一种高温气冷堆优化氦净化再生系统的制作方法_2

文档序号:10211933阅读:来源:国知局
床再生回路内充氦至低压,启动氦净化再生系统隔膜压缩机,然后启动氦净化再生系统电加热器;氦气经氦净化再生系统隔膜压缩机进入氦净化再生系统电加热器加热后进入水吸附床,使其在高温下加热再生;从水吸附床出来的热氦气经氦净化再生系统水/氦冷却器1降温后进入氦净化再生系统气/水分离器,其中饱和含氚废水冷凝后分离收集,最终排至高温气冷堆放射性废液系统?’最后,水吸附床再生回路和水吸附床降温至室温并充氦至大于0.llMPa备用;
[0027]优选地,所述低压条件为0.5MPa-0.75MPa ;所述水吸附床再生温度为200-350 °C ;所述氦净化再生系统水/氦冷却器将氦气降温至5°C -25°C。
[0028]其中,所述二氧化碳吸附床再生运行方法为:向二氧化碳吸附床再生回路内充氦至低压,启动氦净化再生系统隔膜压缩机,然后启动氦净化再生系统电加热器;氦气经氦净化再生系统隔膜压缩机进入氦净化再生系统电加热器加热后进入二氧化碳吸附床,使其在较高再生温度下加热再生;从二氧化碳吸附床出来的热氦气经氦净化再生系统水/氦冷却器降温后进入已完成再生的氦净化系统水吸附床吸附微量水;隔离氦净化系统水吸附床,对二氧化碳吸附床再生回路和二氧化碳吸附床进行抽真空操作;最后,二氧化碳吸附床降温并充氦至大于0.llMPa备用;二氧化碳吸附床再生过程中,由于二氧化碳脱附会引起二氧化碳吸附床再生回路增压,此时应及时对二氧化碳吸附床再生回路泄压,以保证正常再生工作压力。
[0029]优选地,所述低压条件为0.5MPa-0.75MPa ;所述二氧化碳吸附床再生温度为100-350°C,进一步优选100°C -200°C ;所述氦净化再生系统水/氦冷却器将氦气降温至5°C -25°C ;所述抽真空具体条件为:二氧化碳吸附床在100°C -200°C下抽真空至低于100Pao
[0030]采用本实用新型所述优化氦净化再生系统,可在氦净化系统中将水和二氧化碳杂质净化进行吸附分离切割,避免水对二氧化碳吸附性能的影响;同时在氦净化再生系统中设置氦净化系统水吸附床旁路,简化了氦净化再生系统,使氦净化系统和氦净化再生系统设计和运行更加合理、高效。本实用新型能够实现氦净化系统氧化铜床、水吸附床、二氧化碳吸附床和低温活性炭床的高效再生,并保证高温气冷堆氦净化系统高效运行,对高温气冷堆技术实现产业化具有重要意义。
【附图说明】
[0031]图1为本实用新型所述高温气冷堆优化氦净化再生系统结构示意图。
[0032]图2为本实用新型含有氧化铜床、低温活性炭床再生回路的所述高温气冷堆优化氦净化再生系统结构示意图。
[0033]图中:1、高温气冷堆一回路;2、氦净化系统;3、氦净化再生系统;4、氧化铜床;5、水吸附床;6、二氧化碳吸附床;7、低温活性炭床;8、水/氦冷却器1 ;9、气/水分离器;10、水/氦冷却器2 ;11、隔膜压缩机;12、电加热器;13、抽真空装置;14、氧气注入装置。
【具体实施方式】
[0034]以下实施例用于说明本实用新型,但不用来限制本实用新型的范围。
[0035]实施例1 一种高温气冷堆氦净化系统
[0036]一种高温气冷堆氦净化系统,如图1和图2所示,包括依次连接的氧化铜床、水吸附床、二氧化碳吸附床、低温活性炭床;
[0037]其中,水吸附床用于脱除氦中含氚废水至(λ lppm以下;二氧化碳吸附床用于脱除氦中二氧化碳至0.lppm以下。
[0038]其中,所述水吸附床、二氧化碳吸附床内均装填5A类型沸石分子筛。
[0039]实施例2利用实施例1所述氦净化系统对高温气冷堆一回路中氦冷却剂进行净化
[0040]利用实施例1所述氦净化系统对高温气冷堆一回路中氦冷却剂净化过程简述如下:
[0041]—回路的冷却剂氦气以5% /h流量流入高温气冷堆氦净化系统,氦净化系统操作压力为3-9MPa。经过尘埃过滤器脱除掉固体颗粒、通过电加热器加热至250°C,进入氧化铜床中将氢气、氚和一氧化碳分别氧化为水、氚水和二氧化碳,并脱除微量氧气;经过中温氦/氦热交换器和水/氦冷却器降温至10°C,然后进入水吸附床在约10°C下吸附含氚废水,再进入二氧化碳吸附床在约10°C下脱除二氧化碳和微量水;再通过低温氦/氦热交换器降温至约_160°C,进入低温活性炭床在约_196°C下吸附氮气、甲烷及放射性核素Kr、Xe等及其余气体杂质。
[0042]实施例3为实施例1所述氦净化系统提供再生的氦净化再生系统
[0043]氦净化再生系统由隔膜压缩机、电加热器、水/氦冷却器1、气/水分离器、和内设卸放管路的抽真空装置组成;及与氦净化系统水吸附床相连接的旁路;氦净化再生系统中,与氦净化系统水吸附床相连接的旁路,氦净化系统水吸附床旁路进口为氦净化系统正常净化运行时水吸附床进口。所述各装置与氦净化系统形成四个再生回路:氦净化系统氧化铜床再生回路、氦净化系统水吸附床再生回路、氦净化系统二氧化碳吸附床再生回路、氦净化系统低温活性炭床再生回路;
[0044]其中,所述氧化铜床再生回路由隔膜压缩机、电加热器、氦净化系统氧化铜床、水/氦冷却器1和气/水分离器依次连接组成;且在氧化铜床再生回路上设一氧气注入装置;当氧化铜床再生回路有水存在时,可利用氦净化系统水吸附床旁路脱除。
[0045]其中,所述水吸附床再生回路由隔膜压缩机、电加热器、氦净化系统水吸附床、水/氦冷却器1、气/水分离器依次连接组成;水吸附床的再生流向与正常净化运行流向相反。
[0046]其中,所述二氧化碳吸附床再生回路由隔膜压缩机、电加热器、氦净化系统二氧化碳吸附床、水/氦冷却器1、气/水分离器、氦净化系统水吸附床依次连接组成;二氧化碳吸附床的再生流向与正常净化运行流向相反。
[0047]其中,所述低温活性炭床再生回路由隔膜压缩机、电加热器、氦净化系统低温活性炭床、水/氦冷却器1和气/水分离器依次连接组成;当低温活性炭床再生回路有水存在时,可利用氦净化系统水吸附床旁路脱除。
[0048]其中,所述氧化铜床再生回路、水吸附床再生回路、二氧化碳吸附床再生回路、低温活性炭床再生回路上均设有抽真空装置。优选地,所述抽真空装置设在氦净化系统水吸附床旁路出口处。抽真空装置优选设在氦净化系统水吸附床旁路出口处,以便于收集含氚废水和避免高剂量含氚废水向环境的排放。
[0049]其中,在水/氦冷却器1和气/水分离器处还可设一带有水/氦冷却器2的旁路,并由此得到由隔膜压缩机、电加热器、氦净化系统氧化铜床、水/氦冷却器2依次连接组成氧化铜床再生回路;利用水/氦冷却器2的旁路,还可得到由隔膜压缩机、电加热器、氦净化系统二氧化碳吸附床、水/氦冷却器2、氦净化系统水吸附床依次连接组成的二氧化碳吸附床再生回路;还可得到由隔膜压缩机、电加热器、氦净化系统低温活性炭床、水/氦冷却器2依次连接组成的低温活性炭床再生回路。
[0050]其中,所述氧气注入装置设置在氦净化系统氧化铜床进口处。当氧化铜床再生时,优选利用含有水/氦冷却器2的再生回路进行再生,可避免水/氦冷却器1和气/水分离器内的含氚废水向氧化铜床再生回路扩散。当氧化铜床再生回路有水存在时,可利用氦净化系统水吸附床旁路脱除。
[0051]当二氧化碳吸附床再生时,优选利用含有水/氦冷却器2的再生回路,可避免水/氦冷却器1和气/水分离器内的含氚废水向二氧化碳吸附床再生回路扩散。当低温活性炭床再生时,优选利用含有水/氦冷却器2的再生回路,可避免水/氦冷却器1和气/水分离器内的含氚废水向低温活性炭床再生回路扩散。当低温活性炭床再生回路有水存在时,可利用氦净化系统水吸附床旁路脱除。
[0052]实施例4实施例1所述氦净化系统中各净化床的再生运行工艺
[0053]当高温气冷堆氦净化系统氧化铜床、水吸附床、二氧化碳吸附床和低温活性炭床出口某气体杂质组分到达穿透点时,须对氦净化系统氧化铜床、水吸附床、二氧化碳吸附床和低温活性炭床分别进行再生。
[0054]一种利用上述氦净化再生系统进行再生的再生方法,先将再生系统与水吸附
当前第2页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1