包层管中之前,典型地但不是必需地通过钻孔,在该端面中形成空腔122,该空腔在该实例中直径为63.5mm并且以轴线X为中心。在围绕该空腔的芯的剩余部分126中形成明显的倒角124。此外,从芯的每个侧面128的纵向中心线穿过部分126钻出较小的孔(例如直径为9.52mm),以便形成将空腔122连接至侧面128的通道130。

在此阶段,将预压实成团块132的一定量的Ti切屑插入空腔122中。碟形钢板140压紧在上面,并且沿着它的周边146被间隔焊接144至芯的端面120。板140的形状使得其碟形部分的面142适贴配合在倒角124上。

然后以类似的方式加工坯料的相对端,如现在将参考图10A描述的。在端面120中形成空腔122。将钛切屑的团块132放置在空腔122中,通过围绕空腔122的芯的部分126与界面128分开。在此部分126中形成四个通道130,并且还如124所示地被倒角。

现在将碟形钢板160压紧在芯的端面120上。板160的形状和取向与板140的不同。板160具有从中心基部164上升的周边凸缘162,并且如166所示被倒角。板160被定向成使得凸缘162朝向芯突出。在板处于适当位置时,凸缘的边缘170抵靠在芯的端面120上,并且在团块132与基部164之间存在相当大的空隙空间176。现在沿着倒角166将板160间隔焊接174至端面120。

在这种情况下,将芯114插入包层管116中。如在116a、116a'处的虚线轮廓所示,包层管的端部最初与芯的每个端面120重叠。如WO2012/143668中详细描述的,现在有利地沿着界面128将包层管型锻成与芯紧密接触。在此过程中,如116b、116b'所示,管端部被向内型锻成比芯114小的尺寸,例如89mm。然后将坯料带到压机,在压机中对端部116b、116b'进行压制,这样使得它们分别包裹在板140、160上并且用力压靠在上面,如图10中的116c和图10A中的116c'所示。在这种情况下,将管端部的边缘分别焊接至板140、160,如154、178所示。

由于已经讨论的原因,空腔122、122'中的钛通过板140、160和芯的围绕空腔的部分126与界面118分开。

板140、160将团块132保持在空腔中,有效地防止在包层管的端部被包裹在板140、160上之后钛与包层管的端部之间的任何接触可能性。板140、160还提供对抗在轧制期间施加至焊缝154、178的应力的额外支撑。

可以注意到,不需要通过切割包层管的端部来实现上述包裹过程。在迄今为止的试验中,已经在一些坯料的管端部中造出了纵向延伸的切口,以便于将管端部折叠在芯的端面上。在这类情况下,需要在折叠后将切割部分的边缘焊接在一起。虽然这种焊接不在本发明的预期范围之外,但是它是昂贵的,并且是坯料端部中的潜在弱点。

坯料B7可以使用与坯料B1所用的相同技术来加热并轧制成成品。显然,可以通过在此披露的方法和坯料生产其他合适形状和尺寸的产品。

如WO2011/048364和WO2012/143668中所详细解释的,原则上可以使用其他清除金属来代替钛,尤其包括铝和镁。此外,这些金属中的任何一种都可以单独使用或组合使用,并且以除团块以外的适合形式使用。然而,镁和铝两者都在低于轧制坯料的温度下熔化,因此必须采取步骤以防止熔融金属与包层管接触。一种这样的可能技术将是仅在芯的上面中形成一个或多个空腔,例如图3和3A中的空腔40'。清除金属将被放置在这些空腔中,并且当熔融时,将通过重力保持在这些空腔中。熔融金属的溢出可以由前述类型的屏障元件44防止。可替代地,清除金属可以容纳在放置于空腔中的钢罐中。只有罐的顶部将是开口的。在这两种情况下,为了避免溢出,必须确保在包层构件变成适当地结合至芯之前,坯料在炉中或在轧制的早期阶段不翻转。

图10和图10A中所示的布置已针对于在线轧机中轧制的一种坯料开发,并且旨在降低在坯料的尾端处的端部焊接失效的概率,这种失效是由于轧制期间芯金属的差异伸长率,如上所述。以这种方式伸长的芯金属驱动在它之前的团块132。该团块进入坯料的尾端中由板160提供的空隙空间176。在所讨论的实例中,空隙空间为50.8mm宽,据认为在大多数情况下足以适应这种挤出。即使团块最终被驱动成与板160的基部164接触,它的力也会通过焊缝174分布至芯126而不是完全地分布至焊缝178。此外,这种接触可能发生在轧制的后期,在芯与包层管已完全接合在一起之后。在这种情况下,坯料端部的失效可能性大大减小。

相反地,当坯料通过在线轧机轧制时,芯的前端变为凸的,中心部分相对于芯和包层管的周边向内缩进。焊缝154被径向向内牵拉并且最终成为被轧制的坯料的内部、而非外部部分。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1