放电灯点亮装置及照明装置的制作方法

文档序号:8020351阅读:283来源:国知局
专利名称:放电灯点亮装置及照明装置的制作方法
技术领域
本发明涉及与放电灯寿命的末期相对应的放电灯点亮装置及照明装置。
背景技术
通常,放电灯在玻璃灯管的端部安装着电极,同时安装着塑料制的灯头,该灯头被装在照明器具主体等上面安装的灯座上。又,放电灯一旦到了寿命的末期,会发生作为半波放电的异常放电,电极近傍受到加热。特别是近年来正在普及的细玻璃灯管的放电灯,电极与玻璃灯管之间的间隔小,因此,异常放电引起玻璃灯管温度升高,有可能使玻璃灯管、塑料制的灯头或灯座等熔化。
向来已经知道的这种放电灯点亮点亮装置具有例如图26所示的结构。
该图26所示的放电灯点亮装置1在市电的交流电源e上连接全波整流电路2的交流输入端子,该全波整流电路2在直流输出端上连接DC-DC变换器3,该DC-DC变换器3上连接作为高频发生手段的逆变器电路4,在该逆变器电路4上连接着负载电路5。
又,负载电路5通过作为限流元件的电感L1连接于作为放电灯的荧光灯FL,在该荧光灯FL上并联连接着电容器C1。再相对于荧光灯FL并联地连接作为寿命末期检测手段的寿命末期检测电路6,该寿命末期检测电路6连接于逆变器电路4,对逆变器电路4进行控制。
而市电交流电源e的交流电压在全波整流电路2进行全波整流,经DC-DC变换器3平滑化及电压调整,形成直流电压,一旦该直流电压被输入逆变器电路4,逆变器电路4即发生规定频率的高频电压,施加在负载电路5上。在负载电路5,被施加的高频电压通过电感L1加在荧光灯FL及电容器C1上,利用电感L1及电容C1进行适度谐振,在荧光灯FL上施加起动所需要的高电压,使荧光灯FL起动、点亮。
又,在荧光灯FL点亮过程中,寿命末期检测电路6对荧光灯FL的电极间电压进行监视,一旦荧光灯FL到了寿命末期,寿命末期控制电路6即检测出寿命末期,对逆变器电路4进行控制,使其停止工作。
还有,该图26所示的放电灯点亮装置1的负载电路5的负载特性如图27所示,曲线A是全光点亮时的负载特性曲线,曲线B是调光点亮时的负载特性曲线,曲线C是正常的荧光灯FL的工作特性曲线,曲线D是寿命末期时的工作特性曲线。
于是,负载电路5的负载特性,无论是全光点亮还是调光点亮都是相似的圆弧状曲线,荧光灯FL随着寿命接近末期而灯电压慢慢上升,工作特性向上方逐步转移。而在荧光灯FL正常时全光点亮的情况下,在曲线A与曲线c的交点X1工作,在调光点亮的情况下则在曲线B与曲线c的交点X2工作。也就是说,荧光灯FL调光点亮时,输出电流和输出电压都一起减少大致相同的程度。
而在全光点亮时一旦荧光灯FL到了寿命的末期,则荧光灯FL在曲线A与曲线d的交点Y工作,因此保持以半波放电状态继续点亮而不熄灭,有可能发生熔化等情况。
又,由于逆变器电路4停止工作,荧光灯FL变暗,故有安全上的问题。
而与此不同的是具有多个荧光灯的情况,正常的荧光灯在使其点亮的状态下,作为只使异常的荧光灯熄灭的放电灯点亮装置,有例如本专利特开平1-231295号公报所述的结构。在该特开平1-231295号公报中,将多支荧光灯并联连接点亮时,如果任一荧光灯被测出有异常,就将逆变器电路的输出降低到还能维持其他正常的荧光灯点亮的程度。
于是,在任一荧光灯的寿命末期,通过减小逆变器电路的输出使其点亮,由于减小高频发生手段的输出使其他正常的荧光灯点亮,因而确保最低限度的照明水平。
而该特开平1-231295号公报所述的放电灯点亮装置在用于细管的荧光灯时即使减小逆变器电路的输出,玻璃灯管的温度也过高。而且,如果将输出减小到不能维持寿命末期的荧光灯的放电,则难以维持正常荧光灯的点亮。特别是家用照明器具,往往对额定消耗功率不同的两个以上的荧光灯使用一个逆变器电路进行点亮,因此存在要维持没有异常的正常荧光灯点亮有困难的问题。
本发明监于上述存在问题而作,目的在于提供即使是细管的放电灯也不使用复杂的保持电路而能在寿命末期使放电灯减小亮度以至熄灭的放电灯点亮装置及照明装置。

发明内容
本发明具备具有热阴极的放电灯、电感及电容的负载电路、向该负载电路提供高频输出的高频发生手段、控制该高频发生手段、对所述放电灯的全光点亮及调光点亮进行设定的控制手段、以及在所述放电灯全光点亮时或热阴极的电极预热时给予所述负载电路以相对较低开路电压及较大短路电流的负载特性,同时在调光点亮时或起动时给予所述负载电路以相对较高开路电压及较小短路电流的负载特性的负载特性赋予手段。
于是,在热阴极加热时利用负载特性赋予手段采用相对较低开路电压及较大短路电流的负载特性,不必在热阴极温度较低的状态下勉强开始放电灯的放电,由于放电灯的热阴极充分加热,防止热阴极受损伤,在起动时采用相对较高开路电压及较小短路电流的负载特性,利用施加高开路电压促进放电灯的起动,在全光点亮时采用较低开路电压及较大短路电流的负载特性,提高放电灯的亮度,在调光点亮时采用较高开路电压及较小短路电流的负载特性,使放电灯能够深调光并调光点亮,在全光点亮时放电灯一旦到了寿命末期,灯电压变得比开路电压高,因此放电灯不能维持点亮而熄灭。还有,即使是在例如放电灯多个并联连接的情况下,寿命末期的放电灯熄灭,但是正常的放电灯将继续点亮。
又,本发明具备分别具有放电灯、电感及电容、而且并联连接的多个负载电路、向所述各负载电路提供高频输出的共用的高频发生手段;以及赋予所述负载电路以使寿命末期的放电灯熄灭、使正常的放电灯继续全光点亮的负载特性的负载特性赋予手段。
这样,采取使并联连接的多个负载电路的任一个放电灯如果到了寿命末期就熄灭、使正常的放电灯继续点亮的负载特性,借助于此,防止由于使寿命末期的放电灯点亮造成的热阴极的加热,也防止全部放电灯熄灭而一片黑暗。
又,本发明是负载电路的电感器与放电灯串联连接,电容器与放电灯并联连接,具备可改变所述电容器的电容量的电容量可变手段的装置。
于是,一旦减小电容器的电容量,负载电路的固有谐振频率变大,因此如果高频发生手段的输出频率不变,则施加在放电灯上的开路电压变低,相反,一旦加大电容器的电容量,负载电路的固有谐振频率变低,因此,施加在放电灯上的开路电压变高。
还有,本发明是具备检测放电灯的寿命末期、一旦检测出放电灯的寿命末期、就利用电容量可变手段减小电容器的电容量的检测手段的装置。
于是,利用减小电容器的电容量的方法,在放电灯的寿命末期降低开路电压使放电灯熄灭。
还有,本发明是具备在放电灯调光点亮时检测手段一旦检测出放电灯的寿命,就可改变高频发生手段的输出频率的频率可变手段的装置。
于是,在担心即使放电灯到了寿命末期也仍然半波放电点亮或继续点亮的情况下,也可以利用一旦检测出寿命末期就改变高频发生手段的输出频率的方法,使负载电路的负载特性成为使开路电压比寿命末期的放电灯的灯电压低的特性,使放电灯可靠地熄灭。
还有,本发明是多个负载电路的放电灯额定消耗功率不同的装置。
于是,即使是额定消耗功率不同的放电灯,也都发挥其作用。
还有,本发明是具备能够选择全光点亮及调光点亮、在调光点亮时任一放电灯到了寿命末期、就将高频发生手段的输出改成全光点亮的控制电路的装置。
于是,在调光点亮时由于赋予负载电路以高开路电压的负载特性,即使放电灯到了寿命的末期,也容易继续保持半波放电点亮。而在全光点亮时,使其在开路电压低、短路电流大的负载特性部分工作,由于寿命末期的放电灯的灯电压变高,故不能够继续点亮。因此放电灯到了寿命的末期时以控制手段进行全光点亮,以此可靠地使寿命末期的放电灯熄灭。
又,本发明具备包含放电灯、电感及电容的负载电路、在所述放电灯全光点亮时发生其频率比所述负载电路的固有谐振频率低得多的高频输出,而在所述放电灯调光点亮时发生其频率比固有谐振频率高的高频输出,向所述负载电路提供高频输出的高频发生手段、以及控制该高频发生手段、对所述放电灯的全光点亮及调光点亮进行设定的控制手段。
于是,在全光点亮时,高频发生手段发生的高频波是比负载电路的固有谐振频率低得多的频率,因此负载电路实际上不谐振,高频发生手段的开路电压低,在放电灯的寿命末期,与正常时相比灯电压变高,而开路电压变得比寿命末期的灯电压低,放电灯不能够维持点亮而熄灭,在调光点亮时,高频发生手段发生的高频波是比负载电路的固有谐振频率高的频率,因此负载电路发生谐振,高频发生手段的开路电压变高,短路电流变小,可以深调光。还有,在多个负载电路并联连接的情况下,寿命末期的放电灯熄灭,正常的放电灯继续点亮。
又,本发明是负载电路的电感与放电灯串联连接、电容是与放电灯并联连接的小电容量的电容器、负载电路的固有谐振频率与高频发生手段在全光点亮时的工作频率相比设定得十分高的装置。
于是,利用把与放电灯并联连接的电容器的电容量做得小,使得在放电灯全光点亮时发生比负载电路的固有谐振频率低得多的高频输出,并且在放电灯调光点亮时发生比固有谐振频率高的高频输出。
还有,本发明是,高频发生手段在全光点亮时的工作频率以f表示,负载电路的固有谐振频率以f0表示时,满足关系式f0/3≤f≤f0/2的装置。
于是,一旦高频发生手段在全光点亮时的工作频率f满足关系式f0/2<f≤f0,就变成相位超前模式,高频发生手段暂时处于短路状态,因此利用使全光点亮时的工作频率f满足关系式f0/3≤f≤f0/2的方法,防止变成相位超前模式。
又,本发明是负载电路多个并联连接于高频发生手段的输出侧、对寿命末期的放电灯减小其亮度乃至使其熄灭、正常的放电灯继续点亮的装置。
于是,即使某一放电灯到了寿命末期,其亮度减小乃至熄灭,正常的放电灯继续点亮,因此不会完全变暗,是安全的。
又,本发明是具备与负载电路并联连接的电感的装置。
于是,利用将电感与负载电路并联连接的方法,即使例如相位超前电流流入负载电路,也能够利用流入电感的相位滞后电流抵消相位超前电流,设计的自由度高,防止高频发生手段相位超前工作。
又,本发明是将放电灯起动时工作频率的高次谐波的谐振电压施加在所述放电灯上的装置。
于是,像放电灯起动时那样无负载时,产生相对于高频发生手段的工作频率的高次、例如n次的谐振电压,所以高频发生手段在谐振电压的第n半周截止。
又,本发明是具备安装着放电灯的照明装置主体,以及使所述放电灯点亮的放电灯点亮装置的照明装置。
于是,起了各放电灯点亮装置的作用。
附图概述

图1表示本发明的放电灯点亮装置第1实施形态的方框图。
图2是同上图1所示的放电灯点亮装置的负载电路的负载特性曲线。
图3是表示同上照明装置的剖面的概念图。
图4是表示同上第2实施形态的放电灯点亮装置的电路图。
图5是表示同上第3实施形态的放电灯点亮装置的电路图。
图6是同上图5的负载电路的负载特性曲线。
图7是同上图5的负载电路的放电灯连续调光点亮时的负载特性曲线。
图8是同上图5的负载电路开始起动时切换到第2电容器,点亮后切换到第1电容器的情况下的负载特性曲线。
图9是表示同上第4实施形态的放电灯点亮装置的电路图。
图10是表示同上第5实施形态的放电灯点亮装置的电路图。
图11是表示同上第6实施形态的放电灯点亮装置的电路图。
图12是表示同上第7实施形态的放电灯点亮装置的电路图。
图13是表示同上第8实施形态的放电灯点亮装置的电路图。
图14是同上图13的负载电路的频率特性曲线。
图15是同上图13的负载电路的负载特性曲线。
图16是表示同上第9实施形态的放电灯点亮装置的电路图。
图17是表示同上图16的放电灯点亮装置的负载电路的负载特性曲线。
图18是比较例的负载电路的负载特性曲线。
图19是同上图16放电灯点亮装置的负载电路的频率特性曲线。
图20是同上图16放电灯点亮装置起动时通过开关手段的电流波形的波形图。
图21是比较例的放电灯点亮装置起动时通过开关手段的电流波形的曲线。
图22是表示同上第10实施形态的放电灯点亮装置的电路图。
图23是图22的放电灯点亮装置在无负载时流向各部的电流波形24是表示同上第11实施形态的放电灯点亮装置的电路图。
图25是表示同上第12实施形态的放电灯点亮装置的电路图。
图26是表示已有例的放电灯点亮装置的电路图。
图27是表示已有例的放电灯点亮装置的负载电路的负载特性曲线。
本发明的最佳实施形态下面参照附图对本发明的实施形态加以说明。
下面参照图1对本发明第1实施形态的放电灯点亮装置加以说明。对于与已有技术的例子对应的部分标以相同的符号并进行说明。
该图1所示的第1实施形态的放电灯点亮装置1,在市电的交流电源e上连接全波整流电路2的交流输入端子,该全波整流电路2的直流输出端子上连接利用平滑化等减少高次谐振成份的、作为预调节器的升压斩波器(chopper)电路等的DC-DC变换器3,构成可变直流电源11,在该DC-DC变换器3上连接具有未图示出的开关手段的作为高频发生手段的逆变器电路4,在该逆变器电路4上连接着负载电路5,逆变器电路4利用作为控制手段的控制电路12改变频率,以此对全光点亮与调光点亮进行控制。
又,负载电路5通过作为限流元件的电感L1连接于在玻璃灯管两端有作为热阴极的灯丝及灯头的作为放电灯的细管径荧光灯FL上,在该荧光灯FL上并联连接着起动时利用谐振使荧光灯FL起动的起动用电容器C1。
又,由逆变器电路4、电感L1及电容器C1构成负载特性赋予手段14。
下面接着对上述第1实施形态的动作加以说明。
首先,市电交流电源e的交流电压由全波整流电路2整流,由DC-DC变换器3进行平滑化并调整电压以形成直流电压,一旦将该直流电压输入逆变器电路4,逆变器电路4即以可变频率发生高频电压、施加在负载电路5上。在负载电路5中,被施加的高频电压通过电感L1加在荧光灯FL及电容器C1上,利用电感L1及电容器C1进行适度谐振,在荧光灯FL上施加起动所需要的高电压,使荧光灯FL起动、点亮。
又,在该荧光灯FL全光点亮时,其负载特性是相对较低的开路电压及较大的短路电流,在进行调光点亮时的负载特性则是相对较高的开路电压及较小的短路电流。
又,负载电路5的负载特性如图2所示,曲线A是全光点亮时的负载特性曲线,而曲线B是调光点亮时的负载特性曲线,在全光点亮时开路电压低,而短路电流大。
与此相反,在调光点亮时开路高压高,而短路电流小。而曲线a是正常时的荧光灯FL的工作特性曲线,曲线b是寿命末期时的荧光灯FL的工作特性曲线。
而在荧光灯FL正常时,负载特性曲线A与工作特性曲线a的交点X1成为工作点。
另一方面,在荧光灯FL全光点亮时,一旦到达寿命末期,与正常时相比,荧光灯FL的工作特性如曲线b所示发生变化,灯电压变得比开路电压高,因此工作特性曲线b与负载特性曲线A不相交。所以荧光灯FL因不能维持点亮而熄灭。
因此,可以在寿命的末期避免荧光灯FL灯丝近傍的玻璃灯管、灯头或灯座等发生熔化。
另一方面,在调光点亮时,负载特性曲线B与工作特性曲线a的交点X2成为工作点。
下面参照图4对第2实施形态的放电灯点亮装置1加以说明。
该图4所示的放电灯点亮装置1安装在图3所示家用的直接装在天花板上的式样的照明装置21上。
如图3所示,照明装置21具备将作为说明器具的圆形浅盘状底座22安装在天花板上的装置并安装在天花板上,在底座22上安装着向下的透光盖24。
又在底座22上形成尽量浅的、也就是薄形的反射板23,同时与该反射板23相对,同轴配置作为放电灯的荧光灯FL1、FL2,设置的透光盖24包围、覆盖着底座22、反射板23及荧光灯FL1、FL2,反射板23形成尽可能将荧光灯FL1、FL2射来的光反射成使透光盖24面上的亮度均匀的形状。还有,除了荧光灯FL1、FL2外的放电灯点亮装置1配置容纳于底座22与反射板23之间形成的空间25内。
而荧光灯FL1、FL2的型号分别为FHC27及FHC34,都是灯管外径为16.5mm的环形细管,在全光点亮时以消耗功率为38瓦及48瓦的高输出点亮。
又,放电灯点亮装置1在市电的交流电源e上连接全波整流电路2后再连接DC-DC变换器3。该DC-DC变换器3在全波整流电路2的直流输出端子之间连接电感L2与成为开关手段的场效应晶体管Q1的串联电路,在场效应晶体管Q1上连接着二极管D1及电容器C2的串联电路。还有,在该DC-DC变换器3输入侧的全波整流电路2的输出端子上连接着输入电压检测电路26的电阻R1及电阻R2的串联电路,与DC-DC变换器3的输出侧的电容器C2并联连接着输出电压检测电路27的电阻R3及电阻R4的串联电路。
然后,将输入电压检测电路26的电阻R1及电阻R2的连接点与输出电压检测电路27的电阻R3及电阻R4的连接点连接于控制电路28,该控制电路28连接于场效应晶体管Q1的栅极上,按照这输入电压检测电路26及输出电压检测电路27检测到的电压,对场效应晶体管Q1的开关进行控制,使DC-DC变换器3的输出电压保持一定的电压值。又用市电的交流电源e、全波整流电路2及DC-DC变换器3构成可变直流电源11。
又在DC-DC变换器3上连接半桥式的逆变器电路4。而逆变器电路4在DC-DC变换器3的输出端子之间串联连接着一对作为开关手段的场效应晶体管Q2、Q3。又在控制电路12上连接振荡器31,该振荡器31连接于比较器32的一个输入端,比较器32的另一输入端上连接于基准电压E1,比较器32的输出端在连接于场效应晶体管Q3的栅极的同时,还通过逆变器电路33连接于场效应晶体管Q2的栅极上。
还有,在作为逆变器电路4的输出端子的场效应晶体管Q3的两端上并联连接着两个负载电路51、52。
又,负载电路51通过隔开直流成分用的电容器C31及作为限流元件的电感L11,连接于FHC型荧光灯FL1,在该荧光灯FL1上并联连接着起动时利用谐振使荧光灯FL1起动的起动用电容器C11。同样,负载电路52通过隔开直流成分用的电容器C32及作为限流元件的电感L12连接于FHC型的荧光灯FL2,在该荧光灯FL2上并联连接着起动时利用谐振使荧光灯FL2起动的起动用电容器C12。
下面对上述第2实施形态的放电灯点亮装置1的动作加以说明。
首先,用全波整流电路2对市电的交流电源e的交流电压进行全波整流。
然后,在DC-DC变换器3,用输入电压检测电路26检测输入电压,同时用输出电压检测电路27检测输出电压,利用控制电路28根据这些输入电压及输出电压使场效应晶体管Q1导通、截止,以升压的电压对电容器C2充电。
又,在逆变器电路4,利用控制电路12,对振荡器31进行控制,利用比较器32与基准电压E1进行比较,使场效应晶体管Q2及场效应晶体管Q3交替导通、截止,产生高频输出。又利用逆变器电路33使场效应晶体管Q2及场效应晶体管Q3某一方导通则另一方截止,反之,若某一方截止的话,则另一方导通。
而且,利用振荡器31改变频率,在荧光灯FL1、FL2全光点亮时负载特性变成相对较低的开路电压及较大的短路电流,在起动时、调光点亮时其负载特性取相对较高的开路电压及较小的短路电流。从而,不会发生起动时荧光灯FL1、FL2在预热不足的状态下点亮的情况,能够顺利起动,同时在全光点亮时一旦荧光灯FL1、FL2中的某一支达到寿命的末期,则荧光灯因开路电压低而熄灭,而荧光灯FL1、FL2的并非寿命末期的某另一支继续全光点亮。
因此,不管FL1、FL2的任何一支荧光灯到了寿命末期,都能够防止发生变暗的情况。
于是,采用上述实施形态的照明装置21,相对已有的一般型号的荧光灯FL1、FL2的灯管外径为29mm,而该实施形态为16.5mm,因此底座22的高度可以做成平均小40%的薄型,因此配置在公寓等天花板高度较低的室内也不会有压迫感。
又,一般型号的荧光灯的额寿命为6000小时,而它有9000小时,达到1.5倍。
而且不使用复杂的保持电路,在寿命末期使荧光灯FL1、FL2熄灭,以此使细管荧光灯FL1、FL2在容易发生温度异常升高的寿命末期不发生该情况,可以防止玻璃灯管、灯头或灯座等发生熔化。
还有,如上所述,通过使用额定消耗功率不同的荧光灯FL1、FL2的办法,例如把环形灯管的直径做得不同,配设成同心圆,可以合适地设计家庭用的照明装置21。
又,参照图5对第3实施形态的放电灯点亮装置1加以说明。
该第3实施形态的放电灯点亮装置1是在第2实施形态的放电灯点亮装置1中,通过电容器C31及电感L11将场效应晶体管Q3连接在作为荧光灯FL1的热阴极的灯丝FL1a及FL1b的一端之间,同时通过电容器C32及电感L12连接于作为荧光灯FL2的热阴极的灯丝FL2a及FL2b的一端之间。又在荧光灯FL1的灯丝FL1a及FL1b的一端之间连接通过检测荧光灯FL1的端子之间的电压来检测寿命末期的寿命末期检测电路61,在荧光灯FL2的灯丝FL2a。FL2b的一端之间连接同样检测荧光灯FL2的端子间电压以检测寿命末期的寿命末期检测电路62。
还在荧光灯FL1的灯丝FL1a、FL1b的另一端间连接荧光灯FL1起动用的电容量可变电路361,在荧光灯FL2的灯丝FL2a的FL2b的另一端之间连接荧光灯FL2起动用的电容量可变电路362。又电容量可变电路361是将通常用的电容器C51与比该电容器C51电容量小的寿命末期用的电容器C61并联连接,连接得能够利用由寿命末期检测电路61控制的切换开关371进行选择切换,电容量可变电路362是将通常用的电容器C52与比该电容器C52电容量小的寿命末期用的电容器C62并联连接,连接得能够利用由寿命末期检测电路62控制的切换开关372进行选择切换。而在荧光灯FL1、FL2两者都正常的情况下,分别由寿命末期检测电路61、62对切换开关371、372进行切换,连接电容器C51、C52,负载电路51、52以通常的负载特性点亮荧光灯FL1、FL2。
另一方面,在荧光灯FL1、FL2某一个到了寿命末期,利用对应的某一个寿命末期检测电路61、62使相应的切换开关371、372切换,则连接对应的电容器C61、C62,对应的一个负载电路51、52变成低开路电压,将被测出寿命末期的某一荧光灯FL1、FL2完全熄灭,正常的另一荧光灯FL1、FL2维持点亮。
又,负载电路51、52的负载特性如图6所示,曲线C是连接着通常的电容器C51、C52时的负载特性曲线,曲线D是连接着寿命末期的电容器C61、C62时的负载特性曲线,曲线c是正常的荧光灯FL1、FL2的工作特性曲线,曲线d是寿命末期时的荧光灯FL1、FL2的工作特性曲线。
而荧光灯FL1、FL2正常的情况下,在负载特性曲线C与工作特性曲线c的交点X点亮。
另一方面,例如荧光灯FL1一旦达到寿命的末期,利用切换开关371将寿命末期用的电容器C61切换连接于负载电路51,以此使负载特性变化到负载特性曲线D上,降低开路电压。因而,荧光灯FL1的工作特性变化到工作特性曲线d上,灯管电压变高,因此负载特性曲线D与工作特性曲线d不相交。因此,到了寿命末期的荧光灯FL1不能维持点亮而熄灭。还有,另一荧光灯FL2由于连接着通常用的电容器C52而继续点亮。
又,连续调光点亮的情况下的负载特性如图7所示,从完全点亮时的负载特性曲线C,随着逆变器电路4的输出频率提高,调光度变大,负载特性曲线从C1向C2转移,工作点从交点X向交点X1,交点X2转移,连续进行调光。
还有,在起动时切换到寿命末期的电容器C61、C62,在荧光灯FL1、FL2点亮后切换到通常用的电容器C51、C52的情况下的负载特性如图8所示,起动时连接寿命末期用的电容器C61、C62,以此使负载特性曲线变成曲线C所示,因此,可以把高的开路电压加在荧光灯FL1。FL2上使起动变得容易。
而后,切换连接到通常用的电容器C51、C52,负载特性曲线变成曲线D,荧光灯FL1、FL2在作为工作点的交点X点亮。还有,荧光灯FL1、FL2一到寿命末期,负载特性曲线D与寿命末期时的工作特性曲线不相交,因此寿命末期的荧光灯FL1、FL2熄灭。
下面还参照图9对第4实施形态的放电灯点亮装置1加以说明。
该第4实施形态的放电灯点亮装置1是在第3实施形态的放电灯点亮装置1中,改变电容量可变电路361、362,连接电容量可变电路381、382而成的。也就是说,电容量可变电路381由电容器C71与电容器C81及寿命末期检测电路61控制的切换开关391并联连接,电容量可变电路382由电容器C72与电容器C82及寿命末期检测电路62控制的切换开关392并联连接。
而在荧光灯FL1、FL2都正常的情况下,分别由寿命末期检测电路61、62将切换开关391、392闭合,将电容器C81、C82与电容器C71、C72并联连接,以增加电容量,达到与第3实施形态的电容器C51、C52相同的电容量,负载电路51、52以通常的负载特性点亮荧光灯FL1、FL2。
另一方面,荧光灯FL1、FL2某一个到3寿命末期,利用对应的某一个寿命末期检测电路61、62一断开对应的切换开关391、392,对应的电容器C81、C82即被切断,只有电容器C71、C72连接着,使电容量变小,与第3实施形态的电容器C61、C62电容量相同,对应的某一个负载电路51、52的开路电压变低,被检测出到了寿命末期的某一个荧光灯熄灭,正常的另一荧光灯FL1、FL2维持点亮。
还有,基本动作与第3实施形态相同。
下面再参照图10对第5实施形态的放电灯点亮装置1加以说明。
该第5实施形态的放电灯点亮装置1是在第1实施形态的放电灯点亮装置1中,在1个共用的逆变器电路4上并联连接3个负载电路51、52、53而成的。也就是说,负载电路51具有电容器C31、电感L11及荧光灯FL1的串联电路,与荧光灯FL1并联连接着电容器C11。负载电路52具有电容器C32、电感L12及荧光灯FL2的串联电路,与荧光灯FL2并联连接着电容器C12,负载电路53具有电容器C33,电感L13荧光灯FL3的串联电路,与荧光灯FL3并联连接着电容器C13。
又,荧光灯FL1、FL2、FL3可以分别使用额定消耗功率不同的荧光灯,在这种情况下,对电感L11、L12、L13进行调整,使其流过规定值的灯管电流。
又,负载电路51、52、53的固有谐振频率可以利用选择电容器C31、C32、C33及电感L11、L12及L13的值的方法设定为所需的任意值。
又利用把荧光灯FL1、FL2、FL3在发全光时逆变器电路4的输出频率设定得比负载电路51、52、53的固有谐振频率小得足够多的方法,使得某一荧光灯FL1、FL2、FL3到达寿命末期时对应的荧光灯FL1、FL2、FL3熄灭,而FL1、FL2、FL3的其余正常的荧光灯继续点亮。又利用这样设定输出频率的方法,使荧光灯FL1、FL2及FL3与并联连接于该荧光灯FL1、FL2、FL3的电容器C11、C12、C13不谐振,因此电感L11、L12、L13只是作为电感起作用,开路电压变低,这时的开路电压大致由逆变器电路4的输出电压决定。
下面又参照图11对第6实施形态的放电灯点亮装置1加以说明。
该第6实施形态的放灯点亮装置1是在第1实施形态的放电灯点亮装置1中,在1个共用的逆变器电路4上并联连接两个负载电路51、52,各负载电路51、52上分别将两个荧光灯FL1与FL5、FL2与FL6串联连接。也就是说,负载电路51具有电容器C31、电感CL1、荧炮灯FL1及荧光灯FL5的串联电路,与荧光灯FL1并联连接着起动用的电容器C11,与荧光灯FL1及荧光灯FL5的串联电路并联连接电容器C91,负载电路52具有电容器C32、电感L12、荧光灯FL2及荧光灯FL6的串联电路,与荧光灯FL2并联连接着起动用的电容器C12,与荧光灯FL2及荧光灯FL2的串联电路并联连接着电容器C92。
又,一旦在负载电路51、52上加上逆变器电路4的高频输出,就通过电容器C31、C32在荧光灯FL5、FL6两端间加上全部电压在最初进行起动点亮。
接着,将电压集中加在荧光灯FL1、FL2的两端之间,因而荧光灯FL1、FL2接着起动点亮,逐次进行起动。
下面再参照图12对第7实施形态的放电灯点亮装置1加以说明。
该第7实施形态的放电灯点亮装置1是在第2实施形态的放电灯点亮装置1中,与荧光灯FL1并联连接灯电压检测电路411,与荧光灯FL2并联连接灯电压检测电路412,在这些灯电压检测电路411、412上连接根据检测出的灯电压判断寿命末期的作为判断手段的判定电路43,该判定电路43连接于控制电路12。而基本动作与第2实施形态相同,但是,一旦例如如荧光灯FL1到了寿命末期,灯电压检测电路411检测出的灯电压变高,判定电路43判断为寿命末期,控制电路12使场效应晶体管Q2及场效应晶体管Q3的工作频率下降,降低逆变器电路4的振荡频率,使开路电压下降,使寿命末期的荧光灯FL1熄灭。而正常的荧光灯FL2由于两端之间的电压较低,即使逆变器电路4的输出电压低也能维持点亮。
又,调光点亮时,在荧光灯FL1、FL2中的某一个到了寿命末期的时候也同样使逆变器电路4的频率降低,利用变更为逆变器电路4的输出电压低的全光点亮的方法,即使在逆变器电路4的输出电压高的调光点亮时某一个荧光灯FL1、FL2到了寿命的末期,也能可靠地使寿命末期的荧光灯FL1、FL2熄灭。
下面又参照图13对第8实施形态的放电灯点亮装置1加以说明。
该第8实施形态的放电灯点亮装置1是在第2实施形态的放电灯点亮装置1中,逆变器电路4为电流谐振的方式,逆变器电路4按照控制全光点亮及调光点亮的控制电路12,利用驱动电路41对场效应晶体管Q2及场效应晶体管Q3的频率进行控制的装置。
而逆变器电路4的工作频率在全光点亮时的频率f1设定为50KHz,在调光点亮时的频率f2设定为105KHz,荧光灯FL1为FHC34型,电感L1为1.15mH,电容器C1为2200pF,电容器C3为0.1μF,负载电路5的固有谐振频率f0为100KHz。
还有,例如电感L1为1.3mH,电容器C1为1500pF,负载电路5的固有谐振频率为114KHz,全光时的频率为45Khz也一样。
而负载电路5的频率特性如图14所示,以f0表示负载电路5的固有谐振频率,f1表示全光点亮时的频率,f2表示调光点亮时的频率,全光点亮时的频率f1比固有谐振频率f0低得多,输出电压也低。与其不同,调光点亮时的频率f2比固有谐振频率f0高,输出电压也比全光点亮时的电压高。
又,负载电路5的负载特性如图15所示,曲线A是全光点亮时的负载特性曲线,曲线B是调光点亮时的负载特性曲线,在荧光灯FL1全光点亮时,开路电压低,短路电流大。又,由于全光点亮时的频率f1比固有谐振频率f0低得多,因此只有电感L1作为限流元件起作用,开路电压变低。
与此相比,在荧光灯FL1调光点亮时反而是开路电压大,而短路电流小。
又,荧光灯FL1如图15所示,在正常时的初期点亮时的工作特性如曲线a所示,而随着使用时间的增加,工作特性曲线向上方移动,在寿命末期时变成曲线b。也就是说,在荧光灯FL1寿命的末期,利用工作特性决定的灯电压比利用负载特性曲线A决定的开路电压高,因此不能形成作为工作点的交点,所以荧光灯FL1不能维持点亮而熄灭。
又,由于可以减小电容器C1的电容量,可以将固有谐振频率f0设定得比全光点亮时的频率f1高得多,因此电路结构可以简化。
下面再参照图16对第9实施形态的放电灯点亮装置1加以说明。
该第9实施形态的放电灯点亮装置1是在第8实施形态的放电灯点亮装置1中,与第2实施形态的放电灯点亮装置1一样,连接例如两个负载电路51、52,又连接两个荧光灯FL1、FL2而成的。而荧光灯FL1、FL2如果起动电压差不大,可以采用不同的消耗功率。
而负载电路51、52的负载特性如图17所示,曲线C是负载电路51、52的负载特性曲线,曲线a是荧光灯FL1、FL2正常时的全光点亮的工作特性曲线,曲线b同样是荧光灯FL1、FL2寿命末期时的工作特性曲线。也就是说,负载电路51、52的负载特性设定为在输出电流大的区域输出电压低,在输出电流小的区域输出电压急剧上升,在荧光灯FL1、FL2全光点亮时,负载特性曲线C与工作特性曲线a的交点X为工作点正常地工作。而荧光灯FL1、FL2随着使用时间的增加,其工作特性曲线慢慢向上移动,在寿命末期时变成曲线b。因此荧光灯FL1、FL2一旦到寿命末期,负载特性曲线C在输出电流小的区域与工作特性曲线b交叉,荧光灯FL1、FL2只在交点Y工作,因此,寿命末期的任一荧光灯FL1、FL2即使是点亮着也处于亮度大大减小的状态,可以防止荧光灯FL1、FL2的灯丝傍异常发热,同时可以容易认识到荧光灯FL1、FL2处于寿命末期。
还有,已有例的负载电路的负载特性如图18所示,负载特性大致成圆弧状曲线C1的形状,在荧光灯寿命末期时的工作特性曲线b与负载特性曲线C1的交点Y1的位置上,输出电流与正常时的交点X1的输出电流没有很大的差,一到寿命末期,由于半波放电,灯丝近傍容易产生高温。
又,第9实施形态的负载电路的频率特性如图19所示,在无负载的起动时,在频率为负载电路51、52的固有谐振频率f0的1/3时发生相对说来较小的低次谐振,如果在频率为f0/3的近处设定起动时的输出频率,则发生3次谐波的谐振,而且可以实现相位滞后的开关。而且,不限于f0/3,只要是频率为f0/3~f/2的范围,就不容易发生相位超前动作。
再者,通过场效应晶体管Q3的电流波形如图20所示,分别以时间t0表示场效应晶体管Q3接通的时刻,时间t1表示截止时刻。也就是说,在起动的没有负载时,场效应晶体管Q1一接通,就发生逆变器电路4的工作频率的3次谐波的谐振,使谐振电流流过场效应晶体管Q3。因此,在第3个半周期的电流流过时,场效应晶体管Q3截止。而且,由于这时电流的相位滞后,尽管场效应晶体管Q3的负担少,由于3次谐波的谐振,可以得到所希望程度的高开路电压,荧光灯FL1、FL2的起动变得容易。
又,已有例的作为开关手段的场效应晶体管流过的电流波形如图21所示,由于不发生高次谐振,场效应晶体管在第1个半周期截止,不会由于谐振而使开路电压升高。
下面再参照图22对第10实施形态的放电灯点亮装置1加以说明。
该第10实施形态的放电灯点亮装置1是在第2实施形态的放电灯点亮装置1中,与场效应晶体管Q3并联连接着电感L5及电容器C5的串联电路而成的,电感L5及电容器C5的串联电路也分别与负载电路51、52并联。
而基本动作与第2实施形态的放电灯电亮装置1相同,但是由于滞后电流流入与负载电路51、52并联连接的电感L5,所以即使有一些相位超前电流流入例如负载电路51、52,相抵之后逆变器电路4能够可靠地流入滞后电流。
又,放电灯点亮装置1在无负载时,在各部流着电流,如图23所示,在负载电路51、52流着电路iL,在电感L5流着电流iI,在场效应晶体管Q3流着电流is,以流入负载电路51、52的电流iL为时间的基准,则电流iL为相位超前的电流,电流iI为相位滞后的电流。而且,流入场效应晶体管Q3的电流is是电流iL与电流il的合成电流,因此通过适当地设定电容器C5及电感L5的值,可以如图所示得到相位滞后的电流。因此,可以容易地形成滞后电流,所以能够加大设计的自由度。
下面再参照图24对第11实施形态的放电灯点亮装置1加以说明。
该第11实施形态的放电灯点亮装置1是在第2实施形态的放电灯点亮装置1中,与场效应晶体管Q3并联地连接电容器C6及作为电感器的短绕组型的变压器Tr1的初级绕组Tr1a的串联电路,在电容器C6与变压器Tr1的初级绕组Tr1a的连接点与电容器C31、C32之间连接变压器Tr1的次级绕组Tr1b而成的。
而基本动作与第10实施形态相同,但是利用变压器Tr1升压,可以使与负载电路51、52要求的电压匹配,同时可以使流向变压器Tr1的初级绕组Tr1a的滞后的励磁电流向场效应晶体管Q3回流。
下面又参照图25对第12实施形态的放电灯点亮装置1加以说明。
该第12实施形态的放电灯点亮装置1是在第10实施形态的放电灯点亮装置1中,以灯丝加热用的变压器Tr2作为电感器,把该灯丝加热用的变压器Tr2的初级绕组Tr2a与电容器C5串联连接,该灯丝加热用的变压器Tr2有与灯丝FL1a、FL1b、FL2a、FL2b数目对应的灯丝加热线圈Tr2b、Tr2c、Tr2d、Tr2e,这些灯丝加热线圈Tr2b、Tr2c、Tr2d、Tr2e连接于各灯丝FL1a、FL1b、FL2a、FL2b而成的。
而基本动作与第10实施形态相同,但是荧光灯FL1、FL2的灯丝FL1a、FL1b、FL2a、FL2b利用灯丝加热用变压器Tr2加热,可以构成快速起动式,同时可以使流向灯丝加热用变压器Tr2的初级绕组Tr2a的滞后的励磁电流流向场效应晶体管Q2、Q3。
还有,在任何实施形态,对放电灯也没有特别限制,通常粗管或细管的放电灯任何一种都可以。这里所谓细管的放电灯,是例如紧凑型荧光灯、灯泡型荧光灯、高频点亮专用的环型荧光灯,例如FHC20型、FHC27型或FHC34型等的任何一种,灯管外径都是16.5mm的。
又,负载电路只要包含放电灯、电感器及电容器,具体连接可以不管,但是具有固有谐振频率,从高频发生手段来看,包含有效放电灯及使放电灯稳定地点亮的限流元件,也可以附加上使放电灯起动用的起动电路。还有,一般地说,电感主要用作放电灯的限流元件,也可以以与高频发生手段分开连接的电感或构成高频发生手段的一部分的例如输出变压器的泄漏电感的形式连接于负载电路。
又,电容通常用于放电灯的预热,其他电容与限流元件串联连接,作为限流元件的一部分,或者也可以用于隔开直流成份。
还有,负载电路可以使用1个或多个,在使用多个的情况下,也可以与高频发生手段并联连接,也可以在1个负载电路上串联连接多个放电灯。
又,高频发生手段只要是能够向负载电路提供高频输出,怎样的结构都可以,可以采取用于发生高频的所有电路方式,例如间歇振荡器式、多谐振荡器式、半桥式、全桥式及这些种类的变形型式等逆变器。而且,可以采用电压谐振式或电流谐振式的任何一种,而在使用电流谐振式时可以使用耐压相对较低的开关手段,同时可以与负载电路的电感及电容无关地设定频率,因此可以扩大频率变化范围。
而且,为了对放电灯进行调光,高频发生手段也可以采取改变负载(on duty)等方法减小输出。
又,高频发生手段的电源通常可以使用将市电交流电源加以整流、平滑化的直流电源,但是由于功率因素变坏,也可以使用得到所希望数值的电源电压、同时高次谐波畸变也少的升压斩波器等DC-DC变换器。
还有,控制手段至少也可以把放电灯的点亮状态设定为全光点亮和调光点亮中的任何一种,可以对高频发生手段或构成直流电源的DC-DC变换器进行控制,设定于全光模式及调光模式中的某一种工作模式。而且调光可以是分级调光、连续调光中的任何一种。
又,也可以根据需要附加熄灯等控制模式切换。于是,作为操作控制手段的方法,可以采用应用壁式开关、红外线等的遥控器等。
又,负载特性赋予手段适当地设定例如作为负载电路的结构要素的一部分的电感及电容的常数或负载电路的电路结构,还可以根据放电灯的动作情况适当地设定高频发生手段的输出频率。因此在点亮时全光点亮及调光点亮的各动作模式间变更中,可以变更负载特性,在电极加热及起动动作模式间的切换或电极加热、起动及全光点亮的动作模式间的切换之际也可以变更负载特性。还有,在电极加热、起动、全光点亮及调光点亮的所有工作模式切换之际也可以变更负载特性。
还有,上述控制可以利用在例如IC等中加入程序的方法很容易地自动进行,也可以根据需要手动执行。又,控制时高频发生手段的输出频率也可以连带变更,也可以在预热时降低频率,在起动时提高频率,在全光点亮时使其降低,可以使预热时与全光点亮时的频率相同,也可以使其不同。
还有,对于短路电流,可以利用例如改变高频发生手段的频率的方法有效地进行,使频率降低。由此,可以减少负载电路的电感,使短路电流变大,反之,如果提高频率,则负载电路的电感增加,短路电流变小。
又,电容器的电容量的变化例如可以在放电灯的寿命末期,在寿命末期可以改变负载特性,更加可靠地使放电灯熄灭,在寿命末期使电容器的电容量变小,降低开路电压。也可以在全光点亮和调光点亮时改变电容器的电容量,在调光时加大电容器的电容量,提高开路电压。又可以在放电灯起动时使电容器的电容量相对加大,增加电极的加热电流,以此进行所希望的电极的加热。
又,检测手段只要是能够根据放电灯的电极间电压、灯电流、放电灯的消耗功率、或光等检测出放电灯的寿命末期,怎么样的结构都可以。
还有,照明器具适应家庭用、设施用等任意希望场所,室内、室外使用都可以,利用放电灯发光的所有的装置都可以。
又,高频发生手段采取至少有高频输出频率比负载电路的固有谐振频率低得多的频率和比固有谐振频率高的频率的2级可变的高频发生手段,也可以采用连续改变频率的高频发生手段。
还有,在放电灯的寿命末期,与正常时相比,灯电压显著变高,但是开路电压采取比寿命末期的灯电压明显偏低的电压,设定为正常点亮时的灯电压的2~2.7倍左右即可。
又,负载特性是,开路电压低,但是短路电流相对较大,负载特性可以利用适当设定负载电路的电感、电容及高频发生手段的频率的方法很方便地得到,例如将电容器与放电灯并联连接的情况下,很容易利用将该电容器的电容量设定得小,使得全光点亮时实际上不发生谐振。还有,所谓比固有谐振频率低得多,是说低得在该频率下实际上不发生谐振,是使开路电压输出正常的放电灯的灯电压的2~2.7倍左右那样的频率。
还有,电感不限于单一功能,也可以是具备其他功能及目的的电感,例如灯丝加热用的变压器的初级绕组、负载电路的调整全光点亮时的开路电压用的升压或降压变压器,也可以利用将电容器串联连接的方法,切断要流入电感的直流电,避免所不希望的磁饱和。
权利要求
1.一种放电灯点亮装置,其特征在于,具备具有热阴极的放电灯、电感及电容的负载电路;向该负载电路提供高频输出的高频发生手段;控制该高频发生手段、对所述放电灯的全光点亮及调光点亮进行设定的控制手段;以及在所述放电灯全光点亮时或热阴极的电极预热时给予负载电路以相对较低开路电压及较大短路电流的负载特性、同时在调光点亮时或起动时给予所述负载电路以相对较高开路电压及较小短路电流的负载特性的负载特性赋予手段。
2.一种放电灯点亮装置,其特征在于,具备分别具有放电灯、电感及电容,而且并联连接的多个负载电路;向所述各负载电路提供高频输出的共用的高频发生手段;以及赋予所述负载电路以使寿命末期的放电灯熄灭,使正常的放电灯继续全光点亮的负载特性的负载特性赋予手段。
3.根据权利要求1或2所述的放电灯点亮装置,其特征在于,负载电路的电感器与放电灯串联连接,电容器与放电灯并联连接,具备可改变所述电容器的电容量的电容量可变手段。
4.根据权利要求3所述的放电灯点亮装置,其特征在于,具备检测放电灯的寿命末期、一旦检测出放电灯的寿命末期、就利用电容量可变手段减小电容器的电容量的检测手段。
5.根据权利要求1或2所述的放电灯点亮装置,其特征在于,具备在放电灯调光点亮时检测手段一旦检测出放电灯的寿命,就可改变高频发生手段的输出频率的频率可变手段。
6.根据权利要求2所述的放电灯点亮装置,其特征在于,多个负载电路的放电灯的额定消耗功率不同。
7.根据权利要求2或6所述的放电灯点亮装置,其特征在于,具备能够选择全光点亮及调光点亮,在调光点亮时任一放电灯到了寿命末期、就将高频发生手段的输出改成全光点亮的控制电路。
8.一种放电灯点亮装置,其特征在于,具备包含放电灯、电感及电容的负载电路;在所述放电灯全光点亮时发生其频率比所述负载电路的固有谐振频率低得多的高频输出,而在所述放电灯调光点亮时发生其频率比固有谐振频率高的高频输出、向所述负载电路提供高频输出的高频发生手段;以及控制该高频发生手段,对所述放电灯的全光点亮及调光点亮进行设定的控制手段。
9.根据权利要求8所述的放电灯点亮装置,其特征在于,负载电路的电感与放电灯串联连接,电容是与放电灯并联连接的小电容量的电容器,负载电路的固有谐振频率,与高频发生手段在全光点亮时的工作频率相比,设定得十分高。
10.根据权利要求8或9所述的放电灯点亮装置,其特征在于,高频发生在手段全光点亮时的工作频率以f表示,负载电路的固有谐振频率以f0表示时,满足如下关系f0/3≤f≤f0/2。
11.根据权利要求8~10中的任一项所述的放电灯点亮装置,其特征在于,负载电路多个并联连接于高频发生手段的输出侧,对寿命末期的放电灯减小其亮度乃至使其熄灭,正常的放电灯继续点亮。
12.根据权利要求1~4中的任一项所述的放电灯点亮装置,其特征在于,具备与负载电路并联连接的电感。
13.根据权利要求1~5中的任一项所述的放电灯点亮装置,其特征在于,放电灯起动时工作频率的高次谐波的谐振电压施加在所述放电灯上。
14.一种照明装置,其特征在于,具备安装着放电灯的照明装置主体,以及使所述放电灯点亮的、权利要求1~13中的任一项所述的放电灯点亮装置。
全文摘要
本发明涉及放电灯点亮装置及照明装置,提供即使是细管的放电灯也不必使用复杂的保护电路、能够在寿命末期使放电灯减小亮度乃至熄灭的照明装置。利用逆变器电路向包含放电灯、电感及电容的负载电路提供高频电流,使放电灯全光点亮或调光点亮。在全光点亮时赋予负载电路以相对较低的开路电压及较大的短路电流的负载特性,在调光点亮时赋予相对较高的开路电压及较小的短路电流的负载特性,在全光点亮时放电灯一旦到了寿命末期,灯电压变得比负载电路的开路电压高,放电灯熄灭,在调光点亮时如果到了寿命末期,就全光点亮。到寿命末期放电灯熄灭,电极附近没有异常温升,因此玻璃灯管、灯头及灯座等不会熔化。
文档编号H05B41/298GK1229568SQ98800851
公开日1999年9月22日 申请日期1998年4月17日 优先权日1997年4月17日
发明者镰田征彦, 垣谷勉, 清水惠一, 高桥启二, 仲矢文则 申请人:东芝照明技术株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1