提高衣藻放氢效率的方法

文档序号:427239阅读:212来源:国知局
专利名称:提高衣藻放氢效率的方法
技术领域
本发明涉及生物制氢领域,更具体地,本发明涉及一种提高衣藻放氢效率的方法。
背景技术
微型绿藻繁殖快,分布广,易养殖,自动组织收集光能、自发积累能量并定向快速转换,因之绿藻制氢是今后最经济、方便、易实现的技术,1998年国际能源局的评估报告认为绿藻可逆产氢酶的光解制氢法是最有应用前景的研究方向。美国、德国、日本等国都投入巨资支持生物制氢,以期能尽快进入产业化生产,突破经济发展过程中能源制约和环境污染的瓶颈。[1][2][3][4](本文的参考文献以阿拉伯数字表示,详见下文参考文献部分)美国加州大学伯克利分校的Melis教授突破性地发现硫元素的缺乏可逆地、选择性地抑制衣藻光合放氧,但是对线粒体呼吸速率却几乎没有影响,如此的光合和呼吸速率之间的不平衡就导致了封闭藻液内O2的净消耗,最终达到能诱导氢酶基因表达的无氧状态。这个方法避免了铁氢酶对氧气的敏感性,在时间上把光合放氧、光合放氢分开了,又名“两步光合放氢法”。[5]这是目前最先进的最有推广前景的放氢方法,较之持续了六十年的用充入惰性气体除氧放氢的传统方法前进了一大步,大幅度提高了放氢效率。但由于一些尚不清晰的限制因子,该方法的放氢效率低,放氢只是保持在放氧的基线水平,在缺硫100个小时后必须补加硫,其放氢效率只有藻细胞光合能力的15%,也就是正常光合放氧能力的15%,每毫克叶绿素累积放氢5-7毫升[5],如何进一步提高以衣藻为代表的微型绿藻的光合放氢效率,使之走向产业化,就成了目前研究的焦点[1][3][4]。
目前微型绿藻光合放氢尚处于探索阶段,为提高放氢效率,科学家们在走两条路径。一条是着眼于用生理生化的办法来提高放氢效率,比如衣藻同步化培养,衣藻培养基中乙酸的含量变化,衣藻培养基的pH值的调节等方法,这些方法对放氢效率有所提高,但不能成倍增加[6]。另一条途径就是利用分子生物学的手段来试图提高放氢效率[7][8][9],筛选耐氧的衣藻突变株,改变氢酶和氧气的结合位点,理论上产量能成倍增加,但是,因为单一细胞内基因信息容量有限,附加外来基因对细胞增殖和代谢体系来说无疑是一种负担,所以向单一细胞内能导入的基因数量和大小是有限的;而且在利用基因重组的细胞时,遇到的另一个瓶颈问题是能够利用的宿主细胞种类极为有限,因为许多情况下产品不仅只停留在细胞内而且没有活性,这给后续的分离过程带来很大的麻烦,继代后不稳定。
Melis两步放氢法完全依赖衣藻的呼吸作用来消耗尽溶液中的氧,时间相对较长,衣藻的生长状态进一步受到影响,光合水解生成的电子也剩余不多,影响了放氢速率,同时衣藻在封闭培养后还在消耗冰乙酸,培养液pH值不断上升,溶液能提供的质子相对减少,也影响了放氢速率。另外衣藻在缺乏硫元素和封闭培养的胁迫条件下,生长状态明显下降,影响整个放氢的能力发挥。

发明内容
针对上述研究背景,本发明人深入研究,筛选出能够与衣藻共生的兼性需氧菌,利用藻菌共生的优势互补,提高了Melis两步放氢法的放氢效率。本发明的原理在于首先,在最初的封闭环境中,藻菌共生系统中的兼性需氧菌能够迅速消耗尚在进行正常光合作用的衣藻放出的氧,帮助提前24-30小时达到溶液无氧状态,促进氢酶合成放氢;其次,在溶液为无氧状态后,该菌可以分泌H+到溶液中,为藻放氢提供充分的质子来源,进一步提高产氢效率。另外,菌在生长过程中可以分泌一些活性物质,比如生长素,玉米素等,促进和帮助衣藻在逆境状态下更好生存,生长状态更好,从而提高衣藻的放氢能力。
因此,本发明的一个目的是提供一种提高Melis两步放氢法的衣藻放氢效率的方法,其特征在于将衣藻与兼性需氧菌日勾维肠杆菌(Enterobacter gergoviae)10或肺炎克雷伯氏菌(Klebsiellapneumoniae)或产酸克雷伯氏菌(Klebsiella oxytoca)共培养。在一个实施方案中,日勾维肠杆菌是日勾维肠杆菌57-7(CGMCC No.0510,其已在中国专利号ZL00133626.6(第一发明人李永兴)中公布授权,保藏在中国微生物菌种保藏管理委员会普通微生物中心),肺炎克雷伯氏菌(Klebsiella pneumoniae)AS 1.1734和产酸克雷伯氏菌(Klebsiellaoxytoca)AS 1.1878购自中国微生物菌种保藏管理委员会普通微生物中心,衣藻是Chlamy reinhardtii cc125mt+(美国Duke大学衣藻中心提供)。
在本发明的一个实施方案中,将衣藻和日勾维肠杆菌、肺炎克雷伯氏菌、产酸克雷伯氏菌先分别培养,待放氢时再共培养。
在本发明的另一个实施方案中,其中衣藻是与固定化的日勾维肠杆菌、肺炎克雷伯氏菌、产酸克雷伯氏菌共培养。
以日勾维肠杆菌为例的实验证明,Melis的两步放氢法的放氢效率为每升藻液(3-6×106个/ml),每毫克叶绿素累积放氢5-7毫升,相比之下本发明的复合藻菌共培养体系能将单位藻液放氢效率提高1.5倍,每毫克叶绿素累积放氢7.5-11.8毫升。另外,Melis的两步放氢法在缺硫封闭48小时后衣藻才可以开始放氢,而利用本发明的方法在12-24小时之间就可以放氢,放氢时间提前了24-36小时。因此,本发明的方法显著提高了Melis两步放氢法的衣藻放氢效率,为微藻放氢的规模化应用提供了一种新的可能。


下面结合附图和具体实施方式
对本发明作进一步的详细描述,但不应理解为是对本发明进行限定。
图1.单纯Melis两步放氢法与藻菌(日勾维肠杆菌)共生放氢法的放氢效率的比较;图2.单纯Melis两步放氢法与固定化菌(日勾维肠杆菌)与藻共生放氢法的放氢效率的比较。
具体实施例方式
下面以日勾维肠杆菌为例举例说明本发明的实施方案。
实施例1 藻菌共生放氢法1.实验材料和仪器衣藻Chiamy reinhardtii cc125mt+,野生型,从美国杜克大学衣藻中心购得。
培养方法Tris-acetate-phosphate培养基(TAP)[11]NH4Cl0.4g/LMgSO4·7H2O 0.1g/LCaCl20.0377g/LK2HPO40.108g/L,KH2PO40.056g/LTris 2.42g/L冰醋酸 1ml微量元素1mlTAP-S的培养基则是把含SO42-的盐都用相应的Cl-的盐代替,包括微量元素中的硫酸盐。
ST-04微量水色谱仪(北京分析仪器厂),热导检测器,N2作为载气,外标法测定,色谱工作站JF-9902(北京分析仪器厂)HITACHI 20PR-520离心机氧电极(Hansatech)8500II spectrophotometer紫外分光光度计(上海天美科学仪器有限公司)XB-K-25型血细胞计数板(浙江省玉环县求精医用仪器厂)2.实验方法和结果叶绿素测定方法12取1ml待测藻液,加5ml 80%丙酮,振荡混匀,于4℃静置1小时,再混匀后5000g离心5分钟,取上清,测量663nm,645nm处的吸收值,Chlorophyll(a+b)mg/ml=(20.2×A645+8.02×A663)×5将衣藻单藻落接种后置于含TAP培养基的三角瓶中,100μmol/m2/s的持续光照,25℃,不振荡,通3-5%的CO2,在以上条件下培养6至7天,达到3-6×106个/ml浓度时(用血细胞计数板计数),以体积比1∶10加入TAP-S的培养基中,继续生长,当达到2-5×106个/ml浓度时,封闭培养,同时加入培养15小时的日勾维肠杆菌(Enterobactergergoviae)57-7[7]。日勾维肠杆菌57-7所用培养基与C.reinhardtii的TAP-S相同,培养液体积为藻液的1/2,600nm处的吸光值OD为0.4500-0.6000之间,加入搅拌子,封闭连续光照培养。根据文献报导的方法用排水集气法测量放氢量,用气相色谱测量氢气纯度[5]。以相同培养条件下的不加日勾维肠杆菌的衣藻作为对照,测定放氢量。实验结果见图1,数据为6次实验的平均值。Melis两步放氢法在缺硫封闭48小时后衣藻才可以开始放氢,放氢效率为每升藻液(3-6×106个/ml),每毫克叶绿素累积放氢5-7毫升,而本发明的藻菌共培养体系在12小时后即开始有氢气产出,48小时至72小时达到最高峰,可连续放氢120-140小时,单位藻液放氢效率平均提高1.5倍,每毫克叶绿素累积放氢7.5-11.8毫升。
实施例2 衣藻与固定化菌的共培养1.实验药品4%藻酸钠,灭菌4℃保存,0.05mol/L CaCl22.菌固定化方法1).1000g离心收菌体,无菌水洗两次,所用菌液OD600为0.5000-0.6000之间;2).将所得菌糊加入1/3体积的TAP-S培养基混匀;3).加入2倍体积的4%藻酸钠,充分混匀;4).将0.05mol/l CaCl2于37℃水浴保温10分钟;5).将藻酸钠和菌糊的混合液装入注射器中,用9号针头匀速分滴滴入CaCl2溶液中;6).倾去溶液,用无菌去离子水冲洗1次;7).重新加入00.05mol/L CaCl2溶液,于4℃平衡6小时;8).倾去CaCl2溶液,用TAP-S培养基清洗2次后用纱布包裹待用。
如实施例1所述培养条件和培养方法,分别培养衣藻和日勾维肠杆菌。将收获的600nm处的吸光值OD为0.4500-0.6000之间的日勾维肠杆菌通过以上菌固定化方法固定成菌珠。将培养到3-6×106个/ml浓度的衣藻1000g离心收获,用TAP-S(不含硫元素)培养基清洗两遍后置入TAP-S中,同时将上述固定处理好的菌珠小袋悬挂浸没于藻液中央,继续封闭照光培养。以相同培养条件下的单纯衣藻作为对照,实验结果见图2,数据为6次实验的平均值。与单纯Melis法相比,固定化菌与藻共生体系的放氢时间提前不明显,但放氢量依旧增加,如此菌珠可持续使用三个月有效。放氢效率不变。
在本发明的另一个实施方案中,衣藻材料不变,日勾维肠杆菌变为肺炎克雷伯氏菌或产酸克雷伯氏菌,其余实验步骤均相同,得出类似的实验结果,不另附图。
实验证明,实验室常用的另外两株普通固氮菌肺炎克雷伯氏菌(Klebsiella pneumoniae)AS 1.1734和产酸克雷伯氏菌(Klebsiellaoxytoca)AS 1.1878也有同样效果。
应当理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,但改动或修改的等价形式同样落在本申请权利要求书所限定的范围内。
参考文献[1]Thomas Happe和Anja Hemschemeier(2002)Hydrogenases ingreen algaedo they save the algae’s life and solve our energyproblems?Trends in Plant Science,Vol.7 No.6[2]McKendry,P.(2002)Energy production from biomass(Part1)Overview of biomass.Bioresour Technol,83,37-46[3]Melis,A.和Happe,T.(2001)Hydrogen production.Greenalgae as a source of energy.Plan t Physiol,127,740-748 Melis A(2002)Green alga hydrogen productionprogress,challenges and prospects.Intl.J.Hydrogen Energy 271217-1228[5]Melis A,Zhang L.,Forestier M.,Ghirardi M.L.和SeibertM.(2000).Sustained Photobiological Hydrogen Gas Production uponReversible Inactivation of Oxygen Evolution in the Green AlgaChlamydomonas reinhardtii.Plant Physiol.122(1)127-136[6]Sergey Kosourov和Anatoly Tsygankov (2002) SustainedHydrogen Photoproduction by Chlamydomonas reinhardtiiEffects ofCulture parameters,Biotechnology and Bioengineering,Vol.78,NO.7[7] Happe,T.和Kaminski,A.(2002)Differential regulationof the Fe-hydrogenase during anaerobic adaptation in the green algaChlamydomonas reinhardtii.Eur J Biochem,269,1022-1032[8]Happe,T.,Mosler,B.和Naber,J.D.(1994)Induction,localization and metal content of hydrogenase in the green algaChlamydomonas reinhardtii.Eur J Biochem,222,769-774[9]Winkler,M.,Hemschemeier,A.,Gotor,C.,Melis,A.和Happe,T.(2002b)Fe-hydrogenases in green algaephoto-fermentation andhydrogen evolution under sulfur deprivation.Internattional Journalof Hydrogen Energy,27,1431-1439[10]李永兴等,“玉米根际联合固氮菌日勾维肠杆菌Enterobactergergoviae 57-7的特性研究”微生物学报1993,6454-458[11]Elizabeth H.Harris(1989)The Chlamydomonas Sourcebook,Academic Press,Inc[12]Arnon,D.I.(1949)Copper enzymes in isolated choroplasts.Polyphenoloxidase in Beta vulgaris.Plant physiol.24,1-1权利要求
1.一种提高Melis两步放氢法的衣藻放氢效率的方法,其特征在于将衣藻与兼性厌氧菌共培养。
2.根据权利要求1的方法,其中所述兼性厌氧菌是日勾维肠杆菌(Enterobacter gergoviae),肺炎克雷伯氏菌(Klebsiella pneumoniae)或产酸克雷伯氏菌(Klebsiella oxytoca)。
3.根据权利要求2的方法,其中所述日勾维肠杆菌是日勾维肠杆菌CGMCC No.0510。
4.根据权利要求2的方法,其中所述肺炎克雷伯氏菌是肺炎克雷伯氏菌(Klebsiella pneumoniae)AS 1.1734。
5.根据权利要求2的方法,其中所述产酸克雷伯氏菌(Klebsiellaoxytoca)是产酸克雷伯氏菌(Klebsiella oxytoca)AS 1.1878。
6.根据权利要求1-5中任何一项的方法,其中所述衣藻是Chlamyreinhardtii cc125mt+。
7.根据权利要求1-5中任何一项的方法,其中将衣藻和日勾维肠杆菌、肺炎克雷伯氏菌、产酸克雷伯氏菌先分别培养,待放氢时再共培养。
8.根据权利要求1-5中任何一项的方法,其中衣藻是与固定化的日勾维肠杆菌、肺炎克雷伯氏菌、产酸克雷伯氏菌共培养。
全文摘要
本发明提供一种利用藻菌共生体系的优势互补,提高衣藻放氢效率的方法。
文档编号C12N1/00GK1657605SQ20051001129
公开日2005年8月24日 申请日期2005年2月3日 优先权日2005年2月3日
发明者朱毅, 李永兴, 王可玢, 黄辉, 马晶晶, 白克智, 李良璧, 匡廷云 申请人:中国科学院植物研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1