用于脊柱植入物的多阶段生物材料注射系统的制作方法

文档序号:1108109阅读:201来源:国知局

专利名称::用于脊柱植入物的多阶段生物材料注射系统的制作方法
技术领域
:本发明涉及用于应用生物材料注射系统使用现场固化的生物材料填充椎间盘空间形成植入物设备的方法和设备,还涉及应用本发明的方法和设备全部或者部分地置换椎间盘的方法。
背景技术
:位于脊骨中的相邻的椎骨之间的椎间盘为脊骨以及施加在脊柱支柱上的力的分布提供了支撑结构。椎间盘包括三个主要部分软骨终板、髓核以及纤维环。中央部分、髓核或细胞核相对柔软并且为凝胶状的;包含大约70至90%的水。髓核具有较高的蛋白聚糖含量并且含有大量的UI型胶原质和软骨细胞。围绕髓核的是纤维环,它具有严格的一致性并且包含组织纤维网络,该组织纤维网络具有大约40%的I型胶原质、60%的II型胶原质和成纤维细胞。环状部分用来向盘提供圆周机械支撑、提供扭转阻力并且包含更软的髓核而抵抗其静压。然而,椎间盘对多种损伤敏感。椎间盘突出症(discheriation)出现在髓核开始通过环状物的开口伸出时,且通常伸出到突出的材料撞击脊骨或脊髓中的神经根的程度。环状物的后部和后侧部对衰减或突出最敏感,因此,对由椎间盘上的垂直压缩力施加的静压更敏感。椎间盘和纤维环的各种损伤和恶化在下列文献中进行了讨论Osti等人在AnnularTearsandDiscDegenerationDiscDegenerationintheLumbarSpine,J.BoneandJointSurgery,74-B(5),(1982)pp.678-682;Osti等人在AnnulusTearsandIntervertebralDiscDegeneration,Spine,15(8)(1990)pp.762-767;Kamblin等人在DevelopmentofDegenerativeSpondylosisoftheLumbarSpineafterPartialDiscectomy,Spine,20(5)(1995)pp.599-607中。用于椎间盘损伤的许多处理涉及核修复或盘隔片的使用。多种修复核植入物是本领域中已知的。例如,美国专利No.5,047,055(Bao等人)揭示了可膨胀的水凝胶修复细胞核。本领域中已知的其他设备例如椎间隔片,在椎骨之间使用楔子来降低由脊骨施加在盘上的压力。用于脊柱融合的椎间盘植入物在本领域是已知的,并且公开于例如美国专利No.5,425,772(Brantigan)和4,834,757(Brantigan)中。其他方法专注于相邻椎骨的熔合,例如以Sulzer提供的方式提供罩。Sulzer的BAKInterbodyFusionSystem涉及中空螺纹缸的使用,该螺纹缸植入两个或更多椎骨之间。植入物填充有移植骨以易于脊椎骨的生长。当邻接的椎骨穿过并且围绕植入物生长在一起从而导致稳定性时就实现了熔合。用于盘修理的设备和/或方法也有所描述,但是看上去并没有进一步发展,并且肯定没有达到商业化的程度。例如,可以参见编号为FR2639823(Garcia)的法国专利申请和美国专利No.6,187,048(Milner等人)。两篇参考资料在几个重要的方面彼此不同并且在下文所述的设备和方法中也不同。例如,任一篇参考都没有揭示转换生物材料在分散的操作参数之间的流动或是检测模子中的破裂的方法。另外,任一篇参考文献都没有揭示在将生物材料输送至盘空间的过程中分流固化生物材料的初始部。在美国专利No.5,556,429(Felt)和5,888,220(Felt等人)和美国专利公布No.US2003/0195628(Felt等人)中描述了由生物材料形成的修复植入物可以输送并且在现场固化,使用最低程度的侵入性技术来在椎间盘中形成修复髓核。所公开的方法包括,例如,将收缩的模子设备(在一个优选实施例中描述为“模子”)插入通过环状物中的开口,并且将模子填充至模子材料由可流动生物材料膨胀的程度,而可流动生物材料用于现场固化并且提供了一种永久的盘置换。相关的法公开于题为“ImplantableTissueRepairDevice”的美国专利No.6,224,630(Bao等人)和题为“StaticMixer”的美国专利No.6,079,868(Rydell)中。
发明内容本发明涉及用于使用现场固化生物材料填充椎间盘空间的方法和设备。生物材料注射系统可以用于例如在保留围绕盘的组织基本上完整的方式下植入修复整个盘或者修复盘髓核。短语“椎间盘修复”通常指的是这两种变异。可选地,本发明的设备和系统适宜用于具有最低程度的侵入性应用。适合使用本发明的各种植入过程、植入模子和涉及椎间盘置换的生物材料在编号为5,556,429(Felt)、6,306,177(Felt等人)、6,248,131(Felt等人)、5,795,353(Felt)、6,079,868(Rydell)、6,443,988(Felt等人)、6,140,452(Felt等人)、5,888,220(Felt等人)、6,224,630(Bao等人)的美国专利以及编号为10/365,868和10/365,842的美国专利申请中公开了,这些都包含在此作为参考。本发明的使用可流动生物材料填充椎间盘空间的方法包括将容纳有可流动生物材料的贮存器流体连接至椎间盘空间的步骤。依照第一操作参数控制可流动生物材料输送至椎间盘空间。监测至少一个注射状态。作为对一个或多个注射状态到达阈值等级的响应,依照第二操作参数控制可流动的生物材料的输送。在至少一部分可流动生物材料的固化期间保持第二操作参数。在一个实施例中,该方法包括将容纳有可流动的生物材料的贮存器流体连接至位于椎间盘空间中的模子。第一操作参数将可流动生物材料输送至模子以便模子基本上充满椎间盘空间。在另一个实施例中,允许在至少一个注射状态到达阈值等级之后以及启动第二操作参数之前经过一段预定的时间。该保压时间包括第三操作参数。该保压时间的长度可以是固定的或者根据因病人而异。优选第一操作参数施加足够的压力来迅速地填充模子并且使模子膨胀充满盘空间。第一注射状态触发第二操作参数,第二操作参数在适当压力下保持特定的保压时间以便完全填充盘空间来分散椎间盘空间。在保压时间之后,第三操作参数可选地允许一部分可流动的生物材料排出椎间盘空间,之后就是第二保压时间,第二保压时间已知持续到充分固化时为止。本发明的方法可选地包括对可流动生物材料进行预处理。生物材料也可以在输送至椎间盘空间之前暴露在紫外线光下、进行加热和/或混合。在一个实施例中,生物材料的流动被导向远离椎间盘空间直到预定数量的生物材料输送至净化设备中的腔室中为止。在一个实施例中,第一操作参数包括向贮存器中的可流动的生物材料施加第一操作压力并且向贮存器中的可流动生物材料施加低于第一操作压力的第二操作压力的步骤。在另一个实施例中,椎间盘空间向椎间盘空间中的可流动生物材料施加大于第二操作压力的压力。监测至少一个注射状态的步骤通常包括监测贮存器和椎间盘空间之间的可流动生物材料的压力和/或椎间盘空间中的可流动生物材料的压力。监测至少一个注射状态的步骤可以监测在贮存器和椎间盘空间之间流动的可流动生物材料的至少一个状态,即压力、流速、流逝时间、或者总体积中的至少一个。本发明的方法还包括对应于可流动生物材料的流动期间的至少一个注射状态的数据的步骤。注射状态数据可选地上载至计算机。本发明的方法还包括确定是否任何注射状态在规格之外并且还包括指示不在规格状态中。或者,对超出规格状态进行响应,改变生物材料的流动和/或从椎间盘空间撤回生物材料。作为对一个或多个注射状态到达阈值等级或者通过控制器自动转换的响应,依照第二操作参数手动地转换可流动生物材料的流动。本发明的方法可选地包括将阈值等级作为病人参数的函数来调节。第一和第二操作参数通常包括多个变量,例如注射压力、生物材料的温度等。本发明的方法还包括在输送生物材料之前将评估模子定位在椎间盘空间中。液体输送至评估模子以便模子基本上充满椎间盘空间并且测量例如盘高度、压力等。液体从评估模子中移走,并且测量注射的和/或移走的液体的体积。然后从椎间盘空间中移走评估模子。液体优选在足够分散椎间盘空间的压力下进行输送。液体和/或评估模子可选地具有不透射线的性能。本发明还包括使用本发明的生物材料注射系统控制液体输送至评估模子或者从中移走。在优选实施例中,成像可以用于测量椎间盘空间的分散,用来评估是否模子基本上充满了椎间盘空间,评估椎间盘空间的几何尺寸,和/或向外科医生提供关于适量核移除的信息。评估模子可以置于植入模子中直接在环状物中,或者在移走整个盘的情形下置于盘空间中。在另一个实施例中,容纳有评估模子和液体的椎间盘空间进行成像,并且基于椎间盘空间的成像建立第一操作参数和/或第二操作参数中的至少之一。在一个实施例中,椎间盘空间成像以便估算所需的生物材料的体积。然后该估算可以同从评估模子中移走的液体量相比。在另一个实施例中,液体在足够分散椎间盘空间的压力下输送至评估模子。在一段时间内评估模子中的液体的体积可以保持恒定。当模子中的压力下降至预定等级时,向评估模子中添加另外的液体。输送、容纳和添加的另外的液体的步骤优选重复多个周期。在另一个实施例中,液体在恒压下连续地向评估模子输送。测量液体输送至评估模子的速率。测量椎间盘空间的顺应性作为输送液体的变化速率的函数。本发明的方法还包括将导向线定位在模子中并且使容纳导向线的椎间盘空间成像。导向线可选地包括成像目标。本发明的方法还包括在输送生物材料之前将不透射线的护套定位在模子上。容纳不透射线的护套的椎间盘空间进行成像,并且在输送生物材料之前移走不透射线的护套。本发明的目的还在于适合于向椎间盘空间输送可流动生物材料的设备。设备包括容纳有可流动的生物材料的贮存器,该贮存器通过流体连接至椎间盘空间,还包括至少一个传感器和控制器,该传感器适合于监测可流动生物材料的至少一个注射状态。控制器被编程设置成监测至少一个传感器并且依照第一操作参数控制可流动生物材料向模子中的流动。响应达到阈值等级的一个或多个注射状态,控制器依照第二操作参数控制可流动生物材料的流动并且在一段特定时间周期或保压时间内保持第二操作参数,然后转换为第三操作参数并且在至少一部分流动生物材料的固化过程中保持第三操作参数。在一个实施例中,设备包括位于椎间盘空间中的模子,其中该模子流体连接至容纳有可流动生物材料的贮存器。控制器被编程设置成使第一操作参数向模子输送可流动生物材料以便模子基本上充满椎间盘空间。在一个实施例中,控制器被编程设置成启动第二操作参数,在该第二操作参数期间,系统在第一操作参数(至少一个注射状态达到第二操作参数下的阈值等级)之后以及启动第三操作参数之前等待一段预定的时间。在另一个实施例中,控制器被编程设置成依照第三操作参数输送可流动生物材料,其中,在至少一个注射状态到达阈值等级之后以及第二操作参数之前,第三操作参数在预定压力下使可流动生物材料在椎间盘空间中保持一段预定的时间。操作参数可以是线性的、非线性的、连续的、不连续的或者实现期望的注射分布图所需要的任何其它配置。操作参数也可以基于监视注射状态的传感器的反馈进行实时修改。控制器优选被编程设置成使第一操作参数包括足够分散椎间盘空间的压力。在另一个实施例中,控制器被编程设置成使第二操作参数允许一部分可流动生物材料从椎间盘空间中排出。控制器还能够可选择地被编程设置成控制可流动生物材料的预处理。设备可选择地包括在可流动生物材料输送至椎间盘空间之前对准可流动生物材料的紫外线光源和/或加热源。本发明的设备还可选择地包括位于可流动生物材料的贮存器和椎间盘空间之间的混合设备。本发明的设备还可选择地包括用于将预定数量的生物材料流远离椎间盘空间导向。在一个实施例中,控制器被编程设置成使第二操作参数向贮存器中的生物材料施加第二操作压力,其中第二操作压力低于在第一操作参数下施加的压力。控制器可以监测贮存器和椎间盘空间之间和/或椎间盘空间中的压力。控制器优选被编程设置成监测至少一个注射状态,包括监测贮存器和椎间盘空间之间的可流动生物材料流的压力、流速、流逝时间、或总体积的至少之一。控制器优选被编程设置成对应于可流动生物材料的流动期间的至少一个注射状态来记录数据。在一个实施例中,控制器被编程设置成与可流动生物材料的流动期间记录的至少一个注射状态相对应地向计算机上传数据。控制器也可以被编程设置成确定是否至少一个注射状态包括规格之外的状态并且指示规格之外的状态。或者,控制器被编程设置成对规格之外的状态做出响应来改变可流动生物材料的流动或者从椎间盘空间中撤回至少一部分生物材料。控制器优选将阈值等级作为病人参数的函数来调节。第一、第二和第三操作参数通常包括多个变量。本发明也可以包括用于在输送生物材料之前置于椎间盘空间中的评估模子以及用于向评估模子输送以便模子基本上充满椎间盘空间的液体。控制器优选被编程设置成从评估模子中移走液体并且测量从评估模子中移走的液体的数量。液体和/或评估模子可选择地具有不透射线的性能。在一个实施例中,控制器被编程设置成估算需要填充椎间盘空间的生物材料的体积,并且将从评估模子中移走的液体的数量与使用成像技术测量的椎间盘空间的估算体积进行比较。在另一个实施例中,控制器被编程设置成在压力下向评估模子输送足够分散椎间盘空间的液体,使液体在评估模子中保持恒定的体积一段时间,并且在压力下降当预定等级时向评估模子添加另外的液体。控制器优选被编程设置成重复这些步骤多个周期并且估算椎间盘空间或脊柱单元的顺应性。在一个实施例中,对顺应性的估算做出响应来修改操作参数。在另一个实施例中,控制器被编程设置成在恒压下向评估模子连续地输送液体、测量向评估模子输送液体的速率、并且将椎间盘空间的顺应性作为输送液体的变化速率的函数来估算。在一个实施例中,本发明包括置于模子中的导向线。在另一个实施例中,不透射线的护套位于模子之上。本发明的目标还在于控制器的被编程设置成确定是否至少一个注射状态包括规格之外的状态并且产生规格之外的信号。本发明的目标还在于用于向位于椎间盘空间中的模子输送可流动生物材料的设备。设备包括容纳有可流动生物材料的通过流体连接至模子的贮存器、依照第一操作参数使可流动生物材料流入模子的致动器以及监测可流动生物材料的至少一个操作参数的至少一个传感器。设备还包括用于指示至少一个注射状态到达阈值等级的显示器以及控制可流动生物材料依照第二操作参数流动的开关。在此使用的单词和术语应该具有如下所述的含义“生物材料”通常指的是能够导入关节中并且固化从而在活的有机体中提供期望的物理一化学性能的材料。在一个实施例中,术语指的是能够使用具有最低程度的侵入性的机构导入人体内的场所的并且固化或者进行其它修改以便使它保持在期望的位置和配置中的材料。通常,这种生物材料在它们的非固化形式下可流动,意味着它们具有足够的粘度从而允许它们通过直径的量级大约为1毫米至大约6毫米的输送管进行输送,并且该直径优选大约2毫米至大约3毫米。这种生物材料还是可以固化的,意味着它们可以固化或在组织场所现场进行其它修改,以便经历能够足以保持期望位置和配置的阶段或化学变化。“固化”和它的变形通常指的是允许生物材料从能够输送至场所的第一物理状态或形式(通常为液体或可流动的)变化或转化成在活的有机体中中最终使用的更恒定的第二物理状态或形式(通常为固体)的任意化学变换(例如反应或交联)、物理转换(例如硬化或固化)、和/或机械变换(例如干燥或蒸发)。当关于本发明的方法使用时,例如,“可固化”指的是具有在活的有机体中固化的潜力(如通过催化或应用适当的能源)的未固化的生物材料,还指固化过程中的生物材料。如在此进一步描述的那样,在所选实施例中,生物材料的固化通常考虑为包括三个阶段,包括(a)凝胶化的开始,(b)凝胶化发生并且变成充分地不剥落以便成形的周期,(c)完成固化直至生物材料对于它的预计用途具有最后成形。“具有最低程度的侵入性的机构”指的是手术机构,例如显微手术、经由皮肤的或内窥镜检查或关节镜手术机构,可以在对有关的肌肉组织进行最小的破坏的情况下实现,例如不需要打开通往组织受伤场所的入口活通过微小的切口(例如大约小于4厘米并且优选大约小于2厘米的切口)。这种手术机构通常通过使用目视观察例如光纤或微观目视观察来实现,并且提供基本上比相应的开口手术伴随的恢复时间短的术后恢复时间。“模子”通常指的是在生物材料输送和现场固化的过程中,本发明中用于接收、约束、成形和/或保持可流动生物材料的部分。对于模子的至少一部分结构、构造或功能,它可以包括或依靠自然组织(例如椎间盘的环状壳)。模子又会至少部分地用于确定固化的修复植入物的位置和最终的尺寸。同样地,它的尺寸和其它物理特征可以预计提供这种性能的最佳组合,这些性能为使用具有最低程度的侵入性的机构输送至场所的能力、使用生物材料填充、防止湿气接触以及然后可选择地保持在固化生物材料和自然组织之间的接触面的适当位置处。在一个实施例中,模子材料本身可以变成固化生物材料主体的一部分。模子可以是弹性的或者非弹性的、永久的或生物再吸收的。图1是本发明的方法和设备的示意图。图2是依照本发明的示例性输送管和模子。图3是依照本发明的生物材料贮存器的一个实施例的示意图。图4是依照本发明的净化设备的示意图。图5显示了处于打开配置中的图4中的净化设备。图6A是本发明的方法和设备的替换方案的示意图。图6B是密封依照本发明的环状物的输送管的示意图。图6C是图6B中的密封环状物的输送管的示意图。图7是在依照本发明的中心计算机和多个控制器之间的通信系统的示意图。图8A-8C显示了依照本发明的成像和模子定位技术。图9显示了依照本发明的成像技术的替换方案。图10A-10B显示了使用依照本发明的不透射线的护套的成像技术的替换方案。图11是依照本发明的示例性注射分布图。图12-14是依照本发明的一种方法的示意图。图15显示了本发明的方法和设备的一个替换的实施例。图16A-16B显示了用于后部进入依照本发明的环状物的输送管的替换方案。图17A-17B显示了用于侧向进入依照本发明的环状物的输送管的替换方案。图18显示了依照本发明的输送管的替换方案。图19显示了依照本发明的输送管的另一种替换方案。具体实施例方式图1显示了依照本发明的生物材料注射系统1的一个实施例。生物材料注射系统1包括容纳有生物材料23的贮存器3,该贮存器3经过输送管11通过流体连接至植入模子13。泄放后的植入模子13的大小设计为位于椎间盘空间19中。模子填充有未固化的生物材料23以便提供一种置换盘。随着生物材料23输送至植入模子13中,在移走一些或所有髓核之后,模子13膨胀至大体上充满椎间盘空间19,特别地,充满在环状物25中形成的空腔24。椎间盘空间通常指的是相邻的椎骨之间的空间。在此显示的实施例可以等同地应用于整个盘置换以及全部或部分髓核置换。置换盘指的是整个盘置换以及完全或者部分髓核置换。贮存器3用于容纳生物材料23,并且在一些实施例中,贮存器3加热或者搅拌生物材料23。在一些实施例中,生物材料23在使用之前进行预处理。生物材料23既可以在放入贮存器3中之前预处理,也可以在贮存器3中执行。例如,生物材料23可以被加热,机械地搅动或者在放入贮存器3中之前在旋转炉中加热。对于一些聚氨酯生物材料,例如密封包装的生物材料23需要在炉子旋转的同时在大约75摄氏度下加热大约3小时,并且在不旋转时在75摄氏度下另外保持3小时,然后一直在大约37摄氏度下保持在炉中直到手术植入时为止。在第二个3小时周期内,包装的生物材料23优选保持在不发生旋转的炉子中并且炉子在加热期间保持垂直位置,以便气泡可以上升至顶部。包含有气泡的可流动生物材料23优选在它到达模子之前进行净化,这一点在下面将讨论。腔室5可选地串联地位于贮存器3和模子13之间。腔室5可以用于加热、搅拌生物材料23和/或使之分段。在一些实施例中,腔室5可以用于启动生物材料23的固化,例如通过使生物材料23暴露给紫外线光源或者热源5b。致动器21机械地被连接至贮存器从而从贮存器3中排出生物材料23并且进入输送管11。致动器21可以是气动缸或者液压缸、机械驱动例如具有滚珠丝杆的电动机、传动螺杆或传动带,或者是本领域的技术人员众所周知的多种其它机构。致动器21的控制通常是用于生成期望的注射分布图的主要操作参数。可以由控制器15控制的其他的可能的操作参数包括通过一个或多个净化设备7a、7b释放生物材料23、生物材料的温度、生物材料的粘度等。在此,“操作参数”指的是在生物材料的注射期间可以控制的一个或多个独立变量。操作参数可以是线性的、非线性的、连续的、不连续的或者实现期望的注射分布图所需要的任何其它配置。操作参数也可以基于监视注射状态的传感器的反馈进行实时修改。例如控制算法,例如比例积分微分(PID)控制,可以用于按照期望的注射分布图评估注射状态数据。对于致动器21是气动汽缸的实施例,应当指出,众多医院和门诊部并不具有大于50磅每平方英寸(下文中为“psi”)的压缩空气源。因此,在一些实施例中,气动汽缸需要使可用压缩空气源放大大约3倍。因此,大约50psi的初始压力变成贮存器3中的大约150psi的压力。输送管11优选包括至少一个净化设备7a。在所示实施例中,净化设备7a位于腔室5下游。在另一个实施例中,辅助净化设备7b位于更接近模子13的位置上。净化设备7a和7b总体上称作“7”。合适的净化设备可以包括但不限于贮存器、三通阀系统等。净化设备7可以将生物材料流23转向或者调整到一边以便可以使包括初始部分的一部分净化,其中这部分可能没有充分地混合或者包含气泡。如果系统失效,例如模子13破裂,也可以使用净化设备7来迅速地将生物材料从椎间盘空间转出。净化设备7a、7b可以手动或者自动地操作。在优选实施例中,净化设备中的一个或者两个由控制器15和/或使用图4和5中的机构进行操作。在一个实施例中,净化设备7a由手术人员手动地操作,净化设备7b由控制器15操作。在所示实施例中、生物材料注射系统1优选包括在本发明的生物材料注射系统1中位于关键位置上的一个或多个传感器9a、9b、9c、9d、9e、9f、9g和9h(全体称作“9”)。在所示实施例中,传感器9a位于贮存器3和腔室5之间。传感器9b位于腔室5和净化设备7a之间。另一个传感器9c位于净化设备7a的下游。传感器9d位于接近模子13的位置上。在优选实施例中,传感器9d尽可能地接近模子13。压力传感器9g大体上位于模子13中。传感器9h可选地位于椎间盘空间19中并且在模子13之外。传感器9e位于贮存器3中并且传感器9f位于致动器21中。各个传感器9中的每一个均可以测量多个注射状态中的任意一项,例如生物材料的颜色、生物材料的粘度、生物材料中的气泡的压力、数量和/或尺寸、生物材料流23的流速、温度、总体积、持续时间或者能够表现适当的注射分布图的特征的任何其它注射状态。在此使用的“注射状态”指的是受一个或多个操作参数影响的一个或多个因变量。“注射分布图”指的是一个或多个注射状态随时间的评估值。示例性注射分布图显示在图11中。传感器9输出优选传送至控制器15。控制器15优选将时间/日期标记附着到所有注射状态数据上。并不是全部的传感器9都必须执行相同的功能。例如,传感器9a和9d可以监测压力,而传感器9b监测温度,传感器9c监测流速。传感器9可以与输送管11串联,通过流体连接至输送管11、通过隔膜连接至输送管11或者使用各种其它技术与输送管接合。传感器9可以是一次性的或者可再用的。适当的压力传感器9可以包括适合于测量或者表示手术流体系统内的流体压力并且适合于连接至输送机构11的任何设备或者系统。适当压力传感器的实例包括但是并不限于那些涉及压力计、电子压力传感器和/或力传感器部件的适当组合的压力传感器。这种通过分流流体样品而允许在远程流体中实现对压力进行精确并且大体上实时测量的部件尤其也可以用在流体本身在它的正在进行的固化过程中要经历性能变化的场合下。生物材料注射系统1的各个部件优选由聚合或者其它材料制造而成,这些材料可以将一些性能例如与生物材料23的相容性和消毒和/或可处置的能力结合起来。致动器21的操作优选由控制器15监测和/或指导。传感器9的输出优选传送至控制器15从而生成闭环反馈系统。控制器15优选包括处理器和存储设备。控制器15可以是特殊目的的计算机、通用的计算机例如个人电脑、独立信号调节电路、阈值比较电路和转换电路。在一些实施例中,控制器15是施加系统1的手动控制的用户接口。控制器15优选包括一个或多个将注射状态传达至手术人员的显示器16。控制器15也可以向显示器16上显示的注射状态数据提供音频指示。在另一个实施例中,手术人员手动撤销控制器15的操作以便允许基于从显示器16获得的数据手动地控制一个或多个操作参数。如图2所示,生物材料注射系统1还优选包括在输送生物材料之前将空气从模子13中排出的辅助管11’。辅助管11’可以在输送管11的内部或者外部。通过辅助管11’从模子13中移走空气的操作优选由控制器15来控制。与模子13中的传感器9g的连接能够可选地通过辅助管11’连接。图3显示了其中贮存器3包括两个或者更多分散隔室37a和37b的实施例。每个隔室37a、37b与连接至致动器21的活塞35a、35b接合。随着致动器21推动活塞35a、35b分别进入隔室37a、37b,生物材料23的组份23a、23b流入腔室5中,它们在腔室5中混合。生物材料23的两种或者更多组份23a、23b的混合可以启动化学固化反应。虽然图3的贮存器显示具有两个隔室37a、37b,但是在生物材料具有多于两种组份的情形下也可以应用三个或者更多隔室。或者,生物材料可以是能够位于一个或多个隔室37a、37b中的单个组份系统。单个组份的生物材料可以使用例如紫外线灯、超声能或者热量来固化。在一个实施例中,腔室5可选地包括紫外线光源、加热器或者能够启动生物材料23的固化过程的任何其它设备或者能量源。图4是依照本发明的示例性自动净化设备70的示意图。净化设备70可选地替换净化设备7a。输送管11使用连接结构74通过流体连接至入口72。在所示实施例中,连接结构74是多个螺纹。在另一个实施例中,连接结构74可以是快速连接设备或者其它的多种结构。净化设备70上的入口72经过通路78流体连接至腔室76。活塞80位于腔室76中。净化设备70处于闭合配置中,其中阀82挡住生物材料流23流向出口84。出口84还包括连接结构86例如螺纹。随着生物材料在压力下输送至入口72,它经过通路78进入腔室76。腔室76的体积设计成可以容纳生物材料23的最佳数量,其中生物材料23通常在输送至模子13之前进行净化。一旦腔室76填充有生物材料23,力88就施加到活塞80上。随着活塞80在生物材料23的压力下朝向外壳92上的表面90被驱动时,连接构件94与活塞80一起移动阀82。当活塞在外壳92中前进时,通气孔81允许空气从活塞80的后面逸出。图5显示了图4中的净化设备70处于打开配置。当活塞80已经前进了通往表面90的所有路程时,这使阀82生成一个开口96,生物材料23通过该开口可以前进至出口84。压力传感器98可选地位于阀82的入口侧72以便测量阀82在开启之前、开启期间以及开启之后生物材料23的压力。图6A显示了图1的生物材料注射系统1,除了环状物25用作模子以便保持生物材料这一点之外。随着生物材料23输送至环状物25,生物材料23基本上填满了空腔24。在一个实施例中,环状物25中的空腔24的内表面在输送生物材料之前覆盖有增强材料27,例如固化聚合物。增强材料27优选粘附至空腔24的内表面。增强材料27可以是柔性的并且可以是永久性的或者是生物可吸收的。在一个实施例中,增强材料27还粘附至生物材料,用于将形成植入物的生物材料固定至空腔24的内表面。在另一个实施例中,输送管11的大小可以使它紧密地装配环状物25中形成的入口26,从而允许生物材料23在压力下没有漏泄地进行输送。在图6B和6C的实施例中,凸缘250位于输送管11的远端252附近,以便减小或者消除生物材料23从空腔24中的泄漏。也显示在图6B和6C中的是,输送管11的邻近入口26的远端252包括薄壁,该薄壁在受到生物材料23的压力时发生膨胀(见图6C)。输送管11的已经膨胀的远端252形成与入口26的密封。凸缘250和具有薄壁的远端252可以单独使用或者与彼此结合使用。如上所述,控制器15优选监测并且记录注射状态数据并且附件时间/日期标记。图7显示了其中多个控制器15a、15b、15c(全体称作“15”)使用多种通信通道22例如Internet、电话线、直接的缆线连接、无线电通信等与远程计算机18连通。针对多个病人的注射分布图20a、20b、20c、20d(全体称作“20”)能够可选地上载至计算机18用于存储和处理。关于每个病人的手术前和手术后的数据还优选上载至计算机18。病人参数通常包括体重、年龄、处理之后的盘高、盘程度指数、盘的顺应性等。通过使注射分布图20与病人的手术前和手术后的病人参数连接起来,就可以生成数据库,该数据库可以由外科医生来搜索与当前病人的参数最紧密匹配的注射分布图20。一旦选取了最佳的分布图,就能够可选地在执行当前方法之前将它下载至控制器15。对病人的初步分析最佳注射分布图和相应的注射状态可以作为病人参数例如病人的体重、年龄、性别、盘高度、盘衰退指数、盘的顺应性、总的临床目标、特定病人的临床目标等的函数进行变化。例如患病的盘需要较大的注射压力和较高的终止压力以便恢复更多的盘高,还需要在阈值和/或终止压力处有较长的保压时间。或者,如果骨扫描表明骨密度减小或者锥骨体受损,那么就会指示较小的注射压力。本发明包括生成注射分布图作为病人参数和临床目标的函数。在一些实施例中,针对每个病人生成定制的注射分布图。用于针对病人选择适当的注射分布图的一种机构是对环状物25进行分析。在输送生物材料以便评估环形的完整性之前,优选在髓核去除术(nuclectomy)之后执行环状物的成像或者颤动(palpitation)。在一个实施例中,使用可以向环形壁25施加已知的力并且测量偏转量的装置。在一个实施例中,评估模子13’(可以与植入模子13相同或者不同)在完成髓核去除术之后插入病人的环状物25中,例如图1中所示的那样。评估模子13’使用容易成像的造影剂或者其它液体例如盐水充到目标压力(例如见图4-6)。成像模子13’的填充和泄放优选由本发明的生物材料注射系统1控制,并且自动或者手动测量环形偏转。或者,涉及评估模子13’的操作可以手动进行。在一些实施例中,评估模子13’和/或输送管11具有不透射线的性能。不透射线的性能可以通过从不透射线的材料建造评估模子13’和/或输送管11提供,或是包括评估模子13’和/或输送管11上的不透射线标志例如墨水、颗粒、小珠等以易于成像。然后对病人的椎间盘空间19进行成像例如x射线、MRI、CAT扫描或超声波,来检查髓核去除术(即空腔24)是否对称、是否具有适当的大小、是否具有期望的几何尺寸和/或分散是否已经实现了所需的数量。外科医生使用这种信息来确定什么时候已经从环状物25中移走了适当数量的核材料。填充空腔24以及实现期望的分散量所需的造影剂的体积,如由成像次序校验的那样,提供了用于过程所需的生物材料23的体积的示值。在另一个实施例中,成像用于估算需要移走的髓核的量。然后,将填充评估模子13’所需的液体的体积与使用成像技术测量的估算体积进行对比并且确定是否应该移走另外的髓核材料。在图8A-8C显示的另一个实施例中,包括评估模子13’的成像设备100置于模子13中。在模子13置于椎骨17之间的环状物25的空腔24中之后,包含评估模子13’的输送管11’插入输送管11中。评估模子13’优选是较小的易弯的、可伸展的对比气球。造影剂102(见图10B)通过管11’输送进评估模子13’中用于填充模子13的额定容积。模子13和/或输送管11也可以具有不透射线的性能。造影剂102优选在足够使模子13完全膨胀的压力下输送到空腔24中。评估模子13’还用来使模子13在环状物25中定位。如图8B最佳显示的那样,完全膨胀的评估模子13’大体上与将使用植入物填充的环状物25内的空腔24的形状相对应。如上所述,然后执行成像来确认环状物25内的空腔的形状以及环状物25内模子13的布置。造影剂102的数量可以用于估算环状物25内的空腔24的体积。如图8C所示,然后从评估模子13’中移走造影剂102。然后从输送管11中移走管11’和评估模子13’从而为将生物材料23输送到模子13中做准备。图8A-8C的过程也可以结合图6A的实施例来执行,其中评估模子13’直接定位在空腔24中而不是模子13中。图9显示了使用依照本发明的成像设备110的成像方法的替换方案。在远端116处具有可选的成像目标114的导向线或线触针112插入到输送管11中。成像目标114可以具有易于识别几何形状的多种形状,例如球状。然后成像技术用于确认在环状物25中的评估模子13’或者模子13的定位。导向线112也可以用于评估通过移走髓核材料生成的椎间盘空间的几何尺寸和/或将模子13按入环状物25中的位置上。图10A和10B显示了使用依照本发明的成像设备120的成像技术的替换方案。输送管11和模子13设置有不透射线的护套122。输送管11和/或模子13也可以具有不透射线的性能。在所示实施例中,不透射线的护套122包括弯曲部分124,该弯曲部分124使模子113相对于输送管11的纵轴成预定的倾角。一旦置于在环状物25中形成的空腔24中,就可以使用成像技术来确定空腔中组件的布置。一旦定位已经确认了,就可以沿着输送管11撤回不透射线的护套122以便为向模子13输送生物材料做准备。顺应性试验评估模子13’还用于测量环状物25的顺应性。例如,在输送生物材料的期间,评估模子13’可以使用固定体积的盐水或液体造影剂加压到预期的等级。椎间盘空间19的成像可选地在各种压力下进行,从而测量相邻的椎骨17的分散。在一段时间以后,例如大约三至五分钟,围绕椎间盘空间19的组织大体上松弛,这样就使评估模子13’中测量的压力下降。然后向评估模子13’中导入更多的盐水或造影剂来将椎间盘空间19中的压力提高到原先的等级。围绕椎间盘空间19的组织在测量时会再次随着评估模子13’中的压力的减小而松弛。通过重复这个过程几次,外科医生可以评估椎间盘空间19和/或环状物25的顺应性以及用于过程很可能所需的生物材料23的体积。在另一个实施例中,通过以足够使生物材料输送系统1和/或椎间盘空间中大体保持恒压的速率向评估模子13’中连续添加液体来测量顺应性。为了保持恒压,所需添加液体的速率的变化提供了可以用于估算环状物25和/或椎间盘空间19的顺应性的信息。正常的顺应性的环状物通常可以处理几个加压/松弛周期。不正常的环状物25在加压之后会显示更小的松弛性(例如更弱的顺应性)。根据环状物25和椎间盘空间19的状态,可以选择适合病人的注射分布图。这种顺应性评估可以手动地或者通过控制器15来控制。收集的顺应性数据可以用于确定用于生成最适合病人的注射分布图的操作参数。注射状态本发明的生物材料输送系统1允许控制一个或多个操作参数来实现期望的注射状态。注射状态被实时地监测、记录和控制。注射状态可以包括例如生物材料温度和粘度、生物材料的流速、生物材料的压力、生物材料的体积、分散压力、总分散和时间例如分散时间。这种注射状态可以随着医疗过程发生变化,因此优选监测和记录多个注射状态作为时间的函数。注射状态也可以作为任何其它的一个注射状态的函数来评估,例如作为体积或流动的函数。在本发明中,模子13中的压力是用于确定何时终止生物材料流23的一种可能的注射状态。或者,输送至模子13的生物材料23的体积也可以用于这个目的。一旦确定了针对病人的最佳注射分布图(例如参见图11),控制器15优选控制一个或多个操作参数以便使注射状态保持在预定的误差量内。注射状态可以用于发出过程不在规格中的信号。或者,控制器15可以计算注射状态的趋势或斜度从而预测特定的注射状态是否在规格之外。在此使用时,“不在规格中”指的是偏离期望的注射分布图和/或显示的趋势表示将会偏离注射分布图的一种或多种注射状态。在其中注射状态不能受控的情况下,例如如果模子13发生了故障,那么过程就中途停止了并且优选在生物材料23固化之前从病人体中撤回。在此使用的故障指的是会导致注射进入病人体内的生物材料比按照预计操作所发生的多或少的缺陷,例如破裂、断裂、刺孔、残缺、纽结、弯曲或任何其它缺陷。或者,如果故障发生在模子之外的其它地方例如输送管11中,或者如果模子纽结并且不能展开并且膨胀从而填充椎间盘空间,或者如果真空管11’受阻而使模子13中的空气不能排空,那么就只能向模子中注射进更少的生物材料。控制器15监测一个或多个传感器9以便确定注射状态是否受控。如果任何一种注射状态或注射状态的组合不在规格中,那么就可以进行多个调整操作。如果距离优选的注射分布图的偏差较小,那么控制器15可以尝试进行校正。在其中对生物材料流23的阻力基本上固定的给定医疗过程中,用于控制注射状态的主要机制是1)降低、提高或换向由致动器21施加在贮存器3上的驱动压力;2)通过一个或多个净化设备7a、7b释放生物材料23;和3)改变生物材料23的温度并因此改变其粘度。如果偏差超过特定阈值,那么控制器15就会向手术人员发出信号。或者,手术人员可以监测显示器16任何超出规格之外的注射状态。显示器16优选对偏离优选的注射分布图的一种或多种注射状态进行强调。在注射状态严格超出规格的情形下,控制器15会信号通知该过程应该中途停止和/或自动停止该过程。通常,在准备中途终止该过程时,致动器21会减小贮存器3上的驱动压力或者使之换向。如果中途停止了该过程,那么模子13和/或椎间空间19中的任何生物材料23就通过净化设备7b移走或通过外科医生手动地移走。模子13也被移走。图11显示了模拟注射分布图70,该图显示了本发明的生物材料输送系统1的优点。注射分布图70包括流速、注射压力和总体积这三条注射状态曲线72、74和76,均为时间78的函数。在所示的实施例中,流速72由控制器15来计算,注射压力74由传感器9b和/或9c测量,体积76由传感器9f来测量。在另一个实施例中,注射分布图包括沿着生物材料注射系统1的其它位置处测量的流速、压力或体积曲线。在时序81的起始处,生物材料23紧挨着净化设备7a的上游。在时序81期间,生物材料23开始进入净化设备7a。在时序82期间,生物材料23填充净化设备。流速72相对恒定,生物材料的总体积76持续增大。导致时序81的末端和时序82的起始处之间注射压力74骤然上升的原因是在净化设备7a处对生物材料23的流动施加的内部阻力。在时序83处,净化设备7a使生物材料流23转换至输送管11,导致注射压力74产生尖峰。在时序84处,生物材料23填充输送管11。由于对生物材料23流过输送管11存在阻力所以注射压力74增大。在时序91处,生物材料23到达折叠的模子13,导致注射压力74随着模子展开而快速上升。在时序85处,生物材料23开始填充模子13。使注射压力74轻微降低的原因是生物材料23自由地流入模子13中。在时序86处膨胀的模子13与环状物的内壁发生碰撞。流速72继续下降,生物材料23的总体积76以大体上恒定的速率继续上升。在时序87处,随着生物材料23使椎骨17移动并且使椎间盘空间19分散,生物材料23的注射压力74以另一个速率继续上升。连接至椎骨17的肌肉和肌腱在模子13中的生物材料23的注射压力74作用下被弹性拉伸。在时序88处,到达了阈值注射压力74。时序88描绘了椎间盘空间19的最大分散。在所示的实施例中,在时序81至88期间,由致动器21施加在贮存器3上的驱动压力大体上是恒定的。一旦到达了时序88处的注射压力74,就会触发致动器21处的驱动压力从第一操作参数减小到第二操作参数的过渡状态。由此,注射压力74减小。流速72大约为零,生物材料的总体积76最大。在另一个实施例中,一旦到达了时序88处的注射压力74,就会触发从第一操作参数过渡到第二操作参数的过渡状态,其中在一段时间内例如3-120秒内致动器21处的驱动压力保持恒定。在保压时间的末端,驱动压力从第二操作参数减小到第三操作参数。注射压力74再次减小并且流速72大约为零,生物材料的总体积76为最终的体积。在时序89处,由致动器21施加在贮存器3中的生物材料23上的驱动压力减小。这种减小也可以通过经过净化设备7a、7b释放一部分生物材料23来实现。这时,椎间盘空间19中生成的作用在模子3上的压力大于生物材料输送系统1中的生物材料23的注射压力74。因此,围绕椎骨17的肌肉和肌腱的张力提供了一种压缩力,使生物材料23流出模子13,如时序89期间负流速72和总体积93的下降所示出的一样。在时序90处,生物材料23的注射压力74大体上恒定。通过模子13和生物材料23施加的压力几乎等于通过椎骨17施加在模子13上的压力。流速72和总体积76的变化都大约为零。通过现在处于静态平衡下的系统1,生物材料23开始固化。一旦生物材料23至少部分固化,输送管11就移走。图12-14示意性地显示了本发明的一个实施例。图12-14的实施例显示了一个完整的椎间盘置换。这些图中的实施例都等同地适用于全部或部分髓核置换。在本实施例中,生物材料注射系统1在第一操作参数下开始初始操作。当注射状态之一到达阈值级例如模子13中测量的阈值压力时,控制器15转换或过渡至第二操作参数。在另一个实施例中,阈值触发器可以是生物材料的流速、时间、体积或温度。在图12-14中,从第一操作参数到第二操作参数的触发器使控制器减小了通过致动器21施加在贮存器3中的生物材料23上的压力。在另一个实施例中,第二操作参数是停滞周期,其中压力在某一预定的等级处保持一段预定的时间。在停滞周期的末端,控制器转换至第三操作参数,这包括减少通过致动器21施加在贮存器3中的生物材料23上的压力。图12显示了第一操作参数,在此期间,泄放后的模子13使用生物材料23填充直到它与椎间盘空间19的形状符合为止。在一个实施例中,第一操作参数包括由致动器21生成的驱动压力,该压力使传感器9e处测量的注射参数(即注射压力)大约为150psi。或者,第一操作参数包括由致动器生成的驱动压力,该压力导致的注射压力在大约100psi至大约270psi的范围内。相对较高的注射压力提供了很多种优点,包括快速填充模子13从而减小了留下空隙或未充满区域的机会。生物材料注射系统1继续在第一操作参数下直到注射状态之一到达触发使用第二操作参数的阈值等级时为止。图13显示了过程中当传感器9b、9c以及优选传感器9d处测量的生物材料23的压力触发控制器15以变化至第二操作参数时的时序。一旦传感器9b、9c或9d处测量的注射压力上升至特定的等级,由致动器21施加的驱动压力就减小到预定的等级。用于确定适当阈值的注射压力通常与向盘空间19内输送生物材料23引起的分散压力相对应。在这种情况下,注射状态是在传感器9c或9d处测量的注射压力,例如大约为80psi至大约150psi。在一个实施例中,注射压力触发控制器15过渡到第二操作状态。在另一个实施例中,第二运行状况使注射压力在预定的等级保持预定的保压时间。图14显示了第二操作参数(或第三操作参数,其中第二操作参数为停滞周期)。在另一个实施例中,第二操作参数包括减小致动器21施加的驱动压力。在围绕椎骨17的组织中聚集的张力允许作用在模子13上从而将一部分生物材料23排出到椎间盘空间19中并且回到输送管11中。在一个实施例中,第二操作参数期间在传感器9a处测量的注射压力大约为0psi至大约120psi,并且通常为大约10psi至大约50psi。可以使用传感器9a-9d以及9g-9h中的任何传感器来测量上面讨论的压力。做到这一点,需要校准生物材料注射系统1以便传感器9之一处测量的压力与椎间盘空间19中的实际压力相关,例如由传感器9g或9h测量的压力。这种校准所需的因素包括模子13的尺寸,对贮存器3和模子13之间的液流的阻力、流速、粘度以及生物材料23的温度、生物材料的固化时间以及各种其它因素。例如,对于模子的尺寸,对于体积大约为1.8立方厘米的模子13而言,当传感器9b处测量的注射状态大约为100psi至大约125psi时从第一操作参数过渡至第二操作参数。对于体积大约为2.7立方厘米的模子13,大约为105psi至大约130psi;对于体积大约为4.0立方厘米的模子13,大约为110psi至大约135psi。图15显示了用于执行本发明的方法和设备的替换方案,其中致动器21连接至外部压缩空气源57。控制器15包括方向控制阀49,该阀伸出或缩回气动致动器21和压力控制开关51从而在第一操作参数和第二操作参数之间进行变化。至少两个压力调节器53、55用于调节调节到达压力控制开关51的压力。第一压力调节器53提供了第一压力注射,第二压力调节器55提供了第二压力注射。在操作参数包括多个变量的实施例中,通常需要多个压力调节器。最初,通过第一压力调节器53向气动致动器21供给压缩空气。当一个或多个传感器9a-9d检测到阈值压力时,压力控制开关51就选择第二压力调节器55中的压缩空气来驱动气动致动器21。在一个实施例中,方向控制阀49是常开的四通阀,例如从OmegaEngineering,Inc.Stamford,CT可获得的商标为Four-WayValve(SV271)的阀。模子布置在相关的实施例中,包含或适于使用这种模子的模子或者成套部件可以包括用于现场定位模子13的工具。在一个实施例中,该工具是导向线,例如图9中显示的导向线,该线通过在与模子13相接触的点处或者附近终止的输送管道11本身或者优选通过空气通路放置。导向线可以设计成基本上能够呈现出伸展的但是还未填充的模子的曲线轮廓,并且提供一种定向平面,以便于模子的布置并且以便于在适当的位置并且在填充之前提供模子的周边的概况。之后,在生物材料输送和排空空气之前,导向线可以从该场所移走。通过使用未连接至生物材料输送管并且定位在输送管外部的空气通路,对通过这种方法来使用导向线尤其有利。在另一个实施例中,输送管11包括便于布置模子13的一根或多根曲线。可选地,并且为了便于在护套内布置收缩的模子13,本发明还提供了一种杆,例如塑料芯部材料或者金属线,其尺寸设计成可以置于模子13中,并且优选通过将杆延伸通过管道。一旦在适当的位置上之后,可以通过空气通路在模子上吸出真空以便围绕杆压缩模子13。同时,模子13也可以扭转或定位在期望的结构中,从而便于在以后充气或者填充有生物材料之后形成期望的特定展开图案。假定使用者具有或者设置有适当的真空源,那么以这种方式来压缩模子13的步骤就可以在任何适当的时间来实现,包括在即将使用之前。在特定实施例中希望在即将使用之前压缩模子13,例如,当使用以压缩形式储存的延伸过程中趋于粘在一起或者失去结构的完整性的模子材料时就希望如此。或者这种模子材料可以设置有适当的表面涂层例如共价或者非共价粘合聚合涂层,来改进表面的润滑性并且因此将会彼此粘附的模子表面的接触机会降到最低。在另一个实施例中,模子13的外表面可以涂覆有会粘合到环状物25中的空腔24的内表面上的材料。图16A显示了输送管200和模子13,在模子13和输送管11之间的连接204处具有弯曲202。在所示的实施例中,弯曲202在连接204附近沿着输送管200的大约3-5毫米延伸,并且具有大约为+/-15度的曲率。如图16B所示,这种配置尤其适用于从后部进入环状物25中的情况。图16A的实施例也可以使用直的柔性输送管和输送管200中弯曲的导向线206来实现。图17A显示了弯曲的输送管210。如图17B所示,这种配置尤其适用于模子13侧向进入环状物25中的情况。输送管210的弯曲也可以通过使用包含弯曲的导向线的柔性输送管来实现。在另一个实施例中,导向线可以是具有韧性的。图18显示了输送管220具有多个弯曲222、224、226。弯曲222、224、226可以是共面的或者位于多个平面中。弯曲226位于与模子13的连接228附近,与图16A类似。图19显示了连接至另一种输送管230上的模子13,其中输送管230具有弯曲232、234。类似地,弯曲232、234可以是共面的或者位于多个平面中。或者,图18和19的实施例也可以通过使用包含弯曲的导向线的柔性输送管来实现。生物材料本发明的方法可以使用任何适当的固化生物材料,例如具有能够进行无菌处理或者消毒、稳定地存储并且在使用时进行混合以便提供可流动的组份并且启动固化的多个部分组成的固化聚氨酯组份,这些部分包括(1)准—预聚物组份,它包括一种或多种多羟基化合物、和一种或多种二异氰酸盐以及可选地包括一种或多种疏水添加剂的反应产品,以及(2)医疗组份,它包括一种或多种多羟基化合物、一种或多种增链剂、一种或多种催化剂以及可选地包括其它组成部分例如抗氧化剂、疏水添加剂、染料和不透射线的标记。一旦混合,生物材料就可以充分地流动,从而允许它输送至人体并且在生理状态下完全固化。适当的生物材料还包括自身在注射温度下可流动或者可以被给予流动以利于它们的混合和使用的组份部分。适当生物材料的其它描述可以在编号为10/365,868和10/365,842的美国专利申请中找到,这两个申请在此前已经作为参考引入。本发明中使用的生物材料还可包括聚氨酯预聚物组份,这些组份现场反应形成固体聚氨酯(“PU”)。形成的PU又会包括硬的片段和软的片段。硬片段通常由通过二异氰酸盐和增链剂形成的更硬的氨基甲酸酯低聚物单元组成,而软片段通常由更具有柔性的多羟基化合物单元组成。这两种类型的片段通常相位分离以形成硬的和软的片段域,因为这些片段往往彼此在热力学上不相容。对于给出的本发明的示教,相关领域的技术人员会理解形成的聚氨酯中的相关的量的硬和软片段以及相偏析度的方式对聚合物的最终的物理和机械性能具有重要的影响。因此本领域的技术人员会进一步理解在本发明的范围内的如下方式,即通过该方式,可以操作这种聚合物组份产生具有期望的性能组合的固化的和正在固化的聚合物。在本发明的一些实施例中,例如,根据形成的PU的总的组份,在形成的PU中的硬片段大约从重量的20%至大约50%,更优选的是从大约20%至大约30%,而软片段的重量大约从50%至大约80%,更优选的是从大约70%至大约80%。其它实施例可以在这些范围之外。生物材料通常包括多个组份部分并且使用一种或多种催化剂。包括催化剂的组份部分可以混合以便启动固化,然后在一定的状态下,例如在利于所期望的目的的足够的时间和放热的状态下,进行输送、凝固并且完全固化。在完成固化时,生成生物材料提供了供修理或者置换受伤或者受损阻止使用的性能的最佳组合。在另一个实施例,生物材料提供了例如相容和稳定性、现场固化能力和特征(例如萃取等级、生物相容性、热/机械性能)、机械性能(例如可拉伸、撕裂和疲劳性能)和生物稳定性这些性能的最佳组合。许多混合设备和方法已经对于具有多个部分例如骨水泥(bonecement)和组织密封剂的生物材料。机械混合设备,例如在编号为5,797,679(Grulke等人)和6,042,262(Hajianpour)的美国专利中公开的机械混合设备已经对于骨水泥的混合。然而,这些机械混合设备要费很长时间才能完成混合并且在无菌区域中难于操作,尤其是对于具有多个固化时间较短的部分的生物材料。另一方面,在一些现有技术中,两部分组成的聚氨酯具有大约30分钟的凝胶时间。如果没有适当的密封方法来密封输送管,那么30分钟的固化时间对于室内操作用途而言就太长了。生物材料以无菌方式下在操作室内迅速并且完全地发生很重要。具有诱导时间小于60秒并且固化时间小于5分钟的生物材料需要另一种混合和输送装置,该种装置与固化时间大约为15分钟的生物材料不同。对于由两个部分组成的异氰酸酯(issocyanate)基聚氨酯生物材料形成的生物材料,由于NCO与OH比对于固化生物材料的最终性能的灵敏度,所以存在几个对于现场固化生物材料的最终性能很重要的特征。几个因素对现场固化生物材料的混合和输送存在影响,例如混合元素的数目、从静止混合器的初始体积的净化、使用静止混合器在输送期间对聚合物流的影响。生物材料的相容性也可以通过具有多于传统的两部分例如三个或者更多部分并且将它们在聚合物应用之前混合在一起来实现。通过将不相容的组份存储在不同的筒中和/或依照各自的要求进行预处理,通常可以将组份的不相容性减小到最低。三个部分组成的生物材料的一个实例是将多羟基化合物和增链剂分开为两个部分形成的生物材料。现场固化很大程度上取决于反应速率,这可以通过感应时间和固化时间来测量。一般而言,快速固化(较短的诱导时间)将通过提供更彻底的聚合作用、更少的可滤取的组份以及更好的机械性能(例如由于植入物的冷表面而形成的“冷层”)来改进现场的固化性能。然而,诱导时间还应该与用于生物材料注射、分散所需的适当的工作时间保持平衡,从而提供充分的时间来接近注射状态,识别注射状态是否落入可接受的范围的内部或是外部,并且如果落入可接受范围的外部,则停止或是反转注射过程。尤其对于盘中的使用而言,已经确定了较短的诱导时间往往能提供得到改进的生物材料性能。对于这些用途,诱导时间可以在大约5秒和大约60秒之间,例如,在大约5秒和大约30秒之间,以及大约5秒和大约15秒之间。通过比较,对于这种生物材料的总的固化时间的量级可以在5分钟或更短,3分钟或更短,以及1分钟或更短。然而,在本发明的一个实施例中,固化时间的量级可以是大约15分钟。在任意情形下,通过调节所用的催化剂的量,可以使固化时间大于15分钟。本发明的方法可以用于各种应用,包括例如提供一种用于准备固体或者完整修复的气球状模子,以及例如用在关节接头修理或者置换以及椎间盘修理中。或者,该方法可以用于提供一种中空的模子,例如供制备植入物通路的套筒状的管状模子,形式为导尿管,例如展伸管、分流管或者嫁接管。本发明还提供了一种用于修理自然组织的方法和系统,其中涉及使用具有最低程度的侵入性机构来输送生物材料,还涉及能够现场固化以便提供一种用于自然组织的永久置换的组份。可选地,生物材料输送至模子,其中该模子通过具有最低程度的侵入性机构来定位并且使用生物材料组份来填充,然后生物材料固化以便现场保持模子和固化的组份。如所看到的那样,环形壳本身可以充当用于输送和固化生物材料的适当的模子。可选地,环形壳的内表面可以使用适当的材料处理或者罩盖以便提高它的完整性并且用作模子。一种或多种可填充的设备例如在此描述的模子,可以用于提供用来输送生物材料的模子。用于分散关节空间的同一可填充设备还可以充当用于输送和固化生物材料的模子。本发明的方法也可以用于修理其它关节,包括动关节和微动(amphiarthroidal)关节。适当的动关节包括屈戌关节(铰接关节,如指关节以及肱部和尺骨之间的关节);throchoides(枢转关节,如上桡尺骨关节以及寰枢锥—轴向关节);髁状关节(具有椭圆的空腔的卵形头部,如腕关节);交互接收(由凸表面和凹表面形成的鞍状关节,如拇指的腕掌关节);杵臼关节(球窝活节,如臀关节和肩关节)和滑动关节(滑动关节,如腕骨关节和跗骨关节)。植入过程本发明的椎间修复系统的手术用途的一个实施例的说明如下1)通过经过一个或多个环状体手术(annulotomies)在手术上接近髓核来执行髓核去除术(nuclectomy),并且移走至少一部分盘的髓核从而形成空腔。空腔优选相对于脊骨对称。2)本发明的设备的远端(病人端)部插入手术地点和椎间空间。在一个实施例中,远端端部包括泄放后的模子。然后沿纵向方向沿着盘的方向推动生物材料输送部的远端经过环状体手术,这样将模子插入椎间盘空间中,推进的程度为仅仅使模子进入髓核腔即可。3)可选地,当病人存在先前的盘高度损失时,如果需要椎间盘预分散时,可以使用包括外部机构和内部机构的任何适当的椎间分散机构来实现这一点。内部分散可以通过使用与本发明类似的设备来实现,例如通过首先向模子输送适当的溶液(例如盐水或者对比溶液)从而对“分散”椎间关节施加足够的力到期望的程度。在分散之后,可以通过应用真空使溶液从模子中移走。可选的是,可以使用相同的模子来容纳可注射的生物材料,或者使用新的模子来置换分散模子。4)生物材料输送系统的组份大体上按照如图1a所示的那样来装配。5)控制器向贮存器中的生物材料施加第一压力。对于使用多部分构成的生物材料的实施例,通过施加正压使生物材料组份从贮存器中出来并且通过静止的混合器。最初混合的生物材料中没有充分混合的部分优选通过净化设备来分流。一旦生物材料的初始部分已经分离,阀就换向成允许生物材料继续向前通过流动路径并且进入模子中。6)当生物材料输送系统和/或模子中的生物材料的流体压力到达阈值操作参数例如测量的注射压力时,控制器就将贮存器上的压力减小到第二压力。第二压力允许椎间盘空间的组织将一部分生物材料排出模子并且回到生物材料注射系统中。7)当已经到达期望的压力时,在生物材料的固化阶段期间就保持这个参数。8)输送管与模子分离,由此留下容纳有现场固化的生物材料的填充模子用作椎间盘修复。9)病人被缝合并且闭合并且允许从手术中恢复知觉。在此公开的专利和专利申请包含在此作为参考,其中还包括在发明背景中引用的专利。本发明的其它实施例也是可以的。应当理解,上述说明的目的是示意性的,而不是限制性的。阅读了上述说明之后,许多其它实施例对于本领域的技术人员就会变得显而易见。因此,本发明的范围应该参照所附权利要求书以及与这些权利要求所保护的等价物的全部范围来确定。权利要求1.一种用于向椎间盘空间输送可流动的生物材料的设备,包括包含可流动的生物材料的贮存器,该贮存器流体连接至椎间盘空间;至少一个传感器,用于监测可流动的生物材料的至少一个注射状态;控制器,其被编程设置成监测至少一个传感器;根据第一操作参数控制可流动的生物材料流入椎间盘空间;对一个或多个注射状态到达阈值等级进行响应,以根据第二操作参数控制可流动的生物材料的流动;并且在至少一部分可流动生物材料的固化期间保持第二操作参数。2.如权利要求1所述的设备,其特征在于,包括位于椎间盘空间中的模子,该模子流体连接至容纳可流动生物材料的贮存器。3.如权利要求2所述的设备,其特征在于,所述第一操作参数包括将可流动的生物材料输送至模子以便模子基本上充满椎间盘空间。4.如权利要求1所述的设备,其特征在于,所述第一操作参数包括在足够分散椎间盘空间的压力下输送可流动的生物材料。5.如权利要求1所述的设备,其特征在于,所述控制器被编程设置成在至少一个注射状态到达阈值等级之后和启动第二操作参数之前,等待一段预定的时间。6.如权利要求1所述的设备,其特征在于,所述控制器根据第三操作参数控制可流动的生物材料的输送,其中在至少一个注射状态到达阈值等级之后和转到第二操作参数之前,第三操作参数使可流动的生物材料在椎间盘空间中在预定压力下保持一段预定的时间。7.如权利要求1所述的设备,其特征在于,所述第二操作参数允许一部分可流动的生物材料从椎间盘空间中排出。8.如权利要求1所述的设备,其特征在于,包括在可流动生物材料输送至椎间盘空间之前对准可流动生物材料的紫外线光源和/或加热源。9.如权利要求1所述的设备,其特征在于,包括位于可流动的生物材料的贮存器和椎间盘空间之间的混合设备。10.如权利要求1所述的设备,其特征在于,包括用于使预定量的生物材料流远离椎间盘空间导向的净化设备。11.如权利要求1所述的设备,其特征在于,所述控制器监测贮存器和椎间盘空间之间的可流动生物材料的压力。12.如权利要求1所述的设备,其特征在于,所述控制器监测椎间盘空间中的可流动的生物材料的压力。13.如权利要求1所述的设备,其特征在于,所述控制器被编程设置成监测至少一个注射状态,包括监测在贮存器和椎间盘空间之间流动的可流动生物材料的压力、流速、流逝时间或者总体积中的至少一个。14.如权利要求1所述的设备,其特征在于,所述控制器被编程设置成记录与可流动生物材料流动期间的至少一个注射状态相对应的数据。15.如权利要求1所述的设备,其特征在于,所述控制器被编程设置成向计算机上传与可流动生物材料流动期间记录的至少一个注射状态相对应的数据。16.如权利要求1所述的设备,其特征在于,所述控制器被编程设置成确定所述至少一个注射状态包括一种超出规格的状态并且设置成将可流动生物材料改变成流向椎间盘空间。17.如权利要求1所述的设备,其特征在于,所述控制器将阈值等级作为病人参数的函数来调节。18.如权利要求1所述的设备,其特征在于,所述第一操作参数包括多个变量。19.如权利要求1所述的设备,其特征在于,所述第二操作参数包括多个变量。20.如权利要求1所述的设备,其特征在于,包括在输送生物材料之前适合置于椎间盘空间中的评估模子;适合于向评估模子输送的液体,以便模子基本上充满椎间盘空间;其中控制器被编程设置成从评估模子中移走液体并且测量评估模子中存在的液体的量。21.如权利要求20所述的设备,其特征在于,所述控制器被编程设置成能够估算填充椎间盘空间所需的生物材料的体积,并且将通过成像技术测量的椎间盘空间的估算体积与评估模子中存在的液体量进行比较。22.如权利要求1所述的设备,其特征在于,包括位于椎间盘空间中的评估模子,其中所述控制器被编程设置成在压力下向评估模子输送足够分散椎间盘空间的液体,并且在一段时间内使评估模子中的液体的体积保持恒定,并且当模子中的压力下降到预定等级时向评估模子中添加附加的液体。23.一种用于使用可流动生物材料填充椎间盘空间的方法,包括如下步骤将容纳可流动生物材料的贮存器流体连接至椎间盘空间;根据第一操作参数控制可流动生物材料输送至椎间盘空间;监测至少一个注射状态;对一个或多个注射状态到达阈值等级进行响应,根据第二操作参数控制可流动的生物材料的输送;并且在至少一部分可流动生物材料的固化期间保持第二操作参数。全文摘要一种将容纳有可流动的生物材料的贮存器流体连接至模子的方法和设备。根据第一操作参数控制可流动的生物材料流入模子。监测至少一个注射状态。对一个或多个注射状态到达阈值等级进行响应,根据第二操作参数控制可流动的生物材料的流动。在至少一部分可流动生物材料的固化期间保持第二操作参数。在一些实施例中,第二操作参数可选地包括允许一部分可流动的生物材料排出模子。文档编号A61F2/46GK1933792SQ200580009232公开日2007年3月21日申请日期2005年3月17日优先权日2004年3月22日发明者布鲁斯R.·鲍曼,罗伯特·科勒,埃里克·马茨,丹尼尔·梅林克,钦·敏,迈克尔·阿伦斯,让-查尔斯·勒于埃克,约翰·舍曼,斯科特·胡克,丹尼斯·约翰逊,基-宾·包,罗伯特加里尔·赫金斯申请人:蒂斯科动力学公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1