用于光学治疗的虹膜识别和跟踪的制作方法

文档序号:1111400阅读:481来源:国知局
专利名称:用于光学治疗的虹膜识别和跟踪的制作方法
技术领域
本发明涉及用于眼屈光外科的系统,更准确地说,涉及使用虹膜识别和定位系统以将屈光诊断工具和折射激光系统与眼睛对准。
背景技术
若干年以来,眼科领域在想要矫正眼睛视力的屈光治疗上取得了极大地进展。这些技术从早期的径向角膜切开术,其中角膜中的狭缝允许角膜放松和恢复形状,到包括光折射(photorefractive)角膜切除术(“PRK”)、前层角膜切除术(“ALK”),原位激光角膜切除术(keratomileusis,“LASIK”)和诸如激光热角膜成形术(“LTK”)在内的现技术中发展而来。所有这些技术都试图提供相当迅速而持久的视力矫正。
随着这些技术的发展和改进,在屈光误差矫正中可能实现更大的精度。在早期的治疗类型中,矫正的精度相当不精确。为了提供所需矫正的正或负一屈光度范围内的矫正,例如对于近视来说,认为这种矫正具有极好的效果。然而,治疗类型已经逐渐细化,允许对更加细微的缺陷进行矫正。现在使用现有技术可以高精度地矫正近视和远视,并且还可以使用准分子激光器进行更高阶效果的矫正,如非球面性和不规则散光。
同时,判断需要进行何种矫正的诊断工具也取得了发展。采用外形测量系统可以确定视力缺陷并不考虑它们的“规则性”而进行矫正。在1999年4月6日公布的名称为“分布式准分子激光外科系统”的美国专利No.5,891,132中描述了这种技术。多种新型外形测量系统,测厚系统,波前探测器和综合的屈光误差探测系统不仅能够探测近视、远视和散光量,而且还可以探测眼睛屈光特性的更高级次的像差。
在例如Liang等人的“对于Hartmann-Shack波前探测器的用户人眼波像差的客观量度”(“Objective measurement of waveaberrations of the human eye with the user of a Hartmann-Shackwave-front sensor”,Journal of the Optical Society of America,Vol.11,No.7,July,1994,pp.1-9)中披露了为了诸如眼内外科和接触透镜以及眼内透镜制造的目的人眼中波前像差的探测。在J.Liang和D.R.Williams的“正常人眼的像差和视网膜图象质量”(“Aberrationsand retinal image quality of the normal human eye”,Journal of theOptical Society of America,Vol.4,No.11,November,1997,pp.2873-2883)和Williams等人(“Williams”)的美国专利No.5,777,719中给出了Liang等人的技术的改进。Williams给出了探测像差,和将所探测的像差用于眼睛外科,以及眼内和接触透镜的制造的教导。
国际专利公布WO99/27334(国际申请PCT/US97/21688)(“Frey”)给出了在探测器装置中使用偏振光学装置控制从晶状体的反向散射的进一步变型的教导。与Williams相同,Frey建议使用来自波前探测器的数据对于所检查的眼睛进行光学矫正。更特别地,如此确定的光学矫正受到探测器所测量的角膜的孔径的限制,例如当测量眼睛时眼睛的瞳孔扩大到6毫米的圆。在该区域以外,Frey建议使用部分切除的锥形混合区域使角膜曲率中的剧烈变化最小化,从而减小退化。
这些诊断系统和技术有可能允许对基本和更高级次效果两者进行矫正,特别是当使用更加精确的屈光矫正技术时,在某一天将有可能使优于20/20的视力矫正成为标准。不过,需要用于将先进的诊断技术应用于屈光外科的改进的技术。
发明概述眼屈光外科技术和眼屈光诊断技术已经变得更加精密,而精密度已导致对准确度要求的不断增长。根据本发明,在诊断和外科手术过程中,通过利用虹膜(或虹膜的一部分或其它眼睛识别特征)的象进行调节,可以进一步实现外科手术和诊断技术精度的提高。在进行屈光处理之前,在诊断过程中所存储的虹膜图象的基础上进行外科手术系统的对准。
例如,根据本发明,由角膜表面外形测量系统或波前探测器系统获取眼睛的屈光特性数据,而且还获取相应的眼睛的瞳孔和虹膜象。然后共同保存相应于该虹膜图象的数据和来自该诊断系统的数据。如果还采用附加的诊断工具,则它们也可采用瞳孔或虹膜成像摄象机来提供所有的数据和随后的治疗所参照的“标准化点”。
当进行屈光治疗时,如使用准分子激光器的LASIK,由另一个摄象机摄取虹膜的象,并且将由诊断信息拟定的治疗标准化成该虹膜的象。这种标准化可能包括平移、旋转、定标或其它变换技术。然后提供已知可被施加在角膜上所需点处的治疗。
另外,可以将虹膜的象提供给眼睛跟踪系统,使得可以相对虹膜位置在动态的基础上调节准分子激光器的实际目标。
最好是由该虹膜系统检测虹膜中的区别特征,并在那些特征的基础上确定平移功能。通常,没有两个虹膜是相同的,可以在区别特征的基础上实现旋转、平移、定标或其它变换技术。该虹膜系统可以存储虹膜的各种特征,包括虹膜本身的象,以及导出的虹膜特征、瞳孔和眼睛其它部分的特征,或者有助于对准随后的数据或在激光治疗之前对准外科系统的其它特征。
根据本发明不同的特征,可以在诊断工具之间、诊断工具与诸如激光器的屈光工具之间,或者在这些工具的组合之间进行虹膜对准。另外,在不同工具间可以使用不同的对准技术。例如,可以使用该虹膜数据将诸如外形测量工具的一诊断工具与诸如激光器的一屈光工具对准,同时利用虹膜轮廓和旋转参照(a rotational reference)对准外形测量工具和例如波前探测器之间的数据。可以使用其它对准技术。在这些不同的技术中,此对准数据与屈光分析数据或者屈光治疗数据一起被保存,以便随后其它屈光分析或治疗工具使用这些数据。
总之,此处所使用的术语“诊断工具”,是指用于进行诊断测量以获得有关被测量眼睛屈光数据的诊断装置或系统,如外形测量仪,测厚仪,波前探测器等。屈光数据一般指眼睛的导致视力不理想的特性,包括眼睛组件形状、厚度、光传播和波前像差,以及本领域技术人员公认的其它屈光异常。同样,术语“屈光工具”通常指一种可以在眼睛上实施屈光治疗的装置或系统,如例如准分子激光器一般用做PRK,LASIK和其它折射外科中的光致烧蚀。从下面的描述中将理解此处所使用的术语“标准化”,通常指将诊断测量的图象或显示匹配,均衡,相关,拟合成第一虹膜图象,使得每一方面在尺寸上都与第一虹膜图象参考坐标帧一致。
作为附带的优点,结合屈光诊断分析所保存的虹膜数据,可以提供用于随后的治疗的安全保障机制。特别是,如果外科手术之前该虹膜数据不与外科系统所获得的实际的虹膜图象匹配,可以停止或阻止外科手术,这可以防止例如用特定数据在错误的眼睛上进行操作,或者使用另一患者的数据。
附图简述

图1为流程图,说明虹膜图象数据的获取和将该数据用于随后的激光治疗;图2A,2B和2C为方块流程图,说明虹膜数据和屈光特性数据相结合的获取,在该数据基础上产生的治疗,以及利用该治疗数据和虹膜图象相结合进行激光外科手术;图3为说明从波前数据和表面形状测量数据得到的组合的烧蚀轮廓曲线图;图4为眼睛的剖视表示,以及用于确定眼睛特有的屈光特性的相关的诊断工具;图5为说明可以被用做根据本发明的系统和方法中的特征性虹膜数据的眼睛的多种特性示意图;图5A为与图5相似的眼睛示意图,表示根据本发明一实施例的一种标记;
图6为流程图,说明根据本发明利用所保存的虹膜数据和成像的虹膜数据将所需的治疗转变成实际的治疗;图7为流程图,说明采用所保存的虹膜数据以对准治疗的另一种可供选择的技术;图8A和8B为说明图7技术的显示图象;图9A和9B为说明根据本发明的激光照准光束/成像系统的对准技术示意图;图10为说明根据本发明的另一种对准技术示意图;图11A和11B为根据本发明对准技术的进一步的改进;图12为用于根据本发明系统中的波前探测器的方框图;以及图13为用于图12的波前探测器中的示例性凝视图象的示意图。
实施本发明的方式利用虹膜数据对准激光治疗图1表示使用根据本发明一实施例所提供的系统的方法的通用流程。在方块10对虹膜进行成像,并与利用诊断工具获得屈光数据相结合。可以用多种方式进行这种成像以及使用诊断工具。例如,可以在激光治疗之前使用该诊断工具,如使用角膜表面外形测量系统来确定角膜或屈光分布。或者可以在屈光外科之前立即使用该诊断工具。在任何情形中,成像的虹膜或虹膜的某些显象都被保存为该诊断工具所得出的数据。
进行到方块12,然后在该诊断工具所提供的数据的基础上拟定治疗。例如该治疗可能是治疗一定程度的近视和不规则的散光。例如这种治疗可能是利用名称为“使用降低的热效应进行视力矫正的准分子激光系统”的PCT/EP95/04028(公开于1996年4月25日)算法拟定的治疗,该文献提供了用于改变角膜外形的抖动(dither)算法,以及与名称为“分布式准分子激光外科系统”的美国专利No.5,891,132(公开于1999年4月6日)的分布式系统相结合。不过,将这种治疗标准化成所存储的虹膜图象的显示。由此,随后在附加诊断工具数据的基础上对治疗的修改可以被标准化成随后的虹膜图象。
另外,治疗本身最好对准患者的虹膜。在方块14实现这一过程,其中将激光目标和治疗图案标准化成接受治疗的患者虹膜的图象。这种标准化可以采用非常普遍的形式,诸如将激光目标转换成适当的点,或者可以采取更加复杂的形式,如通过旋转或者甚至改变治疗的比例和倾斜治疗,以便与激光系统中存在的虹膜图象相匹配。
前进到方块16,然后进行激光治疗。值得注意的是,在激光治疗期间该系统可以周期性地或者甚至连续地使虹膜数据与所存储的虹膜数据的显示相匹配,实质上对患者的眼睛进行跟踪。
参照图2A,2B和2C,根据本发明在一系统中表示出确定屈光数据、标准化成虹膜图象、产生治疗过程、然后实施该治疗过程的通用流程。通过角膜表面外形测量系统100和波前探测器102确定拟被治疗眼睛的屈光特性。这两个装置通常均可提供表示眼睛屈光特性的数据。另外还表示出计算机工作站或计算设备104,用于在诊断工具提供的数据的基础上产生定制的治疗过程。虽然将其表示为独立的工作站104,如PCT/EP97/02821所披露的分布式系统中所使用的,但可以将工作站104和/或其功能结合在图2A,2B和2C系统的众多其他部件内。例如,在图2C中表示出激光系统106,该系统接受工作站104所产生的治疗和相应的虹膜数据。激光系统106可以包括工作站104的功能,在该激光系统106本身中产生适当的激光治疗。
在图2A中角膜外形测量系统100从患者眼睛E采集角膜外形数据。所说明的外形测量系统包括一Placido盘形硬件108以及一瞳孔或虹膜摄象机110。这些部件是本领域公知的,并且已知有多种产生角膜外形数据的技术。例如,EyeSys的System2000产生角膜外形数据,盐湖城Bausch & Lomb/Orbtek公司的ORBSCAN II外形测量系统不仅能产生表面角膜外形测量,而且还产生眼睛多个部分的全部外形测量。前一系统是基于Placido盘的系统;后者是一种自动裂隙灯系统。ORBSCAN II系统使用表面高度和光线跟踪来确定眼睛的屈光误差。外形测量系统100通常能够产生多种格式的数据输出112,并使用多种技术进行采集,如在多个点处的绝对角膜高度,在多个点处的角膜曲率等。
除了角膜数据112以外,角膜外形测量系统100还取得眼睛E可见表面的相应的“快照”,提供代表虹膜(和瞳孔)图象120的第一虹膜(和瞳孔)图象数据114。许多角膜表面外形测量系统具有能够获得这种图象的摄象机。如下面将要进一步讨论的,摄象机110可以以多种格式提供虹膜图象数据114,如标准图象格式,或者作为其中识别各种虹膜或瞳孔人为现象的经压缩的格式。这种人为现象可能包括那些沿瞳孔和虹膜的界面边缘的可识别的现象。该虹膜数据114可以是图象和虹膜的可识别的人为现象、瞳孔、它们的界面或者其他眼睛结构的某些组合。
摄象机110可以是多种摄象机类型,如可见光,红外光,或适合于获得虹膜图象120的其他摄象机。最好在外形测量部件(Placido盘式硬件)108采集外形数据112的同时获得图象,尽管在之前或之后获得图象也是可以接受的。
如图2A所示,外形测量数据112和虹膜图象数据114最好关于某种坐标系是相关的,如重叠的图象116所示。在该数据中保存有所确定的外形118和虹膜图象120之间的关系。
如下面所讨论的,用于虹膜图象120的虹膜图象数据114对于对准外科工具(此处为激光系统106)是有用的。不过数据114对于来自多种其他眼科诊断仪器的数据进行标准化也是有用的。特别是,波前探测器102也分析眼睛E中的屈光不规则性或像差。在波前探测器102中,摄象机122最好在某种“可调U形波导节”光学装置124之前聚焦在眼睛E上。使用可调U形波导节光学装置124(例如焦点或光路调谐装置或光学装置)改变光路长度和将激光器126聚焦在眼睛E视网膜上。使用可调U形波导节光学装置124确定并补偿眼睛E的低级像差,如散焦。在一个实施例中,波前探测器102通过微透镜摄象机128采集数据,用于确定眼睛E中的光学像差。如上所述,可以采用多种其他的波前探测器或其他类型的系统来确定屈光眼科波前像差。
与角膜表面外形测量系统100相同,波前探测器102最好提供像差数据130和来自瞳孔摄象机122的虹膜(和瞳孔)图象数据132。这些数据建立了像差分布134-例如,如在Williams中那样,波前探测器光点分布,从此光点分布确定光点的质心,确定眼睛的波前像差和虹膜(和瞳孔)图象136。虹膜图象数据132可能与虹膜图象数据114相同。波前探测器数据130和虹膜图象数据132也被相互标准化,如图2A中由重叠的参考帧138所示。当获得像差数据130和图象数据时,可以放大瞳孔,或者可以不放大瞳孔。
可以确定多种类型的屈光数据,并且应用该屈光数据拟定用于诸如LASIK屈光外科的治疗过程。这些数据可以包括角膜外形数据、波前探测数据、角膜厚度数据或眼睛组成部分的其他不同分布(例如使用超声波),和从多种来源形成的其他类型的屈光数据,如来自狭缝扫描或光学相干层析X射线摄影技术。例如,使用超声波不仅可以测量角膜厚度,而且还可以测量上皮和其他眼睛表面,微角膜刀切割皮瓣(flap)中的叶绿体基质组成部分(对于LASIK),皮瓣下残余的叶绿体基质等。通常在眼睛E上逐点的基础上以改变的分辨率提供这些数据。例如,来自角膜外形测量系统100的角膜外形数据112通常具有比波前探测器数据130更高的分辨率。类似地,某种类型的数据针对眼睛E的一个方面,如角膜表面外形数据112映射眼睛E的表面外形,而其他数据可能反应眼睛E的其他方面,如在波前探测器102的波前探测数据130中可以得到总的屈光误差。
另外,屈光诊断工具可以为多种结构,如固定的,台式系统,手持式或集成在单一工具中的多个系统。本领域普通技术人员将认识到可以在多种实际的实施例中实现根据本发明的技术。
在本发明的一个实施例中,彼此标准化这些组数据以便形成更加精确的屈光治疗。此处,外形数据112和其相应的虹膜图象数据114被标准化成波前探测器数据130和其虹膜图象数据132。例如,在虹膜图象120和虹膜图象136的相似性的基础上(由虹膜图象142所说明)对这两组数据进行相互标准化(由图表140所示)。如上所述,这种标准化可能来自于这些虹膜图象本身的重叠,或者来自于这些虹膜(和瞳孔)图象的特征要素的调节,如下面参照图5所讨论的。
在图2B所示的特殊实施例中,处理像差分布134(例如通过拟合Zernike多项式,如Williams和此处所讨论的)以形成表示为瞳孔波前像差曲线(plot)160(例如等值线)的波前像差数据。还对波前探测器数据130和虹膜图象数据132(图2A)相互进行标准化,如图2B中由重叠的参考帧162所示。如上所述,在获取像差数据130和图象数据时,瞳孔最好是放大的,并且为了产生更加精确的屈光治疗,对这些组数据相互进行标准化。外形数据112和其相应的虹膜图象数据114被标准化成波前探测数据130和其虹膜图象数据132。例如,通过在与前面图2A的讨论类似的虹膜图象120和虹膜图象136的相似性的基础上(由虹膜图象142所表示)得到的(重叠的)图164而说明这些数据的标准化。外形数据118覆盖眼睛的大部分,如遍布大部分或全部角膜,而波前像差曲线(或数据)160通常只覆盖瞳孔或部分瞳孔。当重叠成图164或类似于图164时,瞳孔波前像差等高曲线160与外形118之间可能存在某种相关性,正如本领域普通技术人员所理解的那样,即使没有虹膜图象数据被用于对准或标准化也是如此。为了标准化或叠加外形与波前像差数据(例如,外形数据118和瞳孔波前像差曲线160),如本领域普通技术人员所理解的,可以适当地考虑改变光路长度(例如从波前像差数据)或眼睛的屈光度(例如通过平均屈光度),以便使这些数据相关。
无论根据图2A中的流程草图,还是根据图2B中的流程草图产生数据,如图2C所示,由计算机程序产生治疗轮廓(a treatmentprofile)144。例如可以通过单独的计算机104,与Internet或其他网络连接的计算机,或者作为激光系统106、外形测量系统100、波前探测器102或其他系统一部分的计算系统来完成。所产生的治疗可以是多种治疗。例如,可以执行如前面提到的美国专利No.5,891,132所讨论的不规则治疗图案,或者可以执行多种其他类型的治疗,包括但不限于可变光点尺寸,扫描狭缝,或固定的扫描光点尺寸激光治疗。无论执行何种治疗,都相对于来自各种诊断工具的数据140或164而产生,并且可以保持标准化为所存储的虹膜图象142。
可以按多种方法使用来自各种诊断工具的数据来产生治疗。例如,可以单独使用来自波前探测器102的数据130来产生治疗,或者可以使用来自角膜表面外形测量系统100的数据112。同样地,可以单独使用其他可选择类型的屈光诊断工具的数据来产生治疗。可以组合来自各种工具的数据的有利方面,以产生更好的综合屈光治疗。例如,无论瞳孔放大到什么程度,角膜表面外形测量系统100都返回表面外形数据,但是波前探测器102可能会受到当前瞳孔放大程度的限制(即波前探测器102通常仅测量光路中光学元件的折射效果)。因而,如图2B中图164所示,在比放大的瞳孔更大的表面区域上采用来自角膜表面外形测量系统100的数据112,而将来自波前探测器102的数据130用于瞳孔区域内的中央部分。在两种情形中,使用它们各自的虹膜图象120和136通过第一空间标准化可以使数据130和数据112相一致。
在图3中说明了该技术,其中将基于波前数据和表面外形数据的切除轮廓进行组合。在图3中首先说明了从表面外形数据得到的基于表面外形的切除轮廓162。甚至于在瞳孔外部该数据也是有效的,如瞳孔直径160所示。比较而言,从波前数据得到的基于波前的切除轮廓164通常仅在瞳孔直径160区域之内有效。因此,通过使用瞳孔直径160内的基于波前的切除轮廓164和使用瞳孔直径160外的基于表面外形的切除轮廓162得到了组合的切除轮廓166。在该例中,在对这些轮廓进行组合之前首先从相应的数据计算每个切除轮廓。另外,其他技术也可能在计算切除轮廓本身之前组合所获得的数据。当使用波前探测器时,基于高度图(elevation)的外形测量系统,如可从Bausch& Lomb/Orbtek公司购得的ORBSCAN II外形测量系统是尤为有益的。不过,其他外形测量系统,如基于曲率的系统也可用于本发明实践中。其他类型的可使用的系统包括双摄象机系统,如美国专利No.5,159,361和No.4,995,716中所描述的。
ORBSCAN II外形测量系统是一种基于狭缝扫描高度的外形测量系统,同时测量角膜的两个表面以及晶状体和虹膜的前面。可以将每个被测量表面显示为高度、倾斜、曲率或厚度的图形。还可以从角膜的被测量表面得到测厚仪的全角膜图。可以利用光线跟踪光学计算来确定眼睛前面部分内多种光学部件的视觉效果。ORBSCAN II外形测量是基于漫反射而不是镜面反射,以便更精确地检测表面高度而不是表面曲率。应用来自placido或其他反射目标的镜面反射图象测量表面斜度,可以用来与漫反射测量相结合,如本领域技术人员众所周知的。对于基于高度的ORBSCAN II外形测量系统的说明性描述,参见Richard K.Snook的美国专利No.5,512,965和5,512,966。来自ORBSCAN II系统的数据可以被精确地并且无痕迹地转换成来自波前探测器的综合屈光数据。
在外形测量系统中还可能将来自波前探测器的数据用于“标定”数据。因为波前探测器描述了眼睛中的全部屈光误差,故它允许用于外形测量系统的软件使任意特定点处的表面外形和同那些点相关联的全部屈光误差(由波前探测器确定)相关。如此标定后,可以使用外形测量系统数据来产生总体屈光误差分布。
作为另一个例子,可以组合来自多种诊断工具的数据,以提供眼睛中光学单元的综合模型。例如,角膜表面外形测量系统可以提供表面数据,超声波系统可以提供角膜厚度数据,波前探测器可以提供综合屈光误差数据。通过“去除”表面数据和厚度数据的影响,从而可以使用不同组的数据模拟角膜后的光学单元。
参见图4,表示出眼睛E的剖面图,眼睛E包括角膜450、晶状体456和视网膜458。角膜450包括若干层,如上皮452和基质454。这些多种组成部分,尤其是角膜450和晶状体456相结合,形成眼睛E总的屈光度和屈光特性。若干因素可对屈光误差(例如波前像差)产生影响,包括但不限于角膜450或晶状体456中的不规则性,以及从角膜450和晶状体456到视网膜458的距离(例如在散焦像差的意义上)。
图4中还说明了表示特别适于分析眼睛E特定部分的屈光特性和其他特性的多种诊断工具的符号。这些工具对于眼睛E的不同部分或单元可以提供不同类型的数据。例如,超声波技术460通常可以确定上皮452和基质454的厚度,从而提供角膜450的总厚度。可以采用多种超声波技术,包括测厚仪以及名称为“超声确定角膜层厚和形状的系统”(公开于1994年3月15日)的美国专利No.5,293,871中所描述的技术。
角膜表面外形测量系统462通常提供并分析角膜表面外形。外形测量系统,如Orbtek的ORBSHOTTM和EyeSys的System 2000一般表现出非常高的分辨率,不过限于测量角膜450上皮452的表面。
组合式屈光诊断工具464,如Orbtek的ORBSCAN II外形测量系统一般确定和分析眼睛内多个厚度和表面。这可以包括角膜450的厚度,角膜450的表面外形,晶状体456的表面,从晶状体456到角膜450的距离,以及从眼睛的这些前部的光学系统到视网膜458的距离。
最后,在图4中,由466表示的波前探测器,如前面所描述的波前探测器102或Williams的波前探测器,提供有关眼睛的总体屈光像差的数据,如表示为畸变的波前分布(数据)468。波前探测器技术本质上是以实验为基础的—涉及从视网膜458反射的眼睛外边的光波前特性,而不是眼睛E的任何特有光学单元的物理性质。
再次参见图2C,在所产生的治疗144的基础上,一般对于特有类型的激光系统106提供一种治疗过程,如一系列发射(shot),一系列不同孔径尺寸的扫描狭缝,或者多种其他类型的治疗。由分布146表示的治疗过程本身在空间上是指表示虹膜图象的数据148。数据148可以为虹膜自身的图象、虹膜的黑白高对比度显象、虹膜或角膜的多种自然或人造特性的位置显象,或者虹膜的多种其他显象。通常,当用激光系统106治疗眼睛E时,虹膜的数据148显象应该适合于允许治疗过程146对准眼睛E的实际虹膜。
然后,将包括治疗过程146和虹膜数据148在内的治疗轮廓加载到激光系统106。参见图2C,激光系统106可以为多种类型,如193纳米准分子激光器,并且通常包括一激光器150,一瞄准系统152(例如用于将来自激光器150的光朝向眼睛E引导的一组光学元件),一摄象机154和一控制系统156。通常结合激光器150使用一低功率瞄准或参考光束(图中没有示出)。例如,可以由摄象机154监控瞄准光束,摄象机一般为红外摄象机,并用于瞄准激光器150,如于1997年4月15日公开的名称为“在眼睛上形成精确定位点的方法和装置”(PCT/EP95/01287,1995年10月19日出版)中所描述的。
在操作过程中,摄象机154将眼睛E的虹膜I(参考图2C)的图象提供给控制系统156,以控制瞄准系统152。将实际提供给准分子激光系统106的虹膜I的图象与和治疗过程146相关的虹膜数据148进行比较。然后调节激光头150的目标,使虹膜数据148与摄象机154提供的虹膜I的图象实质上对准。这可能需要平移、旋转、改变比例、倾斜或多种其他变形功能。对于治疗过程146同样执行施加给必须与虹膜I对准的虹膜图象数据148的变换(translation),使得当施加变换时,最终的治疗过程相当于必须减少治疗过程144中预计的光学影响的治疗过程。
治疗过程146的数据本身是可以改变的,或者可以改变激光系统106的目标或者患者的旋转对准。不管采用何种方法,在施行治疗146以前,使用虹膜数据148对准虹膜I。
所披露的技术对多种类型的眼外科有益。可以将PRK施加给眼睛的外表面,或者首先通过角膜的部分切除,然后在下面施加激光治疗而执行LASIK过程。另外,该技术可以适用于其他非角膜切除术类型的治疗,如准分子角膜切开术,或者用于屈光矫正的多种热学方法。这些治疗过程可以与眼睛的虹膜精确的对准,使得可提供更加接近于理论上最佳位置的计算而得的治疗图案。
使用与诊断和治疗数据两者都有关的虹膜数据带来了其他优点。例如,当患者进行诊断测定时处于直立位置,有时与患者处于斜靠位置相比,眼睛可能会在眼窝内轻微地转动。类似地,即使身体处于相同位置,患者头部的垂直性可以影响眼睛转动。虽然患者的大脑能够补偿少量这种转动,在对于更高级缺陷的高精度矫正治疗图案中,旋转对准中的改变完全可能将眼睛旋转到有关治疗以外的位置,导致向眼睛施加了错误的治疗。对于相当基本的治疗过程,如近视和远视,即使对于较小的散光治疗,一般不宣告这种不对准的结果。不过对于更高级的缺陷,如不规则散光,闪光,光晕等,除非能够获得并保持与最佳空间治疗位置对准,否则将会失去高精度治疗的优点。
对于角膜匹配和对准本身,可以采用多种技术,采用虹膜的实际图象或者虹膜多种特征的数字表示。在基于虹膜独特特性的识别系统中,已经采用了这些技术,如Wildes等人于1996年11月5日公开的名称为“自动、非侵入虹膜识别系统和方法”、受让给新泽西Princeton的David Sarnoff Research Center公司的美国专利No.5,572,596和Flom等人于1987年2月3日公开的名称为“虹膜识别系统”的美国专利No.4,641,349,这两个专利在此作为整体引做参考。前一专利披露了调节比例,旋转和平移;后者讨论了可用于极好地匹配和识别虹膜的多种特征,并且还讨论了可用于相对摄象机调节虹膜位置的控制机制。在本发明的一个实施例中,可以使用另一种相似的技术瞄准激光系统106。类似地,Daugman于1994年3月1日公开的、受让给新泽西Mount Laurel的Iri Scan公司,名称为“基于虹膜分析的生物测量学的人识别系统”的美国专利No.5,291,560(在此作为整体引做参考)中,进一步讨论了虹膜所提供的“光学印记”。为了对准而不是严格识别的目的,采用了这些专利和其他本领域公知的图象匹配和特征匹配技术。
或者另外,激光系统106的摄象机154可以接收虹膜I的图象,然后将该图象显示在屏幕上。然后可以对虹膜图象数据148进行重叠,允许内科医生、技师或其他保健员手动地瞄准或调节激光系统106,或者验证系统106的目标。
参见图5,更详细地说明了眼睛E的虹膜I,表示出如何采用特定特征使被治疗患者的眼睛E与他的(或她的)先前所存储的虹膜图象相匹配。例如,可以采用用于定义诸如collarattes的圆形特征的一组点200作为描述符,还可以采用同心沟槽202或径向沟槽204。在前面参考的Flom的美国专利No.4,641,349中描述了可以使用的其他特征,这些特征包括色素点、小囊、萎缩区域、肿瘤和先天性细丝。相似地,也可以将瞳孔用于虹膜匹配,例如作为中心参考点,从而虹膜特性定义眼睛的旋转位置。例如取决于所施加治疗的复杂度可以采用更少或更多的特征。如果治疗是旋转对称的,如对于纯粹近视或远视的治疗,旋转位移是没有意义的,因此可以相对瞳孔设置中心点。不过对于更大复杂度的治疗来说,可以采用更加详细的特征在治疗之前更加精确地对准眼睛E。或者,可以将人造特征施加在眼睛E上,用于定位,标记包括在虹膜区域中。例如,如果在该激光标记愈合之前进行治疗,可以在眼睛E上产生三个激光标记。例如,由钬(Holmium)激光器产生的热标记形式的标记将在外科手术之前或外科手术期间提供有关眼睛转动和平移的信息。还预计了多种标记形状。如图所示,例如在图5A中,径向延伸的标记201可以提供眼睛运动和对准数据。如图所示,参数203表示例如巩膜边界或者由诸如感觉仪器(Sensomotoric Instruments),Teltow(德国)提供的虹膜识别程序确定的灰标分布。标记201具有一环绕在眼睛E近似中心附近的近源段201′,和远离近源段并与近源段201′在同一直线上的远源段201″。可以看出,径向标记201横向跨过边界203。还将理解到,在折射过程中即当在LASIK过程中升起挡板时,标记将具有可以被看到的足够的大小。或者,该标记可能包括适当的染料,尤其是在红外光中可以被红外摄象机看到的可见或可探测的染料。通过在应用之后凝结该染料,或者凝结该染料并将其施加给缩水胶原蛋白,可以将该染料进一步用做刺花纹。另外,可以使用染料和特殊胶水的混合物。对于折射过程期间,这种染料和基于染料的标记将是可见的/可探测的。如果瞳孔是放大的,在应用之后该标记应该在至少15分钟内,最好是高达一小时内保持可见/可探测。这是由于发现放大导致眼睛像差,为了使放大导致的像差消除应该经过足够的时间。然后,可以开始诊断步骤,之后进行治疗。另外,除了虹膜I以外可以使用眼睛的可见表面的其他识别部分。在所有这些技术中,采用眼睛E可见部分的特征于诊断系统所拟定的治疗与施加给眼睛E的实际治疗之间进行对正。
参见图6,说明了在激光系统106所接收的实际虹膜I的图象的基础上可以对所需的治疗进行多种调节。再次参考图2C,提供所形成的治疗144作为所需治疗图案146,用于控制激光系统106。使用来自诊断工具的相关的参考虹膜图象数据148将治疗图案146与患者的眼睛E对准。由激光系统106的瞳孔摄象机154提供虹膜图象206,并提供给控制系统156。控制系统156将图象148或者从该图象产生的描述符,与虹膜图象206进行比较。在比较的基础上,将多种定标函数施加给所需的治疗146。例如,在实际虹膜图象206总体尺寸的基础上,因为诊断工具100或102和激光系统106不同的焦距,可能确定应该按比例减小该治疗。从而计算并施加按比例调节208,产生调节的治疗210。然后,可以确定新调节的所需的治疗210必须被平移和旋转,如平移和旋转函数212所示。这反过来施加给调节的所需治疗210,产生实际的治疗214。然后激光系统106使用这些数据进行实际的治疗。
另外,如果控制系统156具有足够的计算功能,可能对每一次发射(即激光脉冲)都进行适当地旋转和平移。例如如果在治疗过程中眼睛E表现出很大程度的动态旋转和运动,这样做是合乎需要的。然后,可以跟踪虹膜图象206,将图6所示的调节功能208和212动态地施加给所需的治疗图案146中每个特定的发射或连续的发射。用这种方法,可以逐点地调节眼睛E的运动。可以将这种技术与PCT/EP95/01287的瞄准激光技术相结合,使得在施加发射之前确定每次发射或一系列发射相对虹膜图象206的实际位置。
因而,在本发明的实施例中,可以将任何一种诊断仪器与摄象机或其他成像器安装在一起,获得瞳孔、虹膜的象或者眼睛外表其他特性,并且输出相当于该图象的数据。然后,当进行屈光治疗时,例如在LASIK中使用的准分子激光治疗,将所存储的图象(或其特有的成分)与瞳孔、虹膜或眼睛的实际图象进行比较,对准激光器,使得治疗将如所计算的那样精确。
在本发明的一示例中,如下所述描述了眼睛对准和特征化的方法。
在患者眼睛的选定区域中提供一标记。在描述中说明了多种标记类型和形状,包括但不限于热致标记、径向标记和染料标记。瞳孔未放大时获得患者眼睛的第一个图象,从而该图象包括虹膜和该标记的图象。最好是,该图象是用红外摄象机获得的红外图象,不过可见光图象也是适合的。因此,该标记将适于在红外光中看见/或探测到。然后通过光强度改变或者化学地使瞳孔放大,获得眼睛的包括放大的瞳孔和标记在内的第二个图象。获得了放大状态的眼睛的诊断测量,诊断测量最好为波前像差测量,或者可以是外形或其他屈光诊断测量。然后使用计算机系统从该诊断测量形成光折射治疗,用于患者眼睛的屈光矫正。如果使用染料作为标记,最好在施加染料后该染料在至少15分钟,最好是到一个小时的时间内保持可见和/或可探测,或者有足够长的时间消除放大所导致的像差。
根据本发明,通过对准第二个图象与第一个所获得的图象,最好是通过比较各个图象中的标记,或者通过比较各个图象中其他相应的特性,该方法可以具有其他应用。与此处所描述的本发明的其他方面相似,通过对准诊断测量和患者眼睛上的标记,实现了光折射治疗的发展。在本发明的一个方面,对准过程可以采用通过计算机系统提供的虹膜图案识别。在本领域中已知并可购得多种虹膜图案识别软件。
在获得第二个图象之后,医生可以选择实时地立即执行所得到的光折射治疗。在该情形中,眼睛的象包括放大的瞳孔,从而在第二个图象中没有可以与所获得的第一个图象进行比较和对照的虹膜图象。因此,在各个图象中使用标记来相关,标准化或者对准图象和与那些图象有关的屈光或诊断工具。或者,可以延迟数小时,数天等进行眼睛的光折射治疗,并且在任意选择的时候进行治疗。在该情形中,最好通过屈光工具获得包括虹膜图象在内的患者眼睛的另一个图象,用于获得图象的屈光工具例如包括瞳孔或虹膜摄象机的光切除激光系统,瞳孔或虹膜摄象机最好是红外摄象机。在治疗之前,在诊断测量的基础上,将该图象与所获得的第一个虹膜图象对准,并结合所形成的治疗。当然,通过图象存储,数字化等,可以验证所形成的诊断治疗,诊断工具,屈光工具或其任意组合的对准,并且可以通过显示系统将该对准方便地显示给医生。
用于执行前面所讨论的对准和光折射治疗的系统包括最基本的用于获得包括眼睛的虹膜图象在内的第一个图象的第一摄象机,一本领域普通技术人员所了解的用于进行波前,外形测量,厚度测量或其他屈光诊断测量的屈光诊断仪器,一能够提供所形成的光折射治疗、最好包括一用于获得眼睛另一图象的第二摄象机的激光系统,一用于形成并对准与该激光系统、第一摄象机和诊断工具相关的光折射治疗的计算机系统,以及一与系统的其他部件适当连接,用于执行光折射治疗的控制系统。在本发明的一个方面,进一步包括一用于获得包括虹膜图象在内的眼睛另一图象的摄象机的第二屈光诊断仪器也可以构成整个系统的一个部件。显示系统也连接到整个系统是比较有利的。
参见图7和8A-8B,表示采用先前所获得的虹膜I的图象,保证激光治疗与计算而得的治疗分布适当对准的一种可供选择的技术。一般,图8A说明图2C中激光系统106的摄象机154所提供的显示器252。左侧是使用屈光诊断工具确定眼睛E的屈光特性时所获得的虹膜I图象数据250。从该数据已经形成了与该虹膜I图象数据250校直的治疗分布。在显示器252的右侧,为激光系统106的摄象机154返回的实时虹膜I图象254。如可以看出的那样,与所获得的图象数据250相比,实时图象254轻微地旋转非对准。这就为医生提供了一个重新对准患者眼睛E的机会,在图8B中产生正确对准的实时虹膜I图象256。最好是,该显示器包括参考轴,允许医生很容易地确定旋转非对准。例如,该系统还可以提供一光标,医生能够将光标放在识别特征上,以便精确地确定相对该轴的旋转位置。
图7说明使用图8A和8B的系统对准虹膜的步骤。首先,在步骤260中显示所获得的虹膜I图象数据250。同时,在步骤262中显示虹膜I的实时图象254。当准分子激光系统106为采用眼睛跟踪器的Keracor 217时,那么医生在步骤264激励该眼睛跟踪器,对准实时图象254的中心。Keracor 217上的眼睛跟踪系统提供虹膜I中心对准,但是不提供虹膜的旋转对准。
前进到步骤266,在所获得的数据250和实时图象254上均显示一个轴。然后医生比较屏幕上的图象,并确定对准虹膜I的两个图象所必须的旋转量。然后医生旋转眼睛E,使实时虹膜I图象256相对所获得的虹膜图象数据250旋转。医生可以手动地完成这种旋转,如使用吸取环(suction ring)或者通过重新定位患者的头部。另外,通过将治疗分布旋转平移由医生所测定的量,该系统能提供患者眼睛E的“虚拟”旋转。在任何情形中,眼睛跟踪系统首先提供实时虹膜I图象254的中心,然后医生实现与所测得的图象数据250相比,虹膜I图象256的旋转对准。
参见图9A和9B,表示出用于形成图8A和8B中所示轴的技术。特别地,如图9A所示,相应于激光系统中的轴表示出虹膜图象270。在这种情形中,通过用其他可见的瞄准光束从左到右在X轴上快速地扫描瞄准系统,快速地产生轴。因此,挡医生观察图8A的图象时,通过激光器本身的瞄准系统在实时虹膜I图象254上产生轴,该瞄准系统与用于瞄准光束的系统是同一个瞄准系统。从而,将知道激光器真正的X轴,因为瞄准系统扫描的瞄准光束产生了该X轴。
参见图9B,说明了将激光器的瞄准系统与显示器或光学系统对准的另一种技术。假设在图9B中,在激光器的光学系统中,或者在激光器的眼睛跟踪器摄象机上再次表示出瞳孔274,不过瞄准光束在线276上扫描,而线276与光学系统或眼睛跟踪器的X轴没有精确地呈一条直线。技师可以使扫描的瞄准光束276与光学系统和眼睛跟踪系统的X轴对准,将扫描的瞄准光束276对准到光学系统和眼睛跟踪系统实际的X轴278。然后,可以将一条线叠加在眼睛跟踪系统上,或者可以相应于激光瞄准系统的实际X轴,在光学系统中形成一条线。另外,可通过在X轴上扫描该瞄准光束而周期性地验证对准,确保在光学系统内或在眼睛跟踪系统视频显示器上,该扫描的瞄准光束与对准轴匹配。可以类似地调节和验证平移X-Y对准。
利用多种类型数据对准多个诊断和治疗系统参照图10,说明另一种技术,其中不仅获得虹膜I的图象,还获得其他类型的数据,以便在多种系统中对准所获得的屈光数据或治疗分布。尤其在图10中说明了由外形测量系统500、波前系统502和激光系统504所获得的对准数据。如果波前系统502在获得虹膜I图象数据方面存在困难,或者需要在获得波前数据之前完全放大眼睛,所披露的技术允许不使用这些数据而进行对准。在该情形中,在一个实施例中,医生首先在眼睛上形成一参考标记506,然后该标记506作为相对虹膜508的轮廓旋转对准的标记。波前系统获取波前像差数据,以及瞳孔轮廓数据508和参考标记506。
然后,采用外形测量系统500。不过,外形测量系统500确实获得了由虹膜图象数据510所表示的虹膜图象数据。它还获得了虹膜512的轮廓以及前面所形成的相应于参考标记506的参考标记514。如图象516所示,同时获得这两个图象,从而该外形测量系统500在虹膜图象510,虹膜轮廓512和相关的参考标记514之间保持可平移和旋转的参考,并且获得外形数据本身。另外,外形测量系统500可以不基于虹膜图象510而是基于虹膜512的轮廓和旋转参考标记514将其数据与波前系统502相结合,也就是,外形测量系统500和波前系统502,当组合它们的数据以形成屈光矫正过程时,在所获得的虹膜轮廓512和508,以及旋转参考标记514和506的基础上对准它们的数据。
最好也保存虹膜图象510,使得当计算治疗过程时,可以参考该虹膜图象510。然后,激光系统504使用该虹膜图象510,对准激光系统504所获取的实时虹膜图象518。
因此,激光系统504采用虹膜图象518本身,波前系统502采用具有参考标记506的虹膜图象508的轮廓,因为外形测量系统采用两者,外形测量系统500和波前系统502两者之间的初始诊断数据可以被对准,当激光系统504执行切除时,在该数据基础上的治疗分布也被对准。
当初始时采用外形测量系统500和波前系统502获得诊断数据,并且在后来仅采用激光系统504时,这可能尤为有用。可以将被获得的作为参考标记514和506的临时参考标记施加在眼睛上,如使用医用钢笔。虽然在以后使用激光系统504时该标记可能消失,由于在外形测量系统500获得参考标记514的同时时获得虹膜图象510,激光系统504可以采用其自己获得的虹膜图象518对准治疗。
另外,有可能不需要参考标记本身。如果同时采用波前系统502和外形测量系统500,或者在患者的眼睛或头不动的条件下使用,那么可以假设保持了正确的旋转对准。然后,波前系统502仅需要获取虹膜508的轮廓,同时用外形测量系统500获取虹膜512的轮廓。这可以通过固定患者的眼睛,或者固定患者的头部并在患者头部不动的条件下将两个诊断系统移动到适当的位置来实现。如果使用该技术,可能进一步需要采用旋转参考图象,如下面图13中所描述的帆船所示,来进一步保证使用波前系统502和外形测量系统500时眼睛之间旋转对准。
可能对这种设计进行多种重新配置。参见图11A,外形测量系统520获取虹膜数据522,并且作为其部分分析功能还获取散光轴524。然后,波前系统526也获得波前数据,但是不获取虹膜图象,但是探测由圆528所示虹膜轮廓。该波前系统还获取散光轴530。然后,使用那些散光轴使外形测量系统520和波前系统526所获取的数据匹配。作为该技术的另一种可能的情形,如图11B所示,在波前系统502上安装一圈照明二极管532。波前系统502的瞳孔摄象机获取由图象534所表示的这些二极管的反射。在照明二极管圈532的那些照明位置的畸变的基础上,如图象534所获取的,再次获取与外形探测系统520所获取的散光轴524相关的散光轴536。这就提供了使来自外形测量系统520和波前系统526的数据校准的附加的基础。另外,在这种情形中,散光轴均基于眼睛表面所产生的散光,而不是波前系统526波前切除分布所获得的眼睛的全部屈光误差。
其他可选择的技术包括一系统,其中对两个图象进行叠加。另外,包括前面所述的光标定位和治疗分布的软件旋转在内的多种用户接口工具可以协助医生。
另外,不需要连续地使用虹膜数据或其他对准数据。可以将虹膜数据用做初始的对准工具,然后在诊断分析或屈光治疗过程中可以使用其他更简单的对准技术,如单独虹膜的位置。也就是,可以使用虹膜数据建立旋转对准,然后可以使用虹膜的轮廓在治疗期间保持平移对准。另外,在屈光分析或治疗过程中,取决于处理能力,可以周期性地“抽查”旋转对准,即使在虹膜本身轮廓的基础上保持平移对准时也是如此。
患者和眼睛验证作为附加的附带利益,当患者躺下并探测虹膜I图象时(图2C和5),虹膜匹配算法不仅可以确定与实际的虹膜图象206相匹配的平移、定标、旋转和倾斜,而且可以验证正在进行手术的眼睛E。从而虹膜匹配算法起到故障保险机制的作用,保证特定的激光治疗对于该患者而不是另一名患者来说是适当的治疗。同样,它起到故障保险机制的作用,即使单一患者的两个虹膜具有不同的性质,也确保正在对特定的眼睛E进行手术。在分布式系统中这些故障保险机制尤为有用,其中在第一位置获得诊断信息,在第二位置形成治疗,后来在第三位置实施治疗。如果不能匹配虹膜的特性,该系统能够提供报警。
与激光系统106的瞄准相似,可以使用虹膜图象数据148叠加在来自摄象机154的虹膜图象的显示器自动或手工地完成验证。
波前探测器参见图12,说明了最佳的波前探测器300的方块图。波前探测器300原理上与Williams的波前探测器相同,不过波前探测器300包括某些特征使其对于接收虹膜数据和锐化探测器上用于确定眼睛波前像差的光斑的焦点来说尤其有用。通常波前探测器300在眼睛的视网膜上对光进行聚焦或扫描(通常为激光),然后分析通过晶状体和眼睛的角膜光学装置返回(即从视网膜反向散射)并由微透镜阵列成像的光。在眼睛的光学装置中光学像差的基础上,该系统从返回光形成总的波前像差。通常,为了进行分析,此返回光成为由微透镜摄象机在微透镜摄象机的探测器上所形成的空中图象。从这些图象,波前探测器形成必须向眼睛的光学系统施加多少矫正的波前像差图,由其产生正常的或非常接近于正常的视力。
为了正确地对患者的眼睛E进行定向,如图12所示,两个660纳米激光二极管302以某一角度对准眼睛E。当患者眼睛E上来自激光二极管302的光斑合并成单一光斑时,通过适当的调节波前探测器300(或102)、激光二极管302(或引导这些光束的光学装置)的输出光束、患者或其它方面,眼睛E被定位在或者近似地处于波前探测器300(或102)的精确的焦距距离处。或者,由医生、技师或其它保健人员通过可视地观看眼睛E的虹膜图象而恰当地旋转患者的眼睛E,寻找到波前探测器300的正确的焦距,以便较少对眼睛E的总曝光。在这种情形中,不需要激光二极管302。一光源,眼睛照明304提供了用于下面所讨论的瞳孔摄象机328的光。
一旦眼睛E被正确对准,它沿着到眼睛E的光路接收光源306(例如激光二极管,如780纳米输出激光二极管)发出的光。最好是,激光二极管306具有不只一个输出功率设置(即两个或多个功率模式),至少一个处于用于对准和初始化聚焦的较低功率,以及至少一个处于用于在下面所讨论的探测器(例如微透镜摄象机)312中产生多个斑点图象的较高功率。例如,典型地较低和较高功率分别为0.5μW和30μW。这些功率取决于若干因素,如激光二极管306在较高功率下保持打开了多长时间。
来自激光二极管306的一部分光束首先被分束器308反射(例如80%透射,20%反射)。所反射的光束穿过偏振分束器310,最终改善了从眼睛的视网膜反向散射的最后被微透镜摄象机312所探测的光的信噪比(或信号强度),如下面所讨论。分束器310使接收自激光二极管306的光偏振,通常透过沿一个方向的线偏振光,并反射在那个方面没有被偏振的光。然后该偏振光穿过一用于调节来自激光二极管306的光在眼睛E的视网膜上的焦点的可调U形波导节棱镜314,同时入射在视网膜上反向散射在微透镜阵列上的光也将被正确地或近似正确地聚焦。来自可调U形波导节棱镜314的光被反射镜316反射,穿过分束器318(例如20%反射,80%透射),然后通过一λ/4波片320。将该λ/4波片320定向成可由线偏振光产生基本的圆偏振光。在下面对从眼睛E返回到偏振分束器310的反向散射光的讨论中将理解到这一点的重要性。
在通过一λ/4波片320之后,光被聚焦在眼睛E的视网膜上。该光从视网膜反向散射或反射,然后在视网膜上反向散射的光斑向后穿过眼睛E的光学部件,如晶状体和角膜。在返回路径上,波片320再次对圆偏振图象光进行延迟,产生与如前面所讨论的第一次通过波片320的入射线偏振光垂直的线偏振光。然后一部分垂直的偏振光穿过分束器318,从反射镜316反射,向后穿过棱镜314,然后返回到偏振分束器310。此时,所有或大部分光是垂直偏振的,并且因此基本上被偏振分束器310反射,然后被反射镜322反射到微透镜成像摄象机312中。为了使部分返回光进入调节摄象机323,下面进一步讨论,波片320可以从其最佳取向倾斜和/或旋转(例如旋转大约5度)。在该实施例中,调节摄象机323所接收的光将具有基本上垂直于返回光的偏振态。除了从波片320的最佳取向倾斜或旋转波片320,以便将返回光束提供给调节摄象机323以外,可以想象出其它包括改变光路和波前探测器300(或102)的光学部件,并且包括在本发明范围之内的机制。例如,反射镜322可以是一种具有可调整透射率和反射率的装置,如液晶装置,并且可以设置调节摄象机和任何聚焦光学装置来接收返回光中透过可调整装置的部分。在该实施例中,不必要使用分束器308,并且可调整装置所接收的光将与返回光束具有基本上相同或平行的偏振态。
微透镜摄象机312最好是一种电荷耦合器件(CCD)摄象机,如Pulnix制造的TM-9701,该摄象机包括一微透镜阵列324,不过可以使用其它类型的摄象机和其它与微透镜阵列324相似的取样光学装置(包括与摄象机分离的光学装置)。例如,可以使用索尼公司的ICX039DLA摄象机作为微透镜摄象机312和瞳孔摄象机328。微透镜阵列324根据反射镜322所反射的返回光束在微透镜摄象机312的光敏元件(例如CCD阵列)上形成空中影象。波片320有助于减少所不想要的反向散射或杂散光量,改善信号强度或空中影象的对比度。微透镜阵列324对最初穿过眼睛E的光学部件的部分光束进行聚焦,使得可以确定眼睛E的反射波前像差效果,与Williams中所披露的相似。关于这一点,一旦已经确定了眼睛E的波前像差,从而确定了相位误差,就可以将它们转换成所需要的切除分布,用于去除角膜组织以便通过适当考虑眼睛E的参数(例如眼睛E部件的折射率,和/或其它参数)来矫正或改善视力。一种用于确定适当分布的技术是简单定标波前数据,使得定标的数据通常相当于需要从患者的角膜去除的组织的量。然后激光系统可以从角膜去除该组织分布。可以采用眼睛E上的标记,帮助在获得波前探测数据过程中对准眼睛E。
最好是,微透镜阵列324是近似的25×25个微透镜的阵列,每个为600平方微米,如Adaptive Optics Associates有限公司制造的0600-40-S。该微透镜尺寸小于前面所提到的5,777,719专利和其它系统中所描述的微透镜的尺寸,因为下面将讨论的波前探测器300的部件提供给微透镜摄象机312的增强的光强度,允许小尺寸微透镜。图12中所示波前探测器300的光路还可能包括通常为照明、成像和聚焦光学装置的透镜326组(例如四个透镜)和光阑或光圈327(允许改变光束尺寸),并且还可能存在其它为了清楚起见被省略的光学元件。例如,在本发明的一个实施例中,可以关于可调U形波导节聚焦棱镜314而改变一个或两个透镜组326的焦距,可能缩短焦距以适应进入微透镜阵列324的更小的光束宽度。在另一实施例中,可以改变用波前探测器300(或102)进行的可能的屈光测量范围,例如通过适当地选择激光器306前面的透镜326,全面调节不好视力的自然分布,或者选择患者人群。实现该功能的一种方法是将透镜326(例如一-5屈光度透镜)设置在激光二极管306前面,使得激光光束不再是平行的。这就提供了可用于使用波前探测器300(或102)检测患者眼睛的某种屈光度偏离。在一非约束性例子中,可以改变曲光范围,如本领域普通技术人员所了解的,从具有对称设计的对称的-8至+8屈光度调节成具有非对称设计的非对称的-13至+3屈光度。这可以在不改变可调U形波导节聚焦棱镜314(或其它调谐装置)和/或光学装置的参数的条件下实现。
代替透镜326的位置,可以将透镜338移动到微透镜摄象机312的光路内。可以采用到微透镜摄象机312的光路内若干位置来调节所获得的波前探测器300的总范围。将理解到,通过采用可移动到适当位置和移动到不正确位置的透镜326或338,减小了可调U形波导节必须的“偏心距”长度。另外,激光二极管306通常其自身具有某些固有的“象散”。可以将其与通常在患者眼睛E中发现的散光对准,再次增加波前探测器300的总范围。特别地,发现该象散与典型的患者散光一致,并且微透镜摄象机312和相应的波前探测器300软件可以考虑这种内在的象散,提供更大的可确定散光的范围。
所示的瞳孔摄象机328接收(例如20%)从分束器318反射的光。瞳孔摄象机328最好通过与下面对准技术的讨论中所讨论的控制系统156相似或相同的控制系统(图中没有示出)提供用于虹膜图象136的虹膜图象数据132。为了进行比较,对来自微透镜摄象机312的数据进行处理,并最终形成为像差数据。
瞳孔摄象机328设置在眼睛E与可调U形波导节棱镜314之间的光路中,不管用于在视网膜上聚焦的系统的其余部分焦距的改变,都允许瞳孔摄象机328聚焦在眼睛E的瞳孔和虹膜上。从而,瞳孔摄象机328能够独立于眼睛E的深度和相应的从视网膜到虹膜的距离,而形成眼睛E的表面的清晰的图象。
凝视目标波前探测器300(和102)还采用用做凝视目标334的图象,如图10所示。凝视目标334被光源336照明,并且在调节摄象机323通过棱镜314聚焦在视网膜上时允许患者注视和聚焦。当来自微透镜阵列324的空中影象通过可调U形波导节光学装置314的调节而被聚焦在微透镜摄象机312的探测器上时凝视目标334是比较有用的。该系统有利地提供了凝视目标334的图象,一个非限定性例子为图10中所示的水面上的帆船,并且不是简单的凝视点。凝视目标334呈现给眼睛E和患者的大脑一个在其上聚焦的图片状或实际图片图象或者景物—由眼睛E看到的实际物体或景物。通常用图片状的图片聚焦眼睛E比聚焦到一个点更易于实现。凝视目标的图象允许眼睛E聚焦在无限远处,好象图象在远处一样,有助于在聚焦空中影象或获得波前探测器数据时,消除或减小眼睛E调节和旋转的影响。换句话说,凝视目标的图象防止,或者有助于在某种程度上防止眼睛E从小于无限远处聚焦。
凝视目标图象促使眼睛E旋转到其“正常的”转动位置,从而使诊断分析的旋转误差最小化。因此,通过凝视目标334,可以相对眼睛E限定一可旋转的参考帧。可以在无限远眼睛E焦点处观看的非对称图象,如图10中的帆船,较好是帮助眼睛E相对凝视目标334保持正常的或者预先确定的可旋转位置,即使头部轻微移动也是如此。结合前面所述的眼睛E的虹膜的识别,定位和对准,凝视目标334还可用于调节眼睛E的可旋转位置。可以将同样的图象用于根据本发明的其它部分中,可用于诊断和治疗,消除或减少调节或旋转问题。
本领域普通技术人员将理解到,可以使用多种类型的部件来代替波前探测器300(或102)中所提供的装置而具有所公开的优点,并且可能使用多种光学结构来形成本发明的其它实施例。例如,高强度准直光源,或多个光源,例如一个低功率和一个高功率的光源可以代替激光二极管306。调节摄象机323可以设置在反射镜322的光路中,微透镜摄象机312的微透镜阵列324依照需要或者按照设计可以具有更多或更少的微透镜。另外,本领域普通技术人员将理解到所有这些部分通常受诸如微型计算机的控制系统的控制。在本发明范围和精神内还可能有多种其它的设计。
结论本发明前面的公开和说明是示意性和示例性的,并且在不偏离本发明精神的条件下可以对所说明的装置和结构以及操作方法的细节进行多种改变。
权利要求
1.一种用于对准患者眼睛的屈光治疗的方法,包括对患者眼睛进行诊断测量;获取包括患者眼睛的虹膜图象的第一个图象;确定第一个图象与诊断测量之间的空间关系;在该诊断测量的基础上拟定对于患者眼睛的屈光治疗;获取患者眼睛的第二个图象;以及对准该第二个图象,包括确定与准备进行屈光治疗的第一个图象之间的空间关系。
2.如权利要求1所述的方法,其中在患者的眼睛、患者眼睛的图象、诊断工具、屈光工具、或者其任意组合之间进行对准。
3.如权利要求2所述的方法,其中该诊断工具包括外形测量系统和波前测量系统其中至少之一,并且该屈光工具包括一激光系统。
4.如权利要求1所述的方法,其中该诊断工具和屈光工具分别包括一用于获取眼睛的象的摄象机。
5.如权利要求4所述的方法,其中获得第一个图象的步骤包括使用该诊断工具获取眼睛的象。
6.如权利要求5所述的方法,其中获得第二个图象的步骤包括使用该屈光工具获取眼睛的象。
7.如权利要求1所述的方法,其中该第二个图象包括患者眼睛的虹膜图象。
8.如权利要求1所述的方法,其中进行诊断测量包括通过对波前像差测量、外形测量、厚度测量、OCT测量、综合屈光检查仪测量和超声波测量其中至少之一进行测量而获得有关患者眼睛的屈光数据。
9.如权利要求1所述的方法,其中进行诊断测量包括使用超声波确定患者眼睛的角膜厚度或其它不同分布。
10.如权利要求4所述的方法,其中该对准步骤包括显示所存储的第一个图象的显象;以与第一个图象相比较的方式显示第二个图象;以及手动地瞄准屈光工具使得第一和第二个图象重叠并且对准。
11.如权利要求1所述的方法,其中该对准步骤还包括识别第一个图象中患者眼睛的区别特征;并且将该区别特征与第二个图象中患者眼睛的相应的区别特征对准。
12.如权利要求11所述的方法,其中所述区别特征是天生的标记和所施加的标记其中之一。
13.如权利要求1所述的方法,还包括在获取第一个图象之前在患者眼睛的所需的位置中产生一标记。
14.如权利要求13所述的方法,其中产生标记的步骤包括按所需方式施加一种染料或基于染料的标记。
15.如权利要求14所述的方法,其中所述染料在红外光中是可见的。
16.如权利要求14所述的方法,其中所述染料对于进行对准和屈光治疗的足够长的时间来说是可探测的。
17.如权利要求13所述的方法,其中产生标记包括一热感应标记。
18.如权利要求17所述的方法,包括使用激光器热标记眼睛。
19.如权利要求18所述的方法,其中该激光器为钬(Holmium)激光器。
20.如权利要求13所述的方法,其中产生标记包括使标记从患者眼睛的中心区域向外围区域径向延伸。
21.如权利要求20所述的方法,其中所述径向延伸标记具有不在一条直线上的一近源段(a proximal segment)和一远源段(a distalsegment)。
22.如权利要求1所述的方法,其中该对准包括平移、旋转、定标、对所拟定的屈光治疗进行相关和标准化其中至少之一。
23.如权利要求1所述的方法,其中获取该第一和第二个图象的步骤,包括使用红外摄象机获取红外眼睛的象和使用可见光摄象机获取可见图象其中至少之一。
24.如权利要求1所述的方法,还包括在获取该第一和第二个图象之间放大患者的眼睛。
25.如权利要求24所述的方法,进一步包括在获取该第一个图象前在患者眼睛的所需区域中产生一标记。
26.如权利要求25所述的方法,其中产生标记的步骤包括按所需方式施加一种染料。
27.如权利要求26所述的方法,其中所述染料在红外光中是可见的。
28.如权利要求26所述的方法,其中在施加标记之后至少大约15分钟到1小时时间内所述染料是可探测的。
29.如权利要求1所述的方法,进一步包括使用另一诊断工具对患者眼睛进行另一诊断测量;获取包括患者眼睛的虹膜图象的第三个图象;确定该第三图象与另一诊断测量之间的空间关系;以及在分别来自第一和第三图象的诊断测量和另一诊断测量的对准和相关的基础上进一步拟定屈光治疗。
30.如权利要求29所述的方法,其中该诊断测量与另一诊断测量的分辨率不同,使用其中一个内插入另一个。
31.一种用于对准屈光矫正仪器与患者眼睛的系统,包括一适合于提供关于患者眼睛的屈光数据的屈光诊断工具,其中该屈光诊断工具包括一适合于获取患者眼睛的第一瞳孔和/或虹膜图象的第一摄象机,其中该屈光诊断工具适合于提供屈光特性数据和相应的空间相关的表示该第一虹膜图象的虹膜数据;以及一激光系统,适合于向患者眼睛施加一屈光治疗过程,其中该激光系统包括一适合于获取第二虹膜图象的第二摄象机;一适合于施加该屈光治疗过程的激光器;以及一控制系统,适合于接收从屈光特性数据和虹膜数据得出的数据,以在控制系统开始治疗过程之前将虹膜数据与第二虹膜图象对准。
32.如权利要求31所述的系统,其中该控制系统被连接到第二摄象机和该激光器。
33.如权利要求31所述的系统,其中该屈光诊断工具包括一波前探测器。
34.如权利要求31所述的系统,其中该屈光诊断工具包括一角膜外形分析仪。
35.如权利要求31所述的系统,其中该屈光诊断工具适合于使用超声波确定角膜厚度或其它不同的型面。
36.如权利要求31所述的系统,其中该屈光诊断工具包括一手持式屈光诊断工具。
37.如权利要求31所述的系统,其中该激光系统进一步包括一与该第二摄象机和控制系统连接的显示器,适合于显示重叠的第二虹膜图象和所接收的虹膜数据。
38.如权利要求31所述的系统,其中该控制系统适合于将所接收的虹膜数据与该第二虹膜图象进行比较和对准。
39.如权利要求31所述的系统,进一步包括一第二屈光诊断工具,其包括一适合于获取第三虹膜图象的第三摄象机,其中该第二屈光诊断工具连接到该激光系统上,并且适合于提供患者眼睛的附加的屈光数据,和附加的屈光特性数据以及相应的空间相关的表示来自第三摄象机的第三虹膜图象的附加的虹膜数据。
40.如权利要求39所述的系统,进一步包括一连接到该屈光诊断工具、该第二屈光诊断工具和该激光系统上的计算系统,其中该计算系统适合于接收屈光特性数据、附加的屈光特性数据、所接收的虹膜数据和附加的虹膜数据,并且适合于通过对准接收的虹膜数据与附加的虹膜数据,将屈光特性数据空间标准化成第二屈光特性数据。
41.如权利要求40所述的系统,其中该计算系统适合于在标准化的数据的基础上拟定用于激光系统的屈光治疗过程。
42.如权利要求41所述的系统,其中该激光系统包括该计算系统。
43.如权利要求31所述的系统,其中该激光器包括一准分子激光器。
44.如权利要求31所述的系统,进一步包括一连接到该屈光诊断工具和该激光系统上的计算系统,该计算系统适合于接收屈光特性数据和虹膜数据,以拟定屈光治疗过程,并提供该空间标准化成虹膜数据的屈光治疗过程。
45.如权利要求44所述的系统,其中该激光系统包括该计算系统。
46.一种用于向患者眼睛施加屈光治疗过程的激光系统,该激光系统接收与表示患者眼睛的虹膜图象的虹膜数据空间相关的屈光治疗过程,该激光系统包括一适合于获取虹膜图象的摄象机;一适合于施加屈光治疗过程的激光器;以及一控制系统,适合于接收屈光治疗过程和虹膜数据,并在控制系统开始屈光治疗过程之前对准该虹膜数据与虹膜图象。
47.如权利要求46所述的系统,进一步包括一适合于根据来自屈光诊断工具的屈光特性数据拟定屈光治疗过程的计算系统,并且提供与代表来自屈光诊断工具中附加摄象机的附加虹膜图象的附加的虹膜数据空间相关的屈光治疗过程。
48.如权利要求47所述的系统,其中该控制系统和该计算系统包括在同一计算机系统中。
49.一种为患者眼睛提供屈光治疗过程的方法,该方法包括确定患者眼睛的屈光特性;在确定屈光特性的同时获取患者眼睛一表面的象;利用所确定的屈光特性拟定屈光治疗过程;以及通过将所获取的表面象与屈光矫正仪器所接收的患者眼睛的另一个象对准,而将屈光矫正仪器与患者眼睛对准。
50.如权利要求49所述的方法,进一步包括施加屈光治疗过程。
51.一种用于对准屈光矫正仪器与患者眼睛的系统,包括用于确定患者眼睛的屈光特性的装置;在确定屈光特性的同时用于获取患者眼睛的一表面的象的装置;利用所确定的屈光特性拟定屈光治疗过程的装置;以及用于通过对准所获得的患者眼睛的表面的象与屈光矫正仪器所接收的患者眼睛的另一个象,而使屈光矫正仪器与患者眼睛对准的装置。
52.如权利要求51所述的方法,进一步包括用于施加屈光治疗过程的装置。
53.一种对准屈光矫正仪器与患者眼睛的方法,该方法包括确定患者眼睛的屈光特性;从患者眼睛的虹膜获取用于限定虹膜与所确定的屈光特性之间空间关系的第一图象;保存该第一图象的显象;从患者眼睛的虹膜获取用于拟定屈光治疗过程的第二图象;以及对准第二虹膜图象和所存储的显象,用于将屈光治疗过程标准化成第二虹膜图象。
54.一种对准屈光工具的方法,该方法包括使用第一屈光工具从患者眼睛获取第一虹膜图象数据;使用第二屈光工具从患者眼睛获取第二虹膜图象数据;以及将该第二虹膜图象数据与该第一虹膜图象数据进行对照(aligning)。
55.如权利要求54所述的方法,进一步包括使用该第一屈光或诊断工具获取眼睛的第一可供选择的对准数据;使用第三屈光或诊断工具获取眼睛的第二可供选择的对准数据;以及将该第一可供选择的对准数据与该第二可供选择的对准数据进行对照。
56.一种用于对准(aligning)屈光诊断和治疗数据的系统,包括一采用第一屈光数据的第一眼科诊断或屈光工具,该第一眼科诊断或屈光工具适合于获取第一眼科对准数据,并且保持该数据作为用于第一屈光数据的参考;一采用第二屈光数据的第二眼科诊断或屈光工具,该第二眼科诊断或屈光工具适合于获得第二眼科对准数据,作为用于第二屈光数据的参考;以及用于通过对照第一对准数据与第二对准数据使该第一屈光数据与第二屈光数据相关的装置。
57.如权利要求56所述的系统,其中该第一和第二眼科诊断和屈光工具从下面的一组中进行选择角膜外形测量工具;波前像差工具;以及适用于屈光矫正的激光器。
58.如权利要求47所述的系统,其中该第一和第二对准数据均为下面的一种虹膜数据;散光数据;或虹膜轮廓加上旋转标记数据。
59.如权利要求56所述的系统,其中该用于相关的装置为一计算设备,适合于计算激光器屈光治疗图案。
60.如权利要求56所述的系统,其中该用于相关的装置为激光器中一适合于对准激光目标的部件。
61.一种眼睛对准和特征化的方法,包括在眼睛的一选定区域中提供一标记;获取具有未放大瞳孔的眼睛的第一图象,包括虹膜图象,其中该标记构成第一图象的一部分;放大眼睛的瞳孔;获取包括放大的瞳孔的眼睛的第二图象;获得具有放大的瞳孔的眼睛的诊断屈光测量;以及从该诊断测量拟定用于眼睛的屈光矫正的光折射治疗(photorefractive treatment)。
62.如权利要求61所述的方法,其中该诊断测量是来自眼睛的波前测量。
63.如权利要求61所述的方法,其中所述标记为一种染料或基于染料的标记。
64.如权利要求63所述的方法,其中所述染料在红外光中是可见的。
65.如权利要求64所述的方法,其中在施加该标记之后所述染料在至少大约15分钟至一小时的时间内是可见的。
66.如权利要求61所述的方法,其中所述标记具有从眼睛的中心区域径向延伸的近源段。
67.如权利要求66所述的方法,其中该标记的一远源段横过眼睛的边缘区域。
68.如权利要求67所述的方法,其中该标记的远源段与该标记的近源段不在一条直线上。
69.如权利要求61所述的方法,其中所述标记为一激光标记。
70.如权利要求69所述的方法,其中所述激光标记由钬激光器构成。
71.如权利要求61所述的方法,其中所述治疗包括LASIK,并且其中在角膜皮瓣从角膜上收起之后所述标记是可探测的。
72.如权利要求61所述的方法,进一步包括通过至少对各个图象中的标记进行比较而对准第二图象与第一图象。
73.如权利要求72所述的方法,其中拟定包括对准诊断测量与标记的光折射治疗。
74.如权利要求73所述的方法,其中所述对准包括从所述第一图象中识别虹膜图案。
75.如权利要求74所述的方法,其中所述虹膜图案识别包括虹膜的灰度级(a gray scale)分析,用于产生虹膜的灰度级分布。
76.如权利要求75所述的方法,其中所述标记横向跨过所述灰度级分布。
77.如权利要求61所述的方法,进一步包括在获取第一图象时获得诊断屈光测量。
78.如权利要求61所述的方法,进一步包括在波前测量和治疗拟定之后未经过有计划的时间延迟就施行所述光折射治疗。
79.如权利要求78所述的方法,包括通过从第一和第二图象对准标记而对准光折射治疗。
80.如权利要求61所述的方法,进一步包括在波前测量与治疗拟定之后一有计划的时间延迟之后施行所述光折射治疗。
81.如权利要求80所述的方法,包括在治疗时获得虹膜图象,并将所述虹膜图象与第一图象中的虹膜图象对准。
82.如权利要求61所述的方法,进一步包括在施行所拟定的治疗以前验证所拟定的治疗与第一图象的对准。
83.如权利要求61所述的方法,进一步包括在施行所拟定的治疗以前提供所拟定的治疗与眼睛的对准的显示。
84.如权利要求82所述的方法,如果对准没有证实,则进一步包括调节眼睛位置和调节所拟定的治疗其中至少之一,使得所拟定的治疗最终与眼睛对准。
85.如权利要求82所述的方法,进一步包括在光折射治疗过程中选定时间处验证对准。
86.如权利要求82所述的方法,进一步包括在光折射治疗过程中实时地验证对准。
87.如权利要求77所述的方法,其中所述屈光诊断测量包括角膜外形测量和厚度测量其中至少之一。
88.如权利要求61所述的方法,其中所述标记提供有关眼睛平移和旋转的信息。
89.一种用于对准和眼睛屈光治疗的系统,包括一第一摄象机,用于获取包括眼睛的虹膜图象在内的第一图象;一屈光诊断仪器,提供与该第一摄象机相联系的波前、外形和厚度测量其中至少之一;一激光系统,能够提供光折射治疗,包括用于获取眼睛另一图象的第二摄象机;一计算机系统,用于拟定和对准与该激光系统、该第一摄象机和该诊断仪器相联系的光折射治疗;以及一控制系统,用于施行与该计算机系统和该激光系统相联系的光折射治疗。
90.如权利要求89所述的系统,其中该第一图象包括眼睛选定区域中标记的象。
91.如权利要求90所述的系统,其中该其它图象包括该标记的象。
92.如权利要求89所述的系统,其中第一和第二摄象机其中至少之一为红外摄象机,它们各自的象包括眼睛选定区域中标记的象。
93.如权利要求92所述的系统,其中所述标记提供用于对准该第一图象和其它图象的信息。
94.如权利要求93所述的系统,其中在施加标记之后在至少15分钟内所述标记在红外光中是可见的。
95.如权利要求93所述的系统,其中所述标记为激光标记。
96.如权利要求95所述的系统,其中所述激光标记为由适当的激光器形成的热标记。
97.如权利要求89所述的系统,其中该屈光诊断仪器为波前探测器,并且进一步包括一第二屈光诊断仪器,该第二屈光诊断仪器包括一第三摄象机,用于获取眼睛的另一图象,该另一图象包括虹膜象和眼睛选定区域中的标记的象。
98.如权利要求97所述的系统,其中该控制系统适合于相关和标准化所拟定的屈光治疗和所获得的象。
99.如权利要求89所述的系统,进一步包括一显示器,其允许操作员看见所拟定的治疗与所获得的图象的对准。
100.如权利要求97所述的系统,进一步包括一显示器,其允许操作员看见所拟定的治疗与所获得的图象的对准。
101.如权利要求91所述的系统,其中该屈光治疗包括一LASIK过程,并且当角膜皮瓣放下时该标记是可见的。
102.如权利要求91所述的系统,其中该标记横过眼睛的虹膜识别图案的灰度级分布。
103.如权利要求93所述的系统,其中该标记包括一具有一近源段和一远源段的记号,所述近源段从对准中心径向延伸。
104.如权利要求103所述的系统,其中所述远源段与所述近源段不在一条直线上。
105.如权利要求104所述的系统,其中所述远源段横向穿过眼睛的虹膜识别图案的灰度级分布。
全文摘要
提供了一种系统和方法,其中在屈光诊断分析过程中获得虹膜或眼睛的象。采用该图象使来自该分析的数据与来自其它屈光分析仪器的数据对准,并且对准屈光外科工具(如激光器)和被治疗的眼睛。另外,在治疗之前比较所存储的虹膜图象和患者的虹膜,验证待利用所拟定的治疗图案进行治疗的恰当的眼睛。可以使用多种屈光仪器,如角膜外形测量系统和波前像差系统。
文档编号A61B3/18GK1379647SQ00814462
公开日2002年11月13日 申请日期2000年10月20日 优先权日1999年10月21日
发明者克里斯蒂安·霍拉, 托马斯·纽汉, 格哈德·尤西非, 罗兰·古恩特·诺伯特·托恩尼斯 申请人:泰思诺拉斯眼科系统公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1