完全水可溶微乳剂的制作方法

文档序号:308985阅读:336来源:国知局
专利名称:完全水可溶微乳剂的制作方法
技术领域
本发明涉及适合用作杀真菌剂、杀粘菌剂、杀藻剂、和杀细菌剂的水不溶活性成分的微乳液。
已经提出的含有水不溶性杀生剂或农药的微乳液例如美国专利U.S.5,013,748,其中公开了用于保护木材的杀生剂微乳水剂。在包含至少两种必需的极性溶剂的液体载体中,使用的杀生剂成分含有至少一种三唑杀菌剂,至少一种季铵盐杀菌剂和至少一种苯并咪唑杀菌剂。该专利未提出可完全水稀释系统。
美国专利U.S.4,954,338其中讲授了低水溶性的异噻唑酮与作为微乳化剂的EO/PO共聚物/阴离子硫酸盐或磺酸盐水包油微乳状液。溶剂为烷基醇或烷基烷氧基化醇。在用水稀释时,该专利中需要应用EO/PO(环氧乙烷/环氧丙烷)共聚物保持微乳状。
美国专利U.S.4,567,161其中公开了活性成分(例如,杀虫剂,除草剂,药品)与磷脂和助乳化剂(甘油脂)一起的透明微乳液。
加拿大专利1209361号公开了农药,室内害虫防治剂,和药剂的冷贮稳定微乳水剂,其中使用的乳化剂是烷基芳基聚乙二醇和烷基芳基磺酸盐的混合物。
美国专利U.S.4,973,352公开了仅作除草用的微乳水剂,有一种除草剂,一或多种乳化剂或湿润剂如十二烷基苯磺酸钙,一或多种有机溶剂和水的组合。该专利也未提供可完全水稀释微乳液。
美国专利U.S.4,904,695公开了水基的杀虫微乳剂其中包含拟除虫菊酯/有机磷,混合表面活性剂,助剂,如防沫剂,增稠剂和防腐剂,和水。该专利的微乳液不是可完全水稀释的。
美国专利U.S.4,995.900公开的仅是水不溶除草剂的W/O微乳剂,且该专利也不是可完全水稀释的。
可完全水稀释的微乳液,特别是一些不溶杀生活性成分的完全水稀释微乳液,还未被已知和获得。
本发明的一个目的是提供低水溶(按重量计少于1%)活性成分的可完全水稀释的微乳液。可完全水稀释意为可用水从无水浓缩物(称作浓微剂)稀释成一种含有高浓度的水的微乳剂。
从下述的公开中本发明的这一目的,和其它目的将变得明显,上述目的一方面是通过含有下述成分的组合物达到的,水稀释度达99.9%的所有水平下,所述的组合物是热力学稳定的且清澈,乳状,或仅轻微雾状(A)一或多种活性成分化合物,该化合物在室温下的水中溶解度小于1000ppm,且熔点低于100℃;(B)选自下组的一或多种非极性,与水不混溶的溶剂,在室温下所述溶剂能够溶解按重量计至少5%的(A),这组溶剂包括苯甲醇,乙酸苄酯,松油,苯乙醇,二甲苯,苯氧乙醇,邻苯二甲酸丁酯,单异丁酸2,2,4-三甲基-1,-戊二醇酯,和烷基苯;(C)表面活性剂系统包括
(C1)硫酸化或磺酸化3-17%的一或多种硫酸化或磺酸化的阴离子表面活性剂,选自下组包括的硫酸化和/或磺化的蓖麻油,硫酸化和/或磺化的乙氧基化的烷基酚,硫酸化和/或磺化的乙氧化脂肪醇,硫酸化和/或磺化的脂肪酸,和硫酸化的烷醇酰胺;和(C2)一或多种选自下组的乙氧基化的表面活性剂。它们包括乙氧化的(C10-C18)烷基磷酸单酯和/或二酯和/或三酯,乙氧基化的(C10-C18)烷基芳基磷酸单酯和/或二酯;乙氧基化的(C8-C20)单烷基一或二烷基酚,乙氧化二烷基酰胺,乙氧化的链烷醇,和乙氧化的蓖麻油;和(D)按重量计0至99.9%的水;(C1)与(C2)的重量比大约为10/90至90/10;所述(A)与(B)的重量比大约为95/5至大约1/99,和所述(A)与(C)的重量比大约为1/99至大约86/14。
在另一方面,本发明包括抑制细菌,真菌,和藻生长的方法。
根据活性成分的活性,本发明的微乳液用于保存和农业应用的许多领域。例如,异噻唑酮可作为消毒剂,清洁剂,清洗剂,去味剂,液体肥皂和粉末肥皂,皮肤去除剂,油去除剂和油脂去除剂,食品加工化学品,木材防腐剂,聚合胶乳,油漆,lazure,着色剂,防霉剂,医院和医疗防腐剂,医疗设备,金属工作液,冷却水,空气清洗剂,汽油保护剂,纸处理,纸浆和纸淤浆,造纸厂杀粘菌剂,石油产品,粘着剂纺织品,颜料淤浆,乳胶,皮革和皮革处理,石油燃料,喷射燃料,洗衣清洁剂,农业制剂,墨水,矿业,无纺纤维,石油贮藏,橡胶,制糖工艺,烟草,游泳池,相片冲洗,化妆品,化妆用品,药物,化学梳妆品,室内洗衣用品,柴油燃料添加剂,蜡和擦亮剂,油田应用,和许多其它应用中的活性物质,在这些领域,水和有机物与允许有害微生物生长的条件相接触。其它活性成分可用作杀真菌剂,杀螨剂,除草剂,杀虫剂,和植物生长调节剂。
优选的活性成分是杀微生物,特别优选的是4,5-二氯-2-正辛基-3-异噻唑酮,和2-正辛基-3-异噻唑酮。其它优选的活性成分是农用杀真菌剂,例如2-氯-1-(3-乙氧基-4-硝基苯氧基)-4-(三氟甲基)苯,2,4-二硝基-6-辛基-苯基-巴豆酸酯,和α-丁基-α-(4-氯苯基)-H-1,2,4-三唑-1-丙腈。
通常,在本发明中可使用在室温下在水中的溶解度小于1000ppm和熔点低于100℃的一种或多种活性成分。
一或多种选自下组的非极性的,与水不混溶的可用于溶解一种或多种活性成分的溶剂,这些溶剂包括苯甲醇,乙酸苄酯,松油,苯乙醇,二甲苯,苯氧乙醇,邻苯二甲酸丁酯,单异丁酸2,2,4-三甲基-1,3-戊二醇酯,和烷基苯,在室温下所述的溶剂能够溶解按重量计至少5%的(A)。
采用了含有二种不同表面活性剂的表面活性剂系统,第一种表面活性剂包括硫酸化或磺化3-17%一种或多种硫酸化或磺酸化的阴离子表面活性剂,它的选自由以下组成的一组表面活性剂硫酸化和/或磺化蓖麻油,硫酸化和/或磺化的乙氧基化烷基酚,硫酸化和/或磺化乙氧基脂肪醇,硫酸化和/或磺化脂肪酸,和硫酸化烷醇酰胺。第二种表面活性剂包含一或多种乙氧基化的表面活性剂,它们选自由以下组成的一组表面活性剂乙氧化的(C10-C18)烷基磷酸单酯和/或二酯和/或三酯,乙氧化的(C10-C18)烷基芳基磷酸单酯和/或二酯,乙氧化的(C8-C20)单烷基-或二烷基酚,乙氧基化的烷基酰胺,乙氧基化的链烷醇,和乙氧化的蓖麻油。
根据本发明可制备无水的浓微乳液,也可制备按重量计最多含有99.9%水的微乳液。如前所述,本发明重要的新特征之一,是本发明组合物在所有水平的水稀释度下保持微乳液状。本发明组合物在水稀释度达99.9%水的所有水平下,是热力学稳定的和清澈,乳状或仅轻微雾状的。
第一种表面活性剂与第二表面活性剂的重量比大约10/90至90/10。表面活性剂与溶剂的重量比大约95/5至大约1/99,活性成分与表面活性剂系统的重量比为大约1/99至大约86/14。
可以包括各种助剂,包括防泡剂,如市售的聚硅氧烷防泡乳剂。也可包括抗冻剂如丙二醇,脲,等;水溶的无机盐,如氯化钠,硫酸镁,等可用于优化表面溶性剂的作用,因为无机盐增加了表面活性剂的在微乳液内表面的浓度;湿润剂;增稠剂;去泡剂;等。
本发明浓微乳液可通过将固体活性成分溶于有机溶剂中形成油相而制备。然后将表面活性剂单独地或混合地加入到油相中。缓慢搅拌或摇动所得的混合物得到浓微乳液。可选择地,如果固体活性成分是热稳定的,所有的成分可一起加到一个容器中,并把该容器轻微加热以形成浓微乳液。这种方法的优点是一步加入。当活性成分是液体时,两种方法都行。液体活性成分可用其本身作油相不需要加入有机溶剂。优选地是采用有机溶剂溶解活性成分以形成油相。更优选的是先形成油相,再把表面活性加入其中。
本发明的微乳液可通过用水稀释浓微乳液而制备。可选择地,可直接制备微乳液,而不需要经过浓缩形式。微乳液直接制备的完成是通过,如制备浓微乳液时所述的方式,简单地将所需量的水与表面活性剂一起加入。两种形成微乳液的方法都是优选的。
本发明的一些微乳液可用软水(例如,去离子的)或硬水稀释。
下述的实施例陈述了本发明的几个方面。除非另外指明所有份数和百分比均以重量计。
实施例1-制剂表1说明了用于下述实施例的浓微乳液组合物和微乳液组合物。这些样品的制备是通过将活性成分(“AI”)溶于有机溶剂中得到油相。将该油相与所需的表面活性剂混合以获得浓微乳液(“MC”)样品。通过用水稀释浓微乳液的样品,可制备微乳液(“ME”)。
下述表和实施例中所用的缩写如下述
活性成分AI1=4,5-二氯-2-正辛基-3-异噻唑酮AI2=2-正辛基-3-异噻唑酮溶剂号名称1苄醇2乙酸苄酯3松油/苄醇(1/1)4松油5二甲苯/苄醇(11)6 Aromatic 100R(烷基苯混合物)7 Aromatic 150R(烷基苯混合物)8松油/乙酸苄酯(1/1)9二甲苯/松油(1/1)10苯乙醇11邻苯二甲醇丁酯122-苯氧乙醇13二甲苯14单异丁酸2,2,4-三甲基-1,3-戊二醇酯表面活性剂硫酸化或磺化的阴离子表面活性剂(C1类)A70%硫酸蓖麻油水溶液(aq)B79%磺化蓖麻油水溶液C 100%(C12-C16)烷基苯酚聚醚硫酸钠D 70%硫酸脂肪酸(6-8%SO3)水溶液乙氧基化表面活性剂(C2类)E100%复合有机磷酸酯的游离脂族酸F 100%乙氧化的(EO9-10)辛基酚G 100%乙氧化(EO15)二壬基酚H 100%乙氧化(EO13十二烷基苯酚I 100%乙氧化(EO9-10)壬基酚J 100%乙氧化(EO5)椰子酰胺K 100%乙氧化(EO30)蓖麻油L 100%(C9-C11)线性初级乙氧化物(EO/醇摩尔比的8倍)
表1浓微乳液(“MC”)和微乳液(“ME”)表面活 表面活样品 MC或M %Al1 %Al2 溶剂(%) %水 性剂C1(%) 性剂(C2%)1 MC 9.0 0 1(21.0) 0 A(49.0) E(21.0)2 MC 16.0 0 1(24.0) 0 A(42.0) E(18.0)3 MC 9.0 0 3(21.0) 0 A(49.0) E(21.0)4 MC 9.0 0 2(21.0) 0 A(49.0) E(21.0)5 MC 9.0 0 10(21.0) 0 A(49.0) E(21.0)6 MC 9.0 0 4(21.0) 0 A(49.0) E(21.0)7 ME 3.6 0 5(8.4) 60 A(19.6) E(8.4)8 ME 4.5 0 6(10.5) 50 A(24.5) E(10.5)9 ME 4.5 0 7(10.5) 50 A(24.5) E(10.5)10 MC 9.0 0 8(21.0) 0 A(49.0) E(21.0)11 ME 3.6 0 9(8.4) 60 A(19.6) E(8.4)12 ME 4.5 0 11(10.5) 50 A(24.5) E(10.5)13 MC 0 9.0 1(21.0) 0 A(49.0) E(21.0)14 MC 0 12.0 1(28.0) 0 A(42.0) E(18.0)15 MC 6.0 6.0 1(28.0) 0 A(42.0) E(28.0)16 MC 10.0 10.0 1(21.0) 0 A(42.0) E(28.0)17 MC 9.0 3.0 1(21.0) 0 A(46.9) E(20.1)18 MC 6.0 12.0 1(22.0) 0 A(42.0) E(18.0)19 MC 9.0 0 1(21.0) 0 B(49.0) E(21.0)20 MC 0 9.0 1(21.0) 0 B(49.0) E(21.0)21 MC 6.0 6.0 1(28.0) 0 B(42.0) F(18.0)22 MC 9.0 0 1(21.0) 0 A(28.0) F(42.0)23 MC 9.0 0 2(21.0) 0 A(28.0) F(42.0)24 ME 4.5 0 10(10.5) 50 A(14.0) F(21.0)25 ME 4.5 0 9(10.5) 50 A(14.0) F(21.0)26 MC 9.0 0 5(21.0) 0 A(35.0) F(35.0)27 MC 9.0 0 4(21.0) 0 A(31.5) F(38.5)28 MC 9.0 0 8(21.0) 0 A(28.0) F(42.0)
29 MC 9.0 0 3(21.0) 0 A(30.0) F(40.0)30 ME 5.4 0 13(12.6) 40 A(16.8) F(25.2)31 MC 9.0 0 11(21.0) 0 A(28.0) F(42.0)32 MC 0 12.0 1(18.0) 0 A(28.0) F(42.0)33 MC 6.0 8.0 1(26.0) 0 A(24.0) F(36.0)34 MC 15.0 0 1(15.0) 0 B(28.0) F(42.0)35 MC 9.0 0 2(21.0) 0 B(35.0) F(35.0)36 MC 0 16.0 1(24.0) 0 B(24.0) F(36.0)37 MC 9.0 0 1(21.0) 0 A(49.0) G(21.0)38 MC 9.0 0 2(21.0) 0 A(44.0) G(26.0)39 MC 9.0 0 3(21.0) 0 A(49.0) G(21.0)40 MC 9.0 0 3(21.0) 0 A(42.0) G(28.0)41 MC 6.0 0 5(24.0) 0 A(49.0) G(21.0)42 MC 9.0 0 8(21.0) 0 A(42.0) G(28.0)43 MC 6.0 0 5(24.0) 0 A(38.5) G(31.5)44 MC 9.0 0 5(21.0) 0 A(38.5) G(31.5)45 MC 9.0 0 1(21.0) 0 A(28.0) H(42.0)46 MC 9.0 0 1(21.0) 0 A(25.0) I(45.0)47 MC 15.0 0 1(15.0) 0 C(28.0) G(42.0)48 MC 9.0 0 1(21.0) 0 A(33.0) J(37.0)49 MC 9.0 0 1(21.0) 0 A(49.0) K(21.0)50 MC 15.0 0 1(15.0) 0 B(35.0) L(35.0)51 MC 9.0 0 1(21.0) 0 D(49.0) E(21.0)52 MC 9.0 0 14(21.0) 0 D(49.0) E(21.0)
实施例2-水可稀释度实施例中MC和ME的水可稀释度通过加入不同量的去离子水测定,并0-5级标准评价清晰度。将足量的水加入到样品中以形成按重计10至98%的水稀释液,如下定义标准用量0=非常清澈;1=清澈,轻微乳状;2=乳状;3=乳状,轻微雾状;4=雾状(微乳液);和5=相分离3或更低级被认为是合格。
结果示于表2。
表2ME样品水可稀释度水重量% 0 10 20 30 40 50 60 70 80 90 95 98样品号1 3 0 0 0 0 0 0 0 0 0 0 02 3 3 2 1 0 0 0 0 0 0 0 03 2 1 1 0 0 0 0 0 0 0 0 04 0 0 1 2 3 4 3 2 0 0 0 05 2 2 2 1 0 0 0 0 0 0 0 06 0 0 0 1 2 2 1 0 0 0 0 07 - - - - - - 2 1 0 0 0 08 - - - - - 1 3 1 0 0 0 09 - - - - - 1 3 0 0 0 0 010 0 0 0 1 1 2 2 0 0 0 0 011 - - - - - 1 0 0 0 0 0 012 - - - - - 3 2 0 0 0 0 013 2 1 0 0 0 0 0 0 0 0 0 014 3 3 2 2 2 0 0 0 0 0 0 015 3 3 3 1 0 0 0 0 0 0 0 016 3 3 2 2 0 0 0 0 0 0 0 017 3 3 2 1 0 0 0 0 0 0 0 018 3 3 1 1 0 0 0 0 0 0 0 019 2 0 0 0 0 0 0 0 0 0 0 020 3 2 0 0 0 0 1 0 0 0 0 021 3 1 0 0 0 0 0 0 0 0 0 022 0 0 0 0 0 0 0 0 0 0 0 023 0 0 0 0 1 2 2 0 0 0 0 024 - - - - 1 0 0 0 0 0 0 025 - - - - 2 0 0 0 0 0 0 026 0 0 0 1 2 3 0 0 0 0 0 027 0 0 0 0 1 3 0 0 0 0 0 028 0 0 0 0 1 2 1 0 0 0 0 029 0 0 0 0 1 2 0 0 0 0 0 030 - - - - 1 2 0 0 0 0 0 031 2 1 1 1 1 0 0 0 0 0 0 032 0 0 0 0 0 0 0 0 0 0 0 033 0 3 2 0 0 0 0 0 0 0 0 034 0 0 0 0 0 0 0 0 0 0 0 035 0 1 0 0 0 0 0 0 0 0 0 036 0 0 1 0 0 0 0 0 0 0 0 037 2 1 0 0 0 0 0 0 0 0 0 0
38 0 0 0 0 0 2 2 0 0 0 0 039 0 0 0 0 1 2 0 0 0 0 0 040 0 0 0 0 1 2 0 0 0 0 0 041 0 0 0 0 0 2 3 0 0 0 0 042 0 0 0 0 0 2 2 1 0 0 0 043 0 0 0 1 1 0 0 0 0 0 0 044 0 0 0 1 1 0 0 0 0 0 0 045 0 0 0 0 0 0 0 0 0 0 0 046 0 0 0 0 0 0 0 0 0 0 0 047 0 0 1 1 1 2 2 0 0 0 0 048 2 0 0 0 0 0 0 0 0 0 0 049 2 2 0 0 0 0 0 0 0 0 0 050 1 1 0 0 0 0 0 0 0 0 1 051 2 3 3 2 2 0 0 0 0 0 0 052 3 3 0 0 0 0 0 0 0 0 0 0实施例3-比较例为了证实表面活性剂系统的重要性,就水可稀释度方面比较发明的MC和具有不同表面活性剂系统的ME。通过混合以下列示的表面活性剂和油相制备样品。对每种样品油相与表面活性剂的比例是30/70。油相是AI1和溶剂2以30/70比例的混合物。如实施例2中所述一旦表面活性剂和油相混合(0%水),加入不同量的水。实施例2中所述的0-5级标准用于评价稀释液的清晰度。在一些情况下,对比样品的胶化。胶化相确切地说来是一种液体结晶相,且在表3的评价中用LC表示。表面活性剂如实施例中所述,或如下所述。
表面活性剂系统表面活性剂53(发明)比例为70/30的A与E54(发明)比例为60/40的A与I55(发明)比例为55/45的A与I56(发明)比例为70/30的硫酸化的油酸(30%水溶液)和E57(对比)A(单一成分)58(对比)B(单一成分)59(对比)E(单一成分)60(对比)比例为30/70的A和乙氧基化的山梨醇单油酸61(对比)比例为40/60的十二烷基苯磺酸钠(65%水溶液)和E62(对比)比例为20/80的十二烷基苯磺酸钙和K的表3水可稀释度水重量% 0 10 20 30 40 50 60 70 80 90 95 98发明53 0 0 0 0 0 0 0 0 0 0 0 054 0 0 0 0 0 0 0 0 0 0 0 055 0 0 0 0 0 0 0 0 0 0 0 056 0 3 2 2 0 0 0 0 0 0 0 0对比57 0 0 5 LC LC 5 5 5 1 0 0 058 0 5 5 5 LC 5 5 5 2 1 0 059 0 5 5 5 5 5 5 5 3 2 2 160 5 5 5 5 5 5 5 5 5 5 5 561 0 0 0 5 5 LC LC 5 5 2 1 162 0 5 5 5 5 5 5 5 5 5 5 5实施例4-生物活性评价本发明ME的生物活性。用水稀表1中的MC样品1,并加入去泡剂(一种含有甲基化二氧化硅的聚硅氧烷乳剂),三硬脂酸聚丙二醇山梨醇酯,单硬脂酸甘油酯,硬脂酸聚乙二醇酯,和甲基纤维素(防泡剂1520-US )以获得ME。该ME为下述组合物
%AI12.1溶剂17.9表面活性剂A16.3表面活性剂E7.0水66.3去泡剂0.4该ME用于下述研究。
A氧吸收研究氧吸收是微生物活性(呼吸)的指标之一。监测溶解的氧提供了一种快速和简便的方法,以确定杀生剂对需氧微生物的效果。进行了一系列氧吸收研究以测定ME对需氧呼吸的纸浆和纸中的细菌的效果。
应用从实际纸浆系统(法国造纸厂,Niles,Michigan)回收的细菌混合物对本发明的ME进行研究评价。在混合物中占优势的细菌是假单胞菌(Pseudomonas)。向流动的纸浆样品中加入营养物(葡萄糖和酵母提取物)并使之生长过夜(25℃)。用0.1M磷酸缓冲液冲洗培养物三次(5,000rpm,5分钟)并使之供了108细菌/ml的光密度(660nm)一致,在每1ml等份中加入供试样品,使最终浓度为106细菌/ml。
呼吸作用的研究进行于60ml生化需氧(BOD)瓶中,该种瓶中含有富集的合成白水(“SWW”)(见下述)。SWW先保温在25℃,通入气泡使氧饱和。用YSI牌溶氧计(54A型)和探针(5750型)测定溶解氧的(DO)的浓度。最初溶解的氧的浓度是伴随连续搅拌测定的。然后将1-ml细菌接种物加入到供试样品中接着加入含有ME的杀生剂。研究在25℃和PH7下进行。在各种时间点测定溶解氧。
在各种使用水平的ME中活性成分对细菌氧吸收的影响以6.3小时为一周期测定。在开始试验时,将接种物和杀生剂加入到SWW中。在整个时间内测定DO浓度。在室验中包括仅有富集SWW和接种物的对照。结果示于表4中。
富集合成白水组合物成分mg/lCaCl2111MgSO460NaHCO3168K2HPO4140NH4Cl 480葡萄糖3,000酵母提取物1,000FeCl36H2O 1.04Na2-EDTA 1.48Hepes缓冲液0.05M去离子水1升SWW的总硬度是150ppm(用CaCo3测定),且总碱度是100ppm(用CaCo3测定)。
表4ME对氧吸收的影响溶解氧的测定(ppm)水平时间对照0.5ppm1.5ppm3ppm0.08.28.008.478.210.58.047.978.427.971.07.667.828.237.691.77.207.698.037.732.06.967.627.957.763.15.687.467.847.594.13.127.377.797.514.61.147.367.767.455.00.057.247.747.436.30.017.137.617.27上述数据表明在对照样品中DO的量随时间降低,该氧消耗表示出需氧微生物的活性。处理样品表现出的DO降低很少,表明微生物活性被抑制。
B纸浆和纸评价营养物,温度,PH和造纸机器动力系统对微生物的生长是理想的。在加工水(白水)中的有机体可在接触的表面形成生物膜和粘质物。形成的粘质物会导致操作问题(纸裂、堵塞的导管工作,腐蚀)并降低纸质(沾污,穿孔和异味)。对操作系统和纸产品质量的保证,用杀生剂处理是重要的。对上述ME在纸浆和造纸系统防治细菌和真菌的作用进行了评价。
在这些研究中评价的细菌接种物由以下的培养物组成铜绿色极毛杆菌(Pseudomonas aeruginosa ATCC#15442),肠杆菌(Enterobacter aerogenes ATCC#13048),肺炎克氏杆菌(Klebsiella pneumoniae ATCC#13883)和格兰氏阴性的,野生纸粘菌分离物。
将细菌分离物从25%甘油贮藏液(0.1ml)中转移到含有灭菌富集合成白水(见上述)的振荡烧瓶中。在37℃下培养24小时后,通过离心分离,将纯培养物用0.1M磷酸缓冲液冲洗三次。每种生物体用预定的光密度定标,在660nm读数。得到108有机物/ml。在试验前检测悬浮液的纯度。
如果在4℃贮藏,冲洗过的培养物可使用4周,活力研究证实贮藏无不利影响。
在试验前,将能培养物热至37℃并混合。
通过在合成白水(见下述)均浆干卡夫纸浆制备1%纸浆浆液,各种合成白水的成分都制备成无菌贮藏液并分别加入到无菌去离子(DI)水中。分别用盐酸或氢氧化钠将悬浮液调节到PH5或PH8。这种作法为的是评价在酸性和碱性条件下评价ME的效率。对每份(24g)样品用高压锅进行灭菌(121℃,15分钟)。在其冷却后将灭菌的去离子水(DI)加入到每种样品中,以代替在灭菌过程中失去的水。
用于纸浆浆液的合成白水成分mg/L目的CaCl2111 硬度MgSO460 硬度NaHCO3168 碱性K2HPO428 营养葡萄糖25营养FeCl3.6H2O 1.04 微量元素Na2-EDTA 1.48 离子络合剂Hepes缓冲液0.05M缓冲液去离子水1升将纸浆浆液热至37℃,然后用1ml的混合细菌和真菌培养物接种。用上述ME制剂以1至10ppm活性成分(AI)的浓度处理样品。实验中包括仅有SWW和接种物的对照。
伴随振荡将样品在37℃培育24小时。在零时,和以后的3,16和24小时对一定液体比例的浆液中的细菌和真菌进行计数。采用八孔最可能计数(MPN)法,在96孔微滴盘上测定活细胞数。恢复的培养基是Tryptecase大豆肉汤,检测生长水平为<6个有机物/ml。
在3至6小时阶段活细胞计数中,相对于未处理对照的处理水平为≥1-1og减少的处理被认为是有效的。这些结果在表5中报道了。
表5细胞活性的测定(1og细菌/ml)活性成分水平pH时间对照1(ppm)2(ppm)5(ppm)506.4936.4936.4936.49336.4935.6725.7584.91067.0647.0645.4934.065247.2586.9106.2584.758806.6246.6246.6246.62437.0376.2585.0643.49367.7587.0646.0375.064247.0646.0647.1907.910实施例5-ME物理稳定性对本发明的ME评价了其加热和冷却的物理稳定性和对冷冻一解冻循环的稳定性。ME1A-1P的制备是通过用水稀释含溶剂1,AI1,和70/30比例的表面活性剂A和表面活性剂E的ME浓缩物以形成应用稀释液的。ME 2A-2P的制备是通过用水稀释含溶剂3.AI1和60/40比例的表面活性剂A和表面活性剂H的ME浓缩物以形成应用稀释液的。对这些应用稀释剂加入去泡剂,防泡剂1520-US 。在表6中报道了这些制剂的所得组合物。
表6样品的热稳定试验样品 溶剂(%) AI(%) 表面活性剂(%) 去泡剂(%) %水1A 6.0 1.7 23.37 0.40 68.541B 6.0 2.0 " " 68.231C 6.0 2.3 " " 67.921D 7.0 1.7 " " 67.541E 7.0 2.0 " " 67.231F 7.0 2.3 " " 66.921G 7.5 1.7 " " 67.041H 7.5 2.0 " " 66.731I 7.5 2.3 " " 66.421J 8.0 1.7 " " 66.541K 8.0 2.0 " " 66.231L 8.0 2.3 " " 65.921M 8.0 2.0 21.00 0 69.001N 8.0 2.0 18.08 0.40 71.471O 5.75 2.0 18.08 0.40 73.721P 8.0 2.0 15.16 0 74.842A 6.0 1.7 23.37 0.40 68.542B 6.0 2.0 " " 68.232C 6.0 2.3 " " 67.922D 7.0 1.7 " " 67.542E 7.0 2.0 " " 67.232F 7.0 2.3 " " 66.922G 7.5 1.7 " " 67.042H 7.5 2.0 " " 66.732I 7.5 2.3 " " 66.422J 8.0 1.7 " " 66.542K 8.0 2.0 " " 66.232L 8.0 2.3 " " 65.922M 8.0 2.0 21.00 0 69.002N 8.0 2.0 18.08 0.40 71.482O 5.75 2.0 18.08 0.40 73.722P 8.0 2.0 15.16 0 74.84
通过将含有样品的小瓶放在55℃的加热砧板上,评价热物理稳定性。将样品从加热砧板上移去,并在1,2,3,和4周后目测评价试验样品的稳定性。评价后,将样品再放在加热的砧板上,用前述实施例2的标准评价ME的稳定性。通过将含有样品的小瓶放在冰箱中来评价冷冻物理稳定性。冰箱保持在0℃至2℃。从冰箱中移去样品,且1,2,3,和4周后目测检验。检验后样品再放置在冰箱中。用前述实施例2的标准评价ME的稳定性。“X”表示在溶液中固体AI的结晶。表7中报道了热和冷物理稳定性研究的结果。
表7热力学物理稳定性实验热物理稳定性 冷物理稳定性样品号 1周 2周 3周 4周 1周 2周 3周 4周1A 0 0 0 0 0 0 0 01B 0 0 0 0 0 0 0 01C 0 0 0 0 0 X X X1D 0 0 0 0 0 0 0 01E 0 0 0 0 0 0 0 01F 0 0 0 0 0 0 0 01G 0 0 0 0 0 0 0 01H 0 0 0 0 0 0 0 01I 0 0 1 0 0 0 0 01J 0 0 0 0 0 0 0 01K 0 0 0 0 0 0 0 01L 0 0 0 0 0 0 0 01M 0 0 1 1 0 0 0 X1N 0 5 5 5 0 0 0 01O 0 5 5 5 5 X 5 X1P 5 5 5 5 0 0 0 X2A 0 0 0 0 5 5 0 02B 0 0 0 0 5 5 X 02C 0 0 0 0 5 5 X X2D 0 0 0 0 5 5 0 02E 0 0 0 0 5 5 0 02F 0 0 0 0 0 5 X 02G 0 0 0 0 0 0 0 02H 0 0 0 0 0 0 0 02I 0 0 0 0 0 0 X 02J 0 0 0 0 0 0 0 02K 0 0 0 0 0 0 0 02L 0 0 0 0 0 0 X 02M 0 0 0 0 0 0 0 02N 0 0 0 0 5 5 0 52O 0 0 0 0 0 0 X 02P 0 0 1 5 1 5 X X
上述数据表明许多本发明的ME具有好的热和冷物理稳定性。
还评价了ME的冷冻一解冻循环稳定性。将上述ME的样品放置在保持在-10℃的冰箱中。样品冷冻后,将其从冰箱中移出,使之热至室温。一旦到达室温,用室施例2中的标准目测评价样品。然后将样品再放回冰箱中。全部过程重复二次以上。这些冷冻一解冻循环的结果,以及最初ME的外观,报道在表8中。
表8冷却一解冻循环样品号 最初 第一次循环 第二次循环 第三次循环1A 0 0 0 01B 0 0 0 01C 0 0 0 X1D 0 0 0 01E 0 0 0 01F 0 0 0 01G 0 0 0 01H 0 0 0 01I 0 0 0 01J 0 0 0 01K 0 0 0 01L 0 0 0 01M 0 0 0 01N 0 0 0 01O 0 0 5 51P 0 5 5 02A 0 0 0 02B 0 5 X X2C 0 X X X2D 0 0 0 02E 0 0 0 02F 0 0 0 X2G 0 0 0 02H 0 0 0 02I 0 0 0 X2J 0 0 0 02K 0 0 0 02L 0 0 0 X2M 0 0 0 02N 0 0 0 02O 0 0 0 X2P 0 0 0 0
上述数据证实许多本发明的ME具有好的冷冻一解冻稳定性。
实施例6-用于农业的活性成分(AI)的水可稀释度为了证明本发明其它活性成分的制剂的实用性,对含有下述浓度的水不溶AI的MC的水稀释性进行了测定。
AI3=2-氯-1-(3-乙氧基-4-硝基苯氧基)-4-(三氟甲基)苯AI4=巴豆酸2,4-二硝-6-辛基-苯基酯AI5=α-丁基-α-(4-氯苯基)-1H-1,2,4-三唑-1-丙腈成分浓度%AI3.4或59.0溶剂21.0表面活性剂A49.0表面活性剂E21.0如实施例1所述制备MC。如实施例2所述测定这些样品的水可稀释度,并采用相同的测定标准。结果示于表9,样品63是AI3的上述组合物,样品64是AI4的上述组合物,且样品65是上述AI5的组合物。
表9其它活性成分的水可稀释度含水的重量% 0 10 20 30 40 50 60 70 80 90 9863 0 0 0 1 2 3 1 0 0 0 064 0 0 0 0 3 3 1 0 0 0 065 0 0 0 0 2 3 2 0 0 0 0表9中的这些结果表示出本发明的微乳液可广泛地适用于多种低水溶性的成分。
由于对本发明进行了足够详述的描述,以使本领域的熟练技术人员能够制造和使用本发明,所以从前述公开中变得明显的各种选择,修改和改进未脱离本发明的精神和范围。
权利要求
1.用作杀生剂的组合物其中含有(A)一或多种活性成分化合物,该化合物在室温下的水中溶解度小于1000ppm,且熔点低于100℃;(B)选自下组的一或多种非极性,与水不混溶的溶剂,在室温下所述溶剂能够溶解按重量计至少5%的(A),这组溶剂包括苯甲醇,乙酸苄酯,松油,苯乙醇,二甲苯,苯氧乙醇,邻苯二甲酸丁酯,单异丁酸2,2,4-三甲基-1,-戊二醇酯,和烷基苯;(C)表面活性剂系统包括(C1)硫酸化或磺酸化3-17%的一或多种硫酸化或磺酸化的阴离子表面活性剂,选自下组包括的硫酸化和/或磺化的蓖麻油,硫酸化和/或磺化的乙氧基化的烷基酸,硫酸化和/或磺化的乙氧化脂肪醇,硫酸化和/或磺化的脂肪酚,和硫酸化的烷醇酰胺;和(C2)一或多种选自下组的乙氧基化的表面活性剂。它们包括乙氧化的(C10-C18)烷基磷酸单酯和/或二酯和/或三酯,乙氧基化的(C10-C18)烷基芳基磷酸单酯和/或二酯;乙氧基化的(C8-C20)单烷基一或二烷基酚,乙氧化二烷基酰胺,乙氧化的链烷醇,和乙氧化的蓖麻油;和(D)按重量计0至99.9%的水;(C1)与(C2)的重量比大约为10/90至90/10;所述(A)与(B)的重量比大约为95/5至大约1/99,和所述(A)与(C)的重量比大约为1/99至大约86/14。所述组合物在水稀释度达99.9%的所有水平下,是热力学稳定的和清澈,乳状,或仅轻微雾状。
2.根据权利要求1的组合物还包括一或多种助剂。
3.根据权利要求2的组合物其中所述的助剂选自由去泡剂和防冻剂组成的一组助剂。
4.根据权利要求1的组合物,其中(A)与(C)的重量比大约1/99至30/70。
5.根据权利要求1的组合物,其中(B)是苄醇和松油的混合物。
6.根据权利要求1的组合物,其中(C1)是阴离子的,硫酸化和或磺化蓖麻油。
7.根据权利要求1的组合物,其中(C2)选自由以下组成的一组表面活性剂阴离子的,乙氧基化的(C10-C18)烷基磷酸盐和非离子的,乙氧基化的(C8-C20)单和/或二烷基苯酚。
8.根据权利要求1的组合物,其中(C1)与(C2)的重量比为大约30/70至70/30。
9.根据权利要求1的组合物,其中(C1)与(C2)的重量比为大约50/50至70/30。
10.根据权利要求1的组合物,其中(A)与(B)的重量比为大约50/50至大约10/90。
11.根据权利要求1的组合物,其中(A)为4,5-二氯-2-辛基-3-异噻唑酮,(B)为苄醇,(C1)是阴离子的,硫酸化和/或磺化蓖麻油,脂肪酸,或脂肪酯,(C2)选自由以下组成的表面活性剂,阴离子的,乙氧基化的(C10-C20)烷基磷酸酯和非离子的,乙氧基化的(C8-C20)单和/或二烷基苯酚,(C1)与(C2)的重量比大约为30/70至70/30,(A)与(B)的重量比为大约50/50至大约10/90,且(A)与(C)的重量比为大约1/99至30/70。
12.根据权利要求1的组合物其中(A)选自由以下组成的化合物4,5-二氯-2-辛基-3-异噻唑酮,2-辛基-3-异噻唑酮,2-氯-1-(3-氧基-4-硝基苯酚)-4-(三氟甲基)苯,2,4-二硝基-6-辛基-苯基-巴豆酸酯,和α-丁基-α-(4-氯苯基)-1H-1,2;4-三唑-1-丙腈。
13.根据权利要求1的组合物的浓微乳液形式含有0%的水。
14.根据权利要求1的组合物的微乳液形式含有按重量计1至99.9%的水。
15.在纸浆或造纸工艺的组合物中防治有害细菌和真菌生长的方法,将根据权利要求1的组合物以足够的量引入所述工艺中防治所述真菌。
全文摘要
用作杀生剂的组合物,该组合物的各组分详见说明书。所述的组合物在水稀释度达99.9%的所有水平下是热力学稳定的和清澈,乳状,或仅轻微雾状的,本发明还包括抑制细菌、真菌和藻生长的方法。
文档编号A01N25/30GK1107289SQ9411790
公开日1995年8月30日 申请日期1994年9月30日 优先权日1993年10月1日
发明者B·于, J·R·马托克斯 申请人:罗姆和哈斯公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1