一种燃烧转爆轰波速测量装置的制作方法

文档序号:17017669发布日期:2019-03-02 02:32阅读:180来源:国知局
一种燃烧转爆轰波速测量装置的制作方法

本发明涉及一种波速测量装置,适用于火炸药装药燃烧转爆轰过程波速测量。



背景技术:

为了提高火炸药的能量水平,通常使用较高能量组分。但这些较高能量组分的使用给火炸药带来的机械感度和冲击波感度升高、安全性降低的风险。火炸药的燃烧转爆轰性能是其安全性设计和评价的重要参数之一,对其配方设计、制造、运输、使用及贮存等具有重要的指导价值。在燃烧波向爆轰波过渡的过程中,波速的测量目前比较常用的为电离探针测速装置,是将系列探针等间距布设在特制的样品管上,利用高温高压的波阵面中的正负离子将原本断开的探针回路导通,从而产生电压脉冲信号,通过瞬时记录装置可获得波阵面运动到样品管不同位置处的时间,用已知探针间距除以获得的时间,即可获得两个探针间波针面传播的平均速度。

电离探针测速装置所采用的系列探针是通过多个贯通微孔穿过样品管壁与主装药接触的,十余个微孔的存在削弱了样品管的约束强度,使得微孔处成为样品管的薄弱环节,这样使得测量结果出现较大偏差,甚至会影响研究人员做出正确的判断;同时,探针的类型和材质及其制作过程未有统一标准,人为因素对探针的质量及响应影响较大;探针与主装药的接触状态也会影响探针的响应,进而影响时间参量的精确测定;利用该装置获得的是相邻探针间的平均速度,而非实时速度,不能精确表征波阵面的运动速度。

俄罗斯v.e.zarko等人利用调制微波干涉技术设计了固体推进剂瞬时燃速测量装置,以两列相位差为90°的正弦波和余弦波为信号源,利用积分检波器对经过燃烧场从燃烧表面反射回来的正弦分量和与余弦分量进行计算得到固体推进剂的燃烧速度。该装置系开放式,实际使用时还存在诸多局限性。其局限性之一来源于试样,推进剂试样存在一定厚度,微波衰减在所难免,推进剂试样的介电常数、可压缩性、几何形状、燃烧表面粗糙程度、金属含量及粒度分布、边界限燃区域的热效应及化学反应等都会对测量结果产生不同程度的影响;其局限性之二来源于测试装置,主要是由于微波于燃面处的反射的不均匀性造成的。当发生漫反射时,推进剂燃烧准平面的逆向移动,由于试样结构的原因和内表面的存在,导致试样在瞬时高压时发生形变。当发生镜面反射时,由于波导-电介质耦合转换等因素致使微波发生衰减。



技术实现要素:

本发明的目的是提供一种燃烧转爆轰波速测量装置,以克服现有技术存在的不足。

本发明实现过程如下:

一种燃烧转爆轰过程波速测量装置,包括微波传感器探头、信号产生模块、对消模块、收发前端模块、下变频模块、信号处理模块、数据处理模块及ac-dc电源模块。

所述的微波传感器探头,为单根铠装微型线缆,沿火炸药装药轴向布设于其内部,头部位于点火端,抵住点火器具,尾部从样品管底部堵头上的微孔穿出,与射频电缆插拔式连接,然后,射频电缆再与收发前端模块连接;传感器探头由于火炸药燃烧转爆轰过程中产生的高温烧毁,随着波阵面的推进而同步运动,实现微波信号的同步发射和接收;传感器探头系一次性使用;

所述的信号产生模块,提供发射多频简单连续波微波激励信号、接收下变频本振信号和信号处理时钟参考信号,具有超低相噪、体积小、模块化特性;

所述的对消模块,采用射频有源对消技术,将发射激励信号耦合部分功率,通过数字调整对消支路信号的幅度和相位,与回波信号合成,最终抵消掉大部分发射直接泄露信号,确保接收机的工作动态,减小相位和频率测量误差,提高测量精度;通过信号处理模块的监测和精准控制,激励信号泄露为30db以下;

所述的收发前端模块,将发射激励信号放大后通过环形器输出,同时回波信号经环形器后限幅放大送至下变频模块;将收发前端模块与微波传感器探头外置以保证发射泄露的对消效果;

所述的下变频模块,将接收回波信号与对消信号合成后与本振信号进行混频,得到基带信号;最后对基带信号进行滤波放大,得到功率大小适合于信处的信号;

所述的信号处理模块,完成对回波信号的中频采样、数字正交下变频、数字滤波和相位测量等处理,由adc采样芯片、fpga和dsp芯片组成;

所述的数据处理模块,采用嵌入式计算机,采用短时fft算法对回波信号的时频分布进行快速计算,完成对试验测量多普勒频移和相位数据的处理分析和终端显示;

所述的ac-dc电源模块,采用单相交流供电,为整个系统提供稳定的电源供应;

所述的燃烧转爆轰波速测量装置,信号产生模块、对消模块、下变频模块、信号处理模块及电源模块集成于机箱内部,数据处理模块和显示终端集成于嵌入式计算机内,收发前端模块与微波传感器探头一起置于机箱外部;微波传感器探头与射频电缆插拔式连接的设计,一方面便于更换微波传感器探头,另一方面使探测主机远离燃烧和爆炸现场,保证设备和人员的安全。

以上所述的燃烧转爆轰波速测量装置,其工作原理是基于连续波雷达对火炸药点火后波阵面的多普勒频移和相位差的测量从而获取波阵面的传播速度。信号产生模块发射超低相噪的单频连续波信号,当火炸药点火后,微波传感器探头由于高温烧毁,随着波阵面的推进而同步运动,波阵面的超高温等离子体使得微波传感器探头的微波信号具有一个附加的多普勒频移,同时相位随着波阵面的推进同步发射变化,反射的微波信号进入回波接收支路,经过混频、数字采样和fft滤波处理后,获取每一时刻波阵面的多普勒速度和相位信息,在信处模块中通过对测量数据进行联合处理后报告出波阵面的传播速度相对时间的变化曲线,并进行显示。

所述的相位差,是回波信号相对于发射信号的相位滞后:

式中,为回波信号与发射信号间的相位差;ω0为发射角频率;tr为回波滞后于发射信号的时间,tr=2x(t)/c;f为介质中电磁波的频率;c为介质中电磁波的传播速度,在自由空间传播时它等于光速;λ为介质中电磁波的波长;x(t)为波阵面的位移,它是时间的函数;n为介质的折射率;λ0为雷达的工作波长。

所述的多普勒频移,是由于波阵面的移动,造成回波信号与发射信号之间的频率差。

假设t时间内波阵面的径向移动速度vr为常数,则:

x(t)=x0-vrt(2)

式中,x0为t=0时位移,vr为波阵面的径向移动速度,当波阵面移向波源时其值为正,反之为负。

由于波阵面的移动产生的多普勒频移为:

当测得回波信号的多普勒频移后,根据式(3)和雷达的工作波长,即可获得波阵面的移动速度。

本发明相比现有的测量装置,具有下述优点:

1.采用多频简单连续波雷达,运用中频采样及数字正交下变频技术、多普勒频移和相位联合测量技术,将由火炸药燃烧转爆轰过程波阵面的运动而引起的回波频率和相位变化精确地测量出来,从而获得波阵面运动的实时速度。该装置具有测量精度高、安全性能好的特点;

2.获得的是燃烧转爆轰过程波阵面的实时运动速度,而非平均速度;

3.微波传感器探针只需从样品管堵头上的单个微孔穿入装药之中,对样品管的强度影响大幅降低。

附图说明

图1燃烧转爆轰波速测量装置组成示意图。图中,1ac-dc电源模块,2信号产生模块,3对消模块,4收发前端模块,5微波传感器探头,6下变频模块,7信号处理模块,8数据处理模块及显示终端。

图2微波传感器探头在样品管中的布设示意图。图中,9样品管底部堵头,10样品管,11火炸药装药,12点火器具,13样品管点火端堵头,14点火电线,15紧固螺栓(共4个,沿轴对称布设)。

具体实施方式

下面通过具体实施例对本发明做进一步解释说明。

依据燃烧转爆轰波速测量的特点设计本测量装置,如图1,包括微波传感器探头5、信号产生模块2、对消模块3、收发前端模块4、下变频模块6、信号处理模块7、数据处理模块8及ac-dc电源模块1。

所述的微波传感器探头5,为单根铠装微型线缆,φ1mm×500mm,长1m,其在样品管中的布设如图2。沿火炸药装药11轴向布设于其内部,抵住点火器具12,头部位于点火端,尾部从样品管底部堵头9中心上的微孔穿出,与15m长的射频电缆插拔式连接,然后,射频电缆再与收发前端模块4连接;传感器探头5由于火炸药燃烧转爆轰过程中产生的高温烧毁,随着波阵面的推进而同步运动,实现微波信号的同步发射和接收;传感器探头系一次性使用;

所述的信号产生模块2,提供发射频率可变的两个连续波点频微波激励信号、接收下变频本振信号和信号处理时钟参考信号,采用超低相噪晶振和超低噪声基底的锁相环和高性能vco,利用间接频率合成方式,大大降低发射信号的噪声基底和本振的相位噪声;

所述的对消模块3,采用先进的射频有源对消技术,通过数字调整对消支路信号的幅度和相位,在环形器20db左右隔离度的基础上,将收发隔离度提高到40db~50db以上,进一步减少发射信号的泄露,确保接收机的工作动态,减小相位和频率测量误差,提高测量精度。通过信号处理模块7的监测和精准控制,激励信号泄露为30db以下;

所述的收发前端模块4,将发射激励信号放大后通过环形器输出,同时回波信号经环形器后限幅放大送至下变频模块6;将收发前端模块4与微波传感器探头5外置以保证发射泄露的对消效果;

所述的下变频模块6,将接收回波信号与对消信号合成后与本振信号进行混频,得到基带信号,最后对基带信号进行滤波放大,得到功率大小适合于信处的信号;

所述的信号处理模块7,由adc采样芯片、fpga和dsp芯片组成,完成对回波信号的ad采样、数字正交下变频、数字滤波和相位测量等处理。过程中采用一路adc变换器直接对中频信号进行采样和量化,数字正交下变频后获得正交的i、q两路基带信号,幅度一致性好,相位误差比传统相干检波器小一个数量级,为后续的基于相位和多普勒频移的测速工作打下坚实的基础;

所述的数据处理模块8,采用嵌入式计算机,采用短时fft算法对回波信号的时频分布进行快速计算,完成对试验测量多普勒频移和相位数据的处理分析和终端显示;

所述的ac-dc电源模块1,采用单相交流供电,为整个系统提供稳定的电源供应;

所述的信号产生模块2、对消模块3、下变频模块6、信号处理模块7及电源模块1集成于机箱内部,数据处理模块和显示终端8集成于嵌入式计算机内,收发前端模块4与微波传感器探头5一起置于机箱外部;微波传感器探头5与射频电缆插拔式连接的设计,一方面便于更换微波传感器探头5,另一方面使探测主机远离燃烧和爆炸现场,保证设备和人员的安全。

本发明工作时,首先将一次性使用的微波传感器探头5布设于样品管10内特定位置,装置加电待机,在火炸药装药11点火的同时,给装置发送一路同步脉冲信号,装置自动启动微波激励信号的发射、射频对消、回波接收、信号和数据的采集及处理,装置将完整记录被测试火炸药从点火-燃烧-爆轰全过程波阵面的传播速度,并显示在计算机的终端软件界面上。

微波传感器探头在样品管中的布设操作如下:首先,将微波传感器探头5沿火炸药装药11轴向布设于其内部,头部位于点火端,抵住点火器具12,尾部从样品管底部堵头9上的微孔穿出,微波传感器探头5与射频电缆插拔式连接,然后,射频电缆再与收发前端模块4连接;底部堵头9为φ100mm×10mm的圆盘,中间轴向开通孔m3mm,螺距0.5mm,用于穿引微波传感器探头,底部堵头9焊接于样品管10的底部;点火端堵头13为m40mm的螺栓,螺距1.5mm,中间轴向开通孔φ2mm,用于穿引点火器具12用点火电线14;点火端堵头13侧开槽宽9mm用于安装4个对称的紧固螺栓15,使其固定于样品管10头部。

所述的一种燃烧转爆轰波速测量装置,其工作频段为厘米波;测距精度4mm;测速精度4mm/s;总功耗150w;采样频率30mhz;存储空间128g;信号传输线15m;系统整机重量10kg。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1