用于处理组织和控制狭窄的系统、装置和方法与流程

文档序号:11088095阅读:879来源:国知局
用于处理组织和控制狭窄的系统、装置和方法与制造工艺

本申请根据35 U.S.C.§119(e)要求2009年11月11日提交的美国临时专利申请第61/260,349号的权益。通过引用将这篇临时申请全文并入本文。

背景

技术领域

本发明通常涉及用于处理组织的系统、装置和方法,更具体而言,本发明涉及用于引发所需的反应同时控制狭窄的系统、装置和方法。

相关技术的描述

肺病可能导致诸多对肺部功能造成不利影响的问题。诸如哮喘和慢性阻塞性肺病(“COPD”)的肺病可能会导致肺部的气流阻力增加。由肺病导致的死亡率、与健康相关的花费以及具有不利影响的人口规模都是可观的。这些疾病往往对生活质量造成不利影响。症状是多种多样的,但通常包括咳嗽、呼吸困难及气喘。例如,在COPD中,当进行一定程度的剧烈活动(如跑步、慢跑、快走等)时,可能会观察到呼吸困难。随着疾病的发展,在进行诸如行走的非剧烈活动时也可能会观察到呼吸困难。随着时间的推移,越来越小的活动量时可能会发生COPD的症状,直到这些症状一直存在,从而严重地限制人完成正常活动的能力。

肺病通常的特点是气道阻塞,其与气道腔堵塞、气道壁增厚、气道壁内或周围的结构的改变或以上的组合有关。气道阻塞可以显著降低肺部的气体交换量,从而造成呼吸困难。气道腔的堵塞可以由过多的腔内粘液或水肿液体或两者引起。气道壁增厚可以由气道平滑肌过度收缩、气道平滑肌肥大、粘液腺增生、炎症、水肿或以上的组合引起。气道周围结构的变化(例如肺组织本身的破坏)可以导致气道壁的径向牵引的丧失和随后的气道狭窄。

哮喘的特征可以为气道平滑肌收缩、平滑肌肥大、粘液产生过多、粘液腺增生和/或气道的炎症及肿胀。这些异常是局部炎性细胞因子(由位于气道壁内或附近的免疫细胞在局部释放的化学物质)、吸入的刺激物(例如冷空气、烟雾、过敏原或其它化学物质)、系统性激素(血液中的化学物质,如抗炎皮质醇和兴奋剂肾上腺素)、局部神经系统输入(完全包含在气道壁中的神经细胞,其能够产生平滑肌细胞及粘液腺的局部反射刺激)以及中枢神经系统输入(从大脑通过迷走神经传导到平滑肌细胞及粘液腺的神经系统信号)的复杂相互影响的结果。这些条件往往会导致广泛的临时性组织改变和最初的可逆性气流阻塞,这些最终可能导致永久性组织改变和永久性气流阻塞,这使得哮喘患者呼吸困难。哮喘可以进一步包括通过能显著增加气流阻力的超反应性气道平滑肌收缩而引起的气道进一步变窄的急性发作或攻击。哮喘症状包括反复发作的呼吸困难(例如,气短或气急)、气喘、胸闷和咳嗽。

肺气肿是COPD的一种类型,其特征为肺部气道周围或邻近的肺组织的改变。肺气肿可以涉及肺组织(例如肺泡组织,诸如肺泡囊)的破坏,这导致气体交换的减少以及周围肺组织对气道壁施加的径向牵引的减小。肺泡组织的破坏留下具有过大空间的肺气肿肺部区域,其缺乏肺泡壁和肺泡毛细血管并因此在气体交换时效率低下。空气“被困”在这些较大的空间中。这种“被困”的空气可能会导致肺的过度膨胀,并在胸的范围中限制了富含氧的空气的内流和较健康组织的正常功能。这导致了显著的呼吸困难,并可能导致血液中的低氧水平和高二氧化碳水平。即使在健康个体中,这种类型的肺组织破坏也作为正常衰老过程的一部分发生。不幸的是,暴露于化学物质或其它物质(如烟草烟雾)可显著加快组织损伤或破坏的速度。气道阻塞可进一步增加呼吸困难。径向牵引的减弱可能导致气道壁变得“松弛”,使得在呼气时气道壁部分塌陷或完全塌陷。由于呼气时的这种气道塌陷及气道阻塞,肺气肿个体可能无法将空气呼出肺外。

慢性支气管炎是COPD的一种类型,其特征为气道平滑肌收缩、平滑肌肥大、粘液产生过多、粘液腺增生和气道壁炎症。与哮喘类似,这些异常是局部炎性细胞因子、吸入刺激物、系统性激素、局部神经系统和中枢神经系统的复杂相互作用的结果。与呼吸阻塞很大程度上是可逆的哮喘不同,慢性支气管炎的气道梗阻主要是慢性的且永久性的。由于气短、气喘、胸闷以及产生粘液的咳嗽的慢性症状,通常对于慢性支气管炎患者而言,呼吸是困难的。

不同的技术可以用来评估肺病的严重程度和进展。例如,肺功能测试、运动能力和生活质量问卷被经常用来评价个体。肺功能测试涉及基本生理肺参数的客观和可重复性测量,如总气流、肺容积和气体交换。用于评估阻塞性肺病的肺功能测试的指标包括1秒用力呼气量(FEV1)、最大肺活量(FVC)、FEV1与FVC的比值、肺总容量(TLC)、气道阻力和动脉血气体测试。FEV1是患者肺部完全充满空气时,用力呼气第一秒内所呼出的空气体积。FEV1也是用力呼气的第一秒中发生的平均流量。此参数可用于评估和确定是否存在任何气道阻塞及其影响。FVC是患者肺部完全充满空气时,用力呼气所能呼出的空气总体积。FEV1/FVC是用力呼气时第一秒内所能呼出的气体占能呼出的全部气体的比例。在给予至少一种支气管扩张剂后,FEV1/FVC比值小于0.7定义COPD的存在。TLC是当肺部完全充满时肺中气体的总量,并且TLC在阻塞性肺病患者的肺内困住空气时可能会增加。气道阻力被定义为肺泡与口之间的压力梯度与肺泡与口之间的气流速度的比。同样,给定的气道的阻力被定义为经过该给定气道的压力梯度与经过该气道的气流的比。动脉血气测试测量血液中的氧气的量和二氧化碳的量,并且是评估肺部和呼吸系统将氧气从空气中带入血液并将二氧化碳从血液带出体外的能力的最直接的方法。

运动能力测试是患者进行活动的能力的客观且可重复的检测。六分钟行走测试(6MWT)是一种运动能力测试,其中患者在6分钟内在平坦的表面上尽可能多地行走。另一种运动能力测试涉及测量患者的最大运动能力。例如,医生可以测量患者在踏车测力计上能够产生的功率的量。患者可呼吸30%的氧气且工作负载可以每3分钟增加5-10瓦。

生活质量问卷评估患者的整体健康和幸福感。圣乔治呼吸问卷是一种生活质量问卷,其包括75个问题,其设计用于测量阻塞性肺病对总的健康状况、日常生活和感知幸福的影响。肺病的治疗效果可以使用肺功能测试、运动能力测试和/或问卷进行评估。可以基于这些测试和/或问卷的结果修改治疗方案。

诸如支气管热整形术的治疗涉及通过消融肺内众多支气管分支的气道壁来破坏平滑肌张力,由此消除肺部气道壁中的平滑肌和神经。治疗的气道不能良好地响应于吸入的刺激物、系统性激素以及局部和中枢神经系统输入。不幸的是,气道壁的平滑肌张力和神经的这种破坏可能由此会对肺功能产生不利影响。举例来说,诸如烟雾或其它毒性物质的吸入刺激物通常会刺激肺刺激性受体而产生咳嗽和气道平滑肌收缩。消除气道壁中的神经去除了局部的神经功能和中枢神经输入,从而消除了肺通过强烈咳嗽来排出毒性物质的能力。消除气道平滑肌张力可能消除气道缩紧的能力,从而允许诸如毒性物质的有害物质更深地渗透入肺中。

哮喘和COPD是严重的疾病,其患者越来越多。目前的处理技术,包括处方药,既不完全成功,也不能无副作用。此外,许多患者不遵守其药物处方剂量方案。因此,需要提供能够改善气流阻力而不需要患者依从性的治疗。

简要说明

至少一些实施方案涉及管腔内装置,所述装置能够去除中空器官的神经支配,同时能防止、最小化或限制狭窄的可能。可以治疗器官的目标区域,而不会造成显著影响器官功能的不希望的狭窄。在某些实施方案中,管腔内装置消融彼此间隔开的独立目的区域。即使发生狭窄,也可以避免延伸360度的连续狭窄环。如果所述器官是气道,可以形成损伤,而不会造成气流阻力发生任何可察觉到的增加。

在一些实施方案中,用于治疗个体的系统包括尺寸设定为能沿气道腔移动的长形组件。所述组件可以减弱由神经组织(例如神经干的神经组织)传递的信号,同时不会将气道的内表面不可逆地破坏至任何显著的程度。在某些实施方案中,一个或多个电极输出射频能量来处理气道圆周的后部90度至180度,从而去除肺的神经支配。在破坏目标组织的同时,冷却系统(例如,冷却通道)可以控制电极和/或气道组织的温度。

在一些方案中,组织损伤可足以造成瘢痕形成,但是可以放置电极来减小、限制或基本上消除由于瘢痕组织、狭窄等造成的气道腔产生可察觉到的变窄。损伤的间隔距离可以足以防止邻近的损伤之间的组织增厚。本文公开的至少一些实施方案能够基本上消融气道壁的整个圆周而不会在与气道长轴垂直的平面内形成连续的消融组织环。

在一些实施方案中,方法包括破坏第一主支气管的神经组织,以基本上防止神经系统信号传递至与所述第一主支气管连接的几乎全部远端支气管分支。所述第一主支气管远端的支气管分支中的大部分或全部无法接收到神经系统信号。在某些实施方案中,神经组织位于气管和支气管分支延伸通过的肺之间。所述方法还包括破坏第二主支气管的神经组织,以基本上防止神经系统信号传递至与所述第二主支气管连接的几乎全部远端支气管分支。在某些实施方案中,沿着后部气道的小于180°或在气道圆周的所需部分递送能量。这限制了暴露于发射能量的组织的量。

在一些实施方案中,神经支配去除涉及产生能影响外部外膜组织层的损伤,其中神经干在解剖学结构上位于所述外部外膜组织层中。在肺的神经支配去除中,消融贯穿右侧和左侧主支气管外部的神经干能有效地切断衬于肺气道内的气道平滑肌和位于气道的产粘液腺体与迷走神经的联系。当发生这种情况时,气道平滑肌松弛,粘液产生减少。这些变化能降低疾病状态(诸如COPD和哮喘)下的气道阻塞。降低的气道阻塞使呼吸更容易,这能够改善个体的生活质量和健康状况。

通过将神经组织的温度提高到第一温度(例如,消融温度)同时使气道臂处于低于所述第一温度的第二温度可以热破坏神经组织。在一些实施方案中,位于神经组织径向向内的气道壁的一部分可以处于第一温度,以防止对这部分气道壁造成永久性破坏。所述第一温度可以足够高,而能对神经组织造成永久性破坏。在一些实施方案中,神经组织是位于气道壁外部结缔组织中的神经干的一部分。气道壁中的平滑肌和神经组织可以保持功能性,以使平滑肌张力维持在期望水平。气道可以响应于刺激(例如,由吸入的刺激物、局部神经系统或系统性激素引起的刺激)而发生收缩/扩张。在其它实施方案中,神经组织是气道壁中的神经分支或神经纤维的一部分。在其它实施方案中,同时或相继破坏神经干的神经组织和神经分支/纤维的神经组织。各种类型的可启动元件(例如消融元件)可用于输出能量。

一些实施方案利用大气道解剖学结构的优势。迷走神经的气道神经干通常位于主支气管气道的后半部分。主气道(即气管、右侧和左侧主支气管)后部区域没有软骨。这些气道的软骨环不是整个圆周的,并且沿着它们的后部仅存在软组织。此外,通过产生小于(例如,显著小于)气道圆周的360度的损伤可以实现对位于气道后半部分远离气道神经干的神经组织造成破坏。例如,处理气道圆周的180度、150度或130度对于有效去除气道的神经支配来说可能就足够了。由于损伤具有显著小于360度的弧长,因此可大大减少或防止气道狭窄。

电极可以具有复杂的形状(包括弓形、多边形)或具有任何其它形状或构造。电极可以是V形、U形、L形、T形、W形、直的、弯曲的或以上的组合。在一些实施方案中,电极组件为锯齿形构造、卷曲形构造、盘绕形或线圈形构造、拔塞钻形(corkscrew)构造、螺旋形构造、Z形构造、以上的组合等。拔塞钻形电极组件可以具有可独立操控的电极,所述电极形成不连续的或连续的大体上为拔塞钻形的损伤。

另一实施方案包括能沿着气道圆周的一部分或全部产生大体上为拔塞钻形损伤的连续的电极组件。对于同一圆周区域而言,具有较小表面积的瘢痕产生能形成狭窄的组织网的可能性较小。至少一些实施方案可以处理狭窄的目标区域,以形成相应的狭窄的损伤。刀刃电极组件可以进行这样的处理,从而进一步减小瘢痕组织。

另一实施方案依赖于倾向于在人体解剖学结构中伴行的神经、动脉和静脉。在进行气道神经支配去除之前,可以使用超声或其它类型的能量来确定在非常接近气道神经干处穿行的支气管动脉或静脉的位置。在确定血管的位置之后,用能量处理血管附近的气道区域以消融气道神经干。该技术最小化或限制所处理的组织的体积,从而降低或消除狭窄的风险。

在一些方案中,导管在期望的深度形成至少一处损伤。例如,可以在一个支气管气道壁中形成一处或多处拔塞钻形或螺旋形损伤,并可以在另一个气道壁中形成弓形损伤,从而去除支气管树不同部分的神经支配。损伤可以沿着气道的内表面或位于气道壁的深处,或者可以沿着气道的外表面。

在一些实施方案中,能量递送装置包括导管杆和与所述导管杆连接的消融组件。所述消融组件包括可从塌陷状态向展开状态移动的冷却元件和软骨间能量发射器,所述软骨间能量发射器包括绕所述消融组件的纵轴在圆周方向上彼此偏离的多个电极。所述电极被设置成能向气道的多个目标区域递送能量,所述多个目标区域相对于所述气道的纵轴彼此隔开。所述能量发射器和所述冷却元件被设置成能相互配合以形成软骨间损伤,所述软骨间损伤与所述气道的表面组织隔开并且位于所述气道的软骨环之间。

在某些实施方案中,管腔内递送装置包括消融组件,所述消融组件包括可展开装置和多个消融元件和/或电极。所述电极沿所述可展开构件的圆周相间隔,并且能够向分散的目标区域输出能量,从而在所述目标区域形成损伤。第一损伤的至少一部分在轴向上与第二损伤隔开,并在圆周方向上与所述第二损伤邻近或重叠。

在某些实施方案中,治疗个体的方法包括相对于气道放置消融组件,并从所述消融组件向轴向隔开的气道目标区域输出能量。当沿着所述气道的长轴方向观察时,所述目标区域的轮廓重叠。

在其它实施方案中,治疗个体的方法包括沿着气道移动递送装置的能量发射器。将所述能量发射器的至少一个电极放置在所述气道的软骨环之间。从所述电极向位于沿着所述气道的长轴轴向分开的位置处的目标区域递送能量,以形成软骨环间损伤。

处理组织的一些方法包括将消融组件放置在气道腔内,并利用放置在所述气道内表面附近的所述消融组件的至少一个电极向所述气道的组织递送能量。所递送的能量破坏沿所述气道轴向分开的目标区域,使得限定所述目标区域最大横截面宽度的目标区域部分与所述气道的内表面分开。

在一些实施方案中,递送装置包括导管杆和与所述导管杆连接的消融组件。所述消融组件包括可从塌陷状态向展开状态移动的可展开元件。当所述可展开构件处于展开状态时,能量发射器能够发出能量来产生损伤,所述损伤具有沿身体结构的轴向长度彼此轴向偏移的末端。

递送装置能够产生一处或多处连续或不连续的损伤。所述损伤可以具有不同的形状,包括弓形、盘旋形(spiral shape)、螺旋形(helical shape)、波浪形、卷曲形或以上的组合。为了产生连续的损伤,消融组件可以具有相隔非常近的电极,以形成大体上连续的损伤。或者,所述消融组件可以具有长的电极或能量发射器,它们具有相应的盘旋形、螺旋形、卷曲形等。在其它实施方案中,电极可以隔开足够的距离,以形成不连续的损伤。可以选择模式、间隔和损伤的大小来处理目标区域。

在某些实施方案中,可以沿气道壁的不同位置同时形成损伤。在一些方案中,可以在气道的对侧形成斜向的损伤。整个损伤可以位于软骨环之间以避免对所述环造成破坏。在其它实施方案中,损伤可以穿过气管或软骨环。

附图说明

在附图中,同样的参考标号代表相似的元件或组件。

图1显示了肺、肺附近和肺中的血管和神经。

图2显示了根据一个实施方案放置在左主支气管中的腔内处理系统。

图3显示了从放置在左主支气管中的进入装置伸出的递送装置。

图4A是支气管树的气道和塌陷的消融组件的截面图。

图4B是支气管树的气道和展开的消融组件的截面图。

图5A是当气道的平滑肌收缩且粘液处于气道腔中时围绕在塌陷的消融组件周围的气道的截面图。

图5B是围绕在展开的消融组件周围的气道的截面图。

图6是组织深度相对于组织温度的图。

图7是气道中的消融组件的侧视图。

图8是具有消融组件的递送装置的等距视图。

图9是沿着图8的线9-9获取的长形杆的截面图。

图10是消融组件的侧视图。

图11是图10的消融组件的纵向截面图。

图12是治疗系统的部分截面图,其中递送装置从进入装置伸出。

图13是消融组件的侧视图。

图14是围绕在展开的消融组件周围的气道的截面图,该截面图是沿图13的线14-14获取的。

图15是消融组件的侧视图。

图16是用于产生斜向损伤的消融组件的侧视图。

图17是具有内部通道的消融组件的侧视图。

图18是沿线18-18获取的图17的消融组件的截面图。

图19是具有出口的消融组件的侧视图。

图20是沿线20-20获取的图19的消融组件的截面图。

图21是具有V形电极阵列的消融组件的侧视图。

图22是具有T形电极的消融组件的侧视图。

图23是多齿消融组件的侧视图。

图24是具有电极组件对的消融组件的侧视图。

图25是具有可冷却电极组件的消融组件的侧视图。

图26是沿图25的线26-26获取的电极组件的截面图。

图27A-31B显示了等温线和相应的损伤。

图32是螺旋状消融组件的侧视图。

图33是另一螺旋状消融组件的侧视图。

图34是具有间隔开的电极的消融组件的等距视图。

图35是放置在气道体腔中的图34的消融组件的等距视图。

图36是由图34的消融组件形成的损伤的等距视图。

图37是具有冷却剂冷却的电极的消融组件的等距视图。

图38是沿图37的线38-38获取的消融组件的截面图。

图39A是具有弯曲的能量发射器的消融组件的等距视图。

图39B是由图39A的消融组件处理的血管的等距视图。

图40A是图39A的消融组件的另一等距视图。

图40B是由图40A的消融组件处理的血管的等距视图。

图41是另一实施方案的消融组件的等距视图。

图42是处于递送配置的消融组件的等距视图。

图43是处于展开配置的图42的消融组件的等距视图。

图43A是图43的消融组件的侧视图。

图44是图43的消融组件的远端区段的截面图。

详细描述

图1展示了具有左肺11和右肺12的人肺10。气管20从鼻和口向下延伸并分成左主支气管21和右主支气管22。左主支气管21和右主支气管22都分别分支形成肺叶支气管、肺段支气管和亚段支气管,它们沿向外的方向(即远侧方向)具有逐渐变小的直径和逐渐变短的长度。主肺动脉30起自心脏的右心室且在肺根24的前方通过。在肺根24处,动脉30分支为左、右肺动脉,左、右肺动脉依次分支形成分支的血管网络。这些血管可以沿支气管树27的气道延伸。支气管树27包括左主支气管21、右主支气管22、细支气管和肺泡。迷走神经41、42沿气管20延伸并分支形成神经干45。

左迷走神经41和右迷走神经42起自脑干,穿过颈部,并在气管20的两侧向下通过胸部。迷走神经41、42展开为神经干45,神经干45包括包绕气管20、左主支气管21和右主支气管22的前部和后部的肺丛。神经干45还在支气管树27的分支气道外部沿着支气管树27的分支气道延伸。神经干45是神经的主干,包括由结缔组织的硬鞘包在一起的神经纤维束。

肺10的主要功能是将空气中的氧气交换入血液,并将血液中的二氧化碳交换到空气中。当富含氧的空气被抽入肺10时,气体交换过程开始。膈肌和肋间胸腔壁肌肉的收缩相互配合降低胸部内的压力,使富含氧的空气流过肺10的气道。例如,空气通过口和鼻、气管20、然后通过支气管树27。空气最终被递送到肺泡囊进行气体交换过程。

氧气贫乏的血液从心脏右侧泵出通过肺动脉30并最终被递送到肺泡毛细血管。这种氧气贫乏的血液中富含二氧化碳废物。薄的半透膜将毛细血管中的氧气贫乏血液与肺泡中的富含氧的空气隔开。这些毛细血管包围肺泡并在肺泡中间延伸。来自空气中的氧气通过膜扩散入血液,并且来自血液的二氧化碳通过膜扩散入肺泡的空气中。然后,新的富含氧的血液从肺泡毛细血管通过肺静脉系统的分支血管流到心脏。心脏将富含氧的血液泵送至全身各处。当膈肌和肋间肌松弛时,肺中消耗了氧气的空气被呼出,并且肺和胸壁弹性返回到正常松弛状态。以这种方式,空气能够流经分支细支气管、支气管21、22和气管20,并最终通过口和鼻排出。

图2显示了处理系统200,其能够进行处理从而调整呼气或吸气或者呼气和吸气过程中的气流。为了降低气流阻力来增加气体交换,处理系统200能用于扩大(例如,扩张)气道。在一些方案中,可以影响(在肺的内部或外部的)神经干的神经组织(例如神经组织)来扩张气道。神经系统使用电信号和化学信号来提供大脑和肺10之间的通讯。自主神经系统的神经组织网络感觉并调节呼吸系统和血管系统的活动。神经组织包括使用化学信号和电信号从一个身体部位到向另一个身体部位传输感觉和运动信息的纤维。例如,神经组织能够以神经系统输入的形式传输运动信息,诸如导致肌肉收缩或其它反应的信号。纤维可以由神经元组成。神经组织可以由结缔组织(即神经外膜)所包绕。自主神经系统包括交感神经系统和副交感神经系统。交感神经系统主要参与应激期间的“兴奋”功能。副交感神经系统主要参与能量保持期间的“植物”功能。交感神经系统和副交感神经系统同时活动,并通常对器官系统产生相互的作用。血管的神经支配源于这两个系统,而气道的神经支配在本质上主要是副交感的,并在右迷走神经42和左迷走神经41的肺和脑之间传递。

可以在这些神经干45中的一个或多个上进行任何数量的操作来影响与这些神经干相关的肺的部分。由于神经干45的网络中的某些神经组织汇入其它神经(例如,与食道连接的神经、通过胸部进入腹部的神经等),所以可以靶向于特定位点从而最小化、限制或基本上消除对其它非目标神经或结构造成不希望的破坏。前部和后部肺丛的某些纤维汇入小的神经干,这些小的神经干在向外穿行入肺10时沿着气管20和分支支气管以及细支气管的外表面延伸。沿着分支支气管,这些小的神经干不断彼此分叉并将纤维送入气道壁。

处理系统200可以影响特定的神经组织,诸如与具体目标位点有关的迷走神经组织。迷走神经组织包括在神经分支中彼此平行的传出神经纤维与传入神经纤维。传出神经组织从大脑向气道效应细胞传输信号,气道效应细胞主要是气道平滑肌细胞和产粘液细胞。传入神经组织从响应于刺激的气道感觉受体传输信号,并延伸到大脑。传出神经组织使从气管20到向终末细支气管的平滑肌细胞都受到神经支配,而传入纤维的神经支配主要局限于气管20和较大的支气管。传出迷走神经组织对气道具有恒定的基线紧张活动,这使得平滑肌收缩和粘液分泌处于基线水平。处理系统200可以影响传出和/或传入神经组织,从而控制气道平滑肌(例如,使平滑肌受到神经支配)、粘液分泌、神经介导的炎症和组织液含量(例如,水肿)。与肺病相关的气道平滑肌收缩、粘液分泌过多、炎症和气道壁水肿常常导致相对高的气流阻力,这造成气体交换减少和肺功能下降。

在某些方案中,消融神经组织以减弱沿着迷走神经41、42传递的能够导致或介导肌肉收缩、粘液产生、炎症、水肿等的信号的传输。减弱可以包括但不限于阻碍、限制、阻断和/或中断信号传输。例如,减弱可以包括降低神经信号的信号幅度或减弱经神经信号的传输。减少或停止向远侧气道的神经系统输入可以改变气道平滑肌张力、气道粘液产生、气道炎症等,从而控制空气流入和流出肺10。减少或停止从气道和肺向局部效应细胞或向中枢神经系统的感觉输入还可以降低反射支气管狭窄、反射粘液产生、炎症介质的释放以及向体内肺或器官中其它细胞的可能导致气道壁水肿的神经系统输入。在一些实施方案中,可以减少神经系统输入,从而相应地降低气道平滑肌张力。在一些实施方案中,气道粘液产生所降低的量可足以导致咳嗽和/或气流阻力实质性下降。在一些实施方案中,气道炎症所降低的量可足以使气流阻力和对气道壁的进行中的炎性损伤实质性降低。信号减弱可以使平滑肌松弛,防止、限制或基本上消除产粘液细胞的粘液产生以及降低炎症。在这种方式下,可以改变健康气道和/或患病气道以调节肺功能。处理后,可以利用各种类型的问卷或测试来评估个体对处理的反应。如果需要或希望的话,可以进行其它操作来降低咳嗽频率、减少呼吸困难、减少气喘等。

可以处理图1和2的主支气管21、22(即1级气道(airway generation 1))来影响支气管树27的远端部分。在一些实施方案中,在沿着左侧和右侧肺根24以及左肺11和右肺12外部的位置处理左侧和右侧主支气管21、22。处理位点可以位于迷走神经分支与气管和主支气管21、22相汇处的远侧以及肺11、12的近侧。涉及两种治疗应用的单一处理过程可用来处理支气管树27的大部分或整个支气管树27。延伸入肺11、12中的支气管分支的绝大部分都可以受到影响,从而提供高水平的疗效。因为主支气管21、22的支气管动脉具有相对大的直径和高的吸热能力,所以可以保护该支气管动脉免遭处理产生的不希望的破坏。

图3显示了导管系统204形式的递送装置,其中导管系统204延伸通过进入装置206。导管系统204能够处理主支气管21、22的气道,以及主支气管21、22远侧的气道。消融组件208能够被放置在肺部外、右侧或左侧主支气管、肺叶细支气管或中间支气管内。中间支气管由右侧主支气管的一部分形成并且是中叶细支气管和下叶细支气管的起源。消融组件208还能够放置在更高级的气道中(例如,>2级的气道)来影响支气管树27的远侧部分。

可以引导导管系统204通过曲折的气道来进行各种不同的操作,例如,切断部分肺叶、整个肺叶、多个肺叶或者一个肺或两个肺的神经支配。在一些实施方案中,处理肺叶支气管以切断肺叶的神经支配。例如,可靶向于沿着肺叶支气管的一个或多个处理位点以切断与该肺叶支气管连接的整个肺叶的神经支配。可以处理左肺叶支气管以影响左上叶和/或左下叶。可以处理右叶支气管以影响右上叶、右中叶和/或右下叶。可以同时地或相继地处理肺叶。在一些实施方案中,医生可以处理一个肺叶。基于处理的有效性,医生可以同时或相继地处理其它肺叶。以这种方式,可以处理支气管树的不同的分离区域。

可以通过向沿着各肺段支气管的单个处理位点递送能量来处理各肺段支气管。例如,可以向右肺的各肺段支气管递送能量。在一些方案中,施加10次能量能够处理右肺的大部分或几乎全部。在一些方案中,利用少于36次的不同的能量施加能够处理两个肺的大部分或几乎全部。根据支气管树的解剖学结构,经常可以利用一次或两次能量施加来切断肺段支气管的神经支配。

当神经组织被消融时,可以保持诸如粘液腺、纤毛、平滑肌、体管(例如血管)等的其它组织或解剖学结构的功能。神经组织包括神经细胞、神经纤维、树突和诸如神经胶质的支持组织。神经细胞传输电脉冲,而神经纤维是引导所述脉冲的延长的轴突。所述电脉冲转化为化学信号,从而与效应细胞或其它神经细胞建立通讯。举例来说,可以切断支气管树27的部分气道的神经支配,以减弱由神经组织传输的一个或多个神经系统信号。切断神经支配可以包括破坏沿着气道的一段神经干的所有神经组织,从而基本上使所有信号无法通过神经干的受损区段传递至支气管树的更远侧部位或者从支气管树传导至更接近中枢神经系统。此外,沿着神经纤维传递的直接从气道中的感觉受体(例如,咳嗽和刺激受体)到附近的效应细胞(例如,节后神经细胞、平滑肌细胞、粘液细胞、炎性细胞和血管细胞)的信号也将被中断。如果多个神经干沿气道延伸,则可以破坏每个神经干。因此,沿着一段支气管树的神经供应可以被切断。当信号被切断时,远侧气道平滑肌能够松弛,这导致气道扩张、粘液细胞减少粘液产生或炎性细胞停止产生气道壁肿胀和水肿。这些变化使气流阻力降低进而增加肺10中的气体交换,从而减少、限制或基本上消除一种或多种症状,诸如呼吸困难、气喘、胸闷等。包围或邻近目的神经组织的组织可能会受到影响,但不会受到永久性破坏。在一些实施方案中,例如,在处理前和处理后,沿着被处理的气道的支气管血管能够向支气管壁组织递送相似量的血液,并且沿着被处理的气道的肺血管能够向支气管树27远侧区域的肺泡囊递送相似量的血液。这些血管能够继续运送血液以维持充足的气体交换。在一些实施方案中,气道平滑肌的破坏未达到显著的程度。例如,气道壁中不明显影响呼吸功能的较小段的平滑肌可以被可逆地改变。如果能量被用来破坏气道外的神经组织,治疗有效量的能量不能到达非目的平滑肌组织的大部分。

处理左主支气管21和右主支气管22之一,从而处理支气管树27的一侧。可以基于第一处理的有效性来处理其它的主支气管21、22。例如,可以处理左主支气管21来处理左肺11。可以处理右主支气管22以处理右肺12。在一些实施方案中,单个处理系统能够破坏支气管21、22之一的神经组织,并且在无需从气管20取出处理系统的情况下还能够破坏其它主支气管21、22的神经组织。因此,在无需从气管20取出处理系统的情况下就能破坏沿主支气管21、22的神经组织。在一些实施方案中,能够进行单一操作来方便地处理患者支气管树的基本上全部或至少相当一部分(例如,至少50%、70%、80%、90%的支气管气道)。在其它操作中,在处理肺11、12之一后,可以从患者取出处理系统。如果需要,可以在随后的操作中处理其它肺11、12。

图4A是健康气道100的横向截面图,以支气管为例。内表面102由上皮细胞褶皱层110所界定,上皮细胞被基质112a包围。平滑肌组织层114包围基质112a。基质层112b位于肌肉组织114和结缔组织124之间。粘液腺116、软骨板118、血管120和神经纤维122处于基质层112b内。支气管动脉分支130和神经干45位于气道100的壁103外部。所示的动脉130和神经干45位于包围气道壁103的结缔组织124内,并且其方向通常可以平行于气道100。在图1中,例如,神经干45起自迷走神经41、42并沿气道100向肺泡延伸。神经纤维122位于气道壁103中并从神经干45向肌肉组织114延伸。神经系统信号通过神经纤维122从神经干45向肌肉114和粘液腺116传输。此外,信号从感觉受体(例如,咳嗽、刺激物和牵张)通过神经干45向中枢神经系统传输。

可以破坏、刺激或以其它方式改变纤毛来沿着上皮细胞110引起所需的应答,从而控制(例如,增加或减少)粘膜纤毛的运输。人呼吸时会吸入很多颗粒物,气道发挥过滤器的功能从空气去除颗粒物。粘膜纤毛运输系统对于整个肺10的所有气道发挥自我清洁的机制。粘膜纤毛运输是从肺10的远侧部分清除粘液的主要方法,进而作为肺10的主要免疫屏障。例如,图4A的内表面102可被纤毛覆盖并包被有粘液。作为粘膜纤毛运输系统的一部分,粘液捕获许多吸入的颗粒物(例如,有害的污染物,诸如烟草烟雾)并使这些颗粒物向喉部运动。纤毛的纤毛摆动使肺10的远侧位置粘液毯和捕获的颗粒物的连续层移动经过喉,并移至咽用于从呼吸系统排出。消融组件208能够破坏纤毛以减少粘膜纤毛运输或刺激纤毛以提高粘膜纤毛运输。

消融组件208可被移动至图4B的展开状态,从而选择性地处理气道壁103内的目标区域(例如,基质112a、112b中的解剖学结构、神经干45等)。例如,可以破坏粘液腺116,使粘液产生降低的量足以防止能导致气流阻力增加的粘液积累,同时,如需要或希望的话,保持足够的粘液产生以维持有效的粘膜纤毛运输。也可以破坏通过气道壁103或气道壁103中其它解剖学结构的神经分支/纤维。损伤形成于特定位置以防止可显著减少通过气道100的气流的狭窄或瘢痕组织。

天然的机体功能能够帮助防止、减少或限制对组织的损伤。血管内130的血液能够吸收热能,然后能够携带热能远离分支130的加热区段。以这种方式,血液能够减轻或避免对血管130的损伤。在进行处理以后,支气管动脉分支130能够继续保持肺组织的健康。在一些RF消融实施方案中,消融组件208输出足够量的RF能量来破坏神经干45的整个纵向区段而不破坏血管130。

对处理效果的评估能够至少在一定程度上基于一种或多种气道特性、肺功能测试、运动能力测试和/或问卷。可以对个体进行评估以跟踪和监控他们的进度。如果需要或希望的话,可以进行其它过程直到实现所需的反应。可以使用用于评估气道特性的不同类型的仪器。在消融期间,来自仪器的反馈能够表明靶组织是否已经被消融。一旦靶组织被消融,可以停止治疗从而最小化或限制对健康的非目标组织的伴随破坏(如果有的话)。

可以对气道的不同特性进行评估以确定待执行的操作。所述气道特性包括但不限于,气道的物理性质(例如,气道顺应性、收缩性能等)、气道阻力、气道腔的维度(例如,气道的形状、气道的直径等)、气道的反应性(例如,对刺激的反应性)、肌肉特性(例如,肌肉张力、肌肉紧张等)、炎性细胞、炎性细胞因子等。在一些实施方案中,可以通过测量膨胀至已知压力的消融组件208内的压力变化来监控气道肌肉特性的变化。医生根据压力变化来确定处理的效果(如果有的话),所述效果包括但不限于目标组织是否已经被刺激、消融等。

图5A和5B是气道100的一部分的横向截面图,气道100具有处于收缩状态的平滑肌组织114、来自过度生长的粘液腺116的粘液150和使气道壁103增厚的炎性肿胀和水肿液体。收缩的肌肉组织114、粘液150和增厚的气道壁103相互配合而部分地阻塞腔101,这导致相对高的气流阻力。破坏神经组织45来松弛肌肉组织114,扩张气道100,从而降低气流阻力,因此允许更多的空气到达用于气体交换过程的肺泡囊。气道阻力降低可能表明气道的通道开放,例如响应于这些气道的神经系统输入减弱的通道开放。可以限制或最小化狭窄,以确保处理后的气流阻力不会显著增加。因此,处理应确保气道气流阻力永久性降低,即使是在处理后很长一段时间。

与处理低级气道(low generation ariways)(例如,主支气管、肺叶支气管、肺段支气管)相关的气道阻力的下降可以大于与处理高级气道(high generation ariways)(例如,亚段支气管)相关的气道阻力的下降量。医生可以选择适于处理的气道来实现所期望的气道阻力的减小,并且可以在患者口腔,处理位点近侧的支气管分支、气管或任何其它合适的位置进行测量。可以在进行治疗之前、治疗中和/或治疗后测量气道阻力。在一些实施方案中,例如通过使用排气处理系统在支气管树内的位置测量气道阻力,所述排气处理系统允许从处理位点较远侧的区域进行呼吸。

消融组件208能够利用能量来消融神经45,从而永久地扩张气道100。本文所使用的术语“能量”以其广义解释,包括但不限于热能、冷能(例如,冷却能量)、电能、声能(例如,超声波能量)、射频能量、脉冲高电压能量、机械能量、电离辐射、光学能量(例如,光能)及以上的组合,以及适于处理组织的其它类型的能量。在一些实施方案中,导管系统204递送能量和一种或多种物质(例如,放射性粒子、放射性物质等)、治疗剂等。非限制性的示例治疗剂包括但不限于一种或多种抗生素、抗炎药、药物活性物质、支气管收缩剂、支气管扩张剂(例如,β-肾上腺素受体激动剂、抗胆碱能药物等)、神经阻断药物、光反应剂或以上的组合。例如,可以将长效或短效神经阻断药物(例如,抗胆碱能药物)递送至神经组织,从而暂时或永久减弱信号传输。还可以将物质直接递送至神经122或神经干45或两者,从而以化学方式破坏神经组织。

图6和7显示在消融组件208中由RF能量的表层加热和深层加热以及由循环冷却剂的表层冷却所产生的效果。冷却剂吸收热能,使得与消融组件208的冷却区段209接触的组织被冷却。冷却区段209能够从气道壁100吸收足量的热能以限制或防止对位于消融组件208和神经或其它目的组织之间的组织造成破坏。

图6中的横轴对应于从与电极组件214的接触点或邻近电极组件214的点进入气道壁组织的深度(单位为毫米),纵轴对应于组织温度(单位为摄氏度)。除非另有说明,图中的温度为摄氏度。图上的“0”点对应于电极组件214和气道壁组织之间的接触点或接触区域。图中的三条曲线A、B和C对应于被递送入组织的三种不同功率水平的射频能量。图中的温度高至约100℃。显示了约100℃或略低的温度,因为该温度被认为是RF消融期间组织温度的上限。在约90℃时,组织液开始沸腾,组织凝结并炭化,从而大大增加其阻抗并损害其向气道壁组织传递RF能量的能力。因此,组织温度维持在低于约90℃是可取的。在约50℃时,线216表示下述温度:高于该温度则发生组织细胞死亡;低于该温度则组织将不会受到长期的实质性的影响(或任何长期影响)。

图6所示的曲线A表示在相对较低的功率(例如,约10瓦的RF能量)水平下进行或不进行电极组件214冷却时所发生的情况。曲线A被划分为三段A1、A2和A3。虚线段A2代表当没有施加冷却时指数曲线A3的延伸。如通过曲线A所观察到的,没有冷却时,电极-组织界面的温度达到80℃,并随着进入气道100的组织中的距离的增加而指数性下降。如图所示,曲线A3在约5毫米的深度处与由线216代表的50℃组织细胞死亡界限相交。因此,无电极冷却时,发生细胞死亡的深度为由距离d1所表示的约5毫米。在该功率水平下,进一步的细胞死亡将停止。

如果采用主动冷却,温度下降到明显较低的水平,例如,如曲线A1所表示的在电极-组织界面距离为0毫米处的约35℃。因为这个温度低于50℃,所以在曲线A2与50℃的细胞死亡线相交的点的距离d2(例如距表面3毫米的深度)之前细胞死亡不会发生。在从3毫米到如距离d3所代表的5毫米深度将发生细胞死亡。这种冷却消融过程是有利的,因为其允许细胞死亡和组织破坏在距电极-组织界面一段距离(或距离范围)处发生,而不会破坏上皮细胞和上皮细胞下的组织。在一些实施方案中,可以消融沿着气道外部穿行的神经组织而不破坏上皮细胞或下层结构,诸如基质和平滑肌细胞。

曲线B表示在较高功率水平(如20瓦的RF能量)下进行或不进行电极冷却时所发生的情况。曲线B的区段B2代表无冷却的情况下区段B3的指数曲线的延伸。能够看出,电极-组织界面处的温度接近100℃,这是不可取的,因为在该温度下组织-电极界面处将发生组织液沸腾和组织凝固和炭化,进而会显著增加组织阻抗并损害向气道壁中递送额外的RF能量的能力。通过提供主动冷却,曲线B1显示电极-组织界面处的温度下降至约40℃,且在如d4所代表的2毫米的深度至曲线B3与50℃组织细胞死亡边界相交的约8毫米的深度发生细胞死亡。因此,能够看出,使用较高功率水平提供更深且更大区域的细胞死亡并且不达到不希望的高温(例如,在电极-组织界面处导致组织凝结和炭化的温度)是可能的。所述系统能够用于实现气道上皮表面下的细胞死亡,所以不需要破坏表面,从而有助于患者尽快从治疗中恢复。

曲线C表示更高的功率水平,例如,40瓦的RF能量。曲线C包括区段C1、C2和C3。虚线区段C2是指数曲线C3的延伸。区段C2表明,电极-组织界面处的温度远超过100℃,并且在没有主动冷却的情况下是不合适的。在应用主动冷却的情况下,电极-组织界面的温度接近80℃,并逐步升高并接近95℃,随后成指数性下降,与50℃细胞死亡线216相交于由距离d6表示的距气道上皮表面的电极-组织界面约15毫米的距离。由于起始温度高于50℃细胞死亡线216,从上皮表面至约15毫米的深度将发生组织细胞死亡,从而提供大且深区域的组织破坏。

图7展示了一段气道壁的横截面温度谱,RF能量通过该段气道壁被递送从而消融组织。术语“消融(ablate)”或“消融(ablation)”(包括它们的衍生词)包括但不限于组织的电学性质、机械性质、化学性质或其它性质的实质性改变。消融可涉及毁坏或永久性破坏、损伤或伤害组织。例如,消融可以包括局部化的组织破坏、细胞裂解、细胞大小减小、坏死或以上的组合。在肺部消融应用的背景下,术语“消融”包括充分地改变神经组织的性质,从而基本上阻断电信号传输通过消融的神经组织。

等温曲线表示当将功率施加至电极组件214并将冷却剂(例如,室温的盐水或冰盐水)递送至囊212中时,电极组件214达到的温度和距电极-组织界面215进入气道壁100的不同深度处的温度。在“可展开元件(expandable element)”或“可展开元件(deployable element)”的背景下的术语“元件(element)”包括独立元件或多个独立元件。举例来说,可展开元件可以是单个囊或彼此流体连通的多个囊。

通过调节对电极组件214的功率递送速率、冷却剂通入囊212的速率以及冷却剂的温度和囊212的大小可以改动等温线。通过选择适当的冷却剂温度和流速以及对电极组件214的功率递送速率,实现等温线A=60℃、B=55℃、C=50℃、D=45℃、E=40℃且F=37℃的温度是可能的。进一步的调节使得实现等温线A=50℃、B=47.5℃、C=45℃、D=42.5℃、E=40℃和F=37℃的温度也是可能的。只有50℃等温线以内包含的那些区域能被加热到足以诱导细胞死亡。在一些方案中,气道壁中约2mm至8mm深度处的组织能够被消融,而气道壁中小于2mm深度处的其它非目标组织将保持在低于可导致细胞死亡的温度。

参照图8,导管系统204包括控制模块210,控制模块210与具有长形杆230的导管207相连。囊212能够从塌陷状态膨胀到所示的展开状态。当囊212膨胀时,可以将电极组件214向气道壁移动。膨胀的囊212能够有助于将电极组件214维持在递送能量所通过的组织的附近(例如,邻近所述组织或与所述组织接触)。冷却剂能够吸收热能来冷却囊212或电极组件214或两者。

控制模块210通常包括控制器244和流体递送系统246。控制器244包括但不限于一个或多个处理器、微处理器、数字信号处理器(DSP)、现场可编程门阵列(FPGA)和/或专用集成电路(ASIC)、存储装置、总线(bus)和电源等。例如,控制器244可以包括与一个或多个存储装置互通的处理器。总线能够将内部或外部电源连接至处理器。存储器可以采用多种形式,包括,例如,一种或多种缓存器、暂存器(register)、随机存取存储器(RAM)和/或只读存储器(ROM)。控制器244也可包括诸如屏幕的显示屏245和输入装置250。输入装置250可以包括键盘、触摸板等,并且可以由使用者操作来控制导管207。

控制器244能够存储不同的程序。使用者能够选择用于记录组织和所需目标区域的特征的程序。例如,充有空气的肺具有相对高的阻抗,淋巴结可以具有中等阻抗,血管可以具有相对低的阻抗。控制器244能够基于阻抗来确定适当的程序。能够基于检测温度、组织阻抗等的传感器的反馈来优化性能。例如,控制器244能够基于组织温度来控制消融组件208的操作。如果组织表面温度过热,可以增强冷却和/或降低电极功率,从而产生深层损伤同时保护表面组织。

内部电源248(图8中虚线所表示的)可以是能量发生器,诸如射频(RF)发电机。可以以所需的频率输出RF能量。频率的实例包括但不限于约50KHZ至约1000MHZ的频率范围。当RF能量被引导入组织中时,能量在组织内被转化成热,使组织的温度达到约40℃至约99℃。可以施加RF能量持续约1秒至约120秒。在一些实施方式中,RF发生器248具有单一通道且能递送约1瓦至25瓦的RF能量,并具有连续流动的能力。也可以使用其它范围的频率、时间间隔和功率输出。另外,内部电源248可以是能量储存装置,诸如一个或多个电池。可以将电能递送至电极组件214,其将电能转换成RF能量或另一种合适的能量形式。可被递送的其它能量形式包括微波、超声、直流电或电磁能量。另外,可以利用低温消融。可以将处于低温的流体递送通过杆230用来冷却消融组件208上的低温热交换器。

流体递送系统246包括连接于供应管268的流体源260和连接于回管272的流体容器262。流体源260可以包括容纳在外壳单元264中的容器(例如,瓶、罐、槽、或用于容纳流体的其它类型的容器)。在可加压的实施方案中,流体源260包括一个或多个能对冷却剂加压的加压装置(例如,一个或多个泵、压缩机等)。温度控制装置(例如,珀尔贴(Peltier)装置、热交换器等)能够冷却或再生流体。流体可以是冷却剂,包括盐水、去离子水、制冷剂、低温液体、气体等。在其它实施方式中,流体源260可以是能保存冷的冷却剂并将其递送至供应管268的隔热容器。冷却剂沿着递送腔326向远侧流动通过长形杆230,并填充消融组件208。来自消融组件208中的冷却剂通过返回腔324向近侧流动通过长形杆230,并最终流入容器262。

传感器247(虚线所示)与控制器244通讯连接。控制器244能够基于来自传感器247(例如,压力传感器、温度传感器、热电偶、压力传感器、接触传感器等)的信号来控制导管207。传感器还可以置于电极组件214上,沿着长形杆230放置或置于任何其它位置上。在闭环操作模式中,可以基于来自传感器247的反馈信号将电能递送到电极组件214,所述传感器可以被设置成能传输(或发送)表明一种或多种组织特征、能量分布、组织温度或任何其它可测量的目的参数的信号。基于这些读数,控制器244调节电极组件214的运行。在开环操作模式中,可以由使用者输入来设置电极组件214的运行。例如,使用者可以观察组织温度或阻抗读数并手动调节功率水平。另外,电源可以被设置成固定的功率模式。在其它实施方式中,导管系统204可被在闭环操作模式和开环操作模式之间切换。

参照图8和9,长形杆230包括电源线腔320a-h、递送腔326和返回腔324。电源线280a-280h(统称为“280”)分别延伸通过电源线腔320a-320h(统称为“320”)并将控制器244与电极组件214连接起来。长形杆230的整体或部分可以由一种或多种以下物质制成:金属、合金(例如,钢合金,诸如不锈钢)、塑料、聚合物及以上的组合、以及其它生物相容性材料,并且可以是柔韧的,从而能容易地通过高度分支的气道。

参照图10和11,电源线280从电源248向电极组件214递送能量。在一些实施方案中,电源线280穿过腔室234和囊212的外壁。在其它实施方案中,电极组件214的连接器位于腔室234中。电源线280可以在连接器和长形杆230之间延伸,从而避免暴露于体液。

电极组件214可以包括但不限于单极电极、双极电极、金属电极、线电极、针电极等,并且可以形成圆周形损伤的阵列,每处损伤仅沿着血管或身体结构的圆周的一部分延伸。如果身体结构是气道,则每处损伤都可以至少部分地包围气道的腔。损伤可以具有小于360度的弧长(例如,约25度至约45度)。在一些实施方案中,损伤相对于身体结构的纵轴隔开。损伤共同地覆盖所需的圆周。例如,损伤在圆周上可以与下一处损伤的起始处重叠(例如,当沿着身体结构的轴长观察时),而在纵向上彼此隔开,从而确保能够处理气道的整个圆周(或圆周的一部分)。

电极组件214包括沿囊212圆周方向上隔开的电极229。每个电极229具有一对暴露的电极元件。电极229d的电极元件231d和相邻电极229e的元件231e可以相互配合而形成能够放射状地消融邻近组织的RF弧。电极229可以与囊212的外表面连接。在其它实施方案中,电极229可以嵌入囊212的侧壁或以其它方式固定至囊212。

可以以双极方式操作相邻的电极229,其中一个电极是正极,另一个电极是负极,使得能够将RF功率传输通过组织。如果电极229为单极电极,那么该电极可以连接至单独的电源线280,从而允许独立地控制每个电极。或者,电极229可以连接至同一电源线以便共同操作。

囊212的整体或部分可由聚合物、塑料、硅、橡胶、聚乙烯、聚氯乙烯,化学惰性材料、非毒性材料、电绝缘材料或以上的组合等材料制成。为增强热传递,囊侧壁可以包含一种或多种具有高热导率的导热材料。例如,导热条(例如,金属条)可以有助于将热能从热点(如果有的话)传导出来。囊212可以顺应于气道表面(例如,软骨环,侧支等)上的不规则形状,并可以整体或部分由以下材料制成:可膨胀的材料,诸如聚氨酯(例如,低硬度聚氨酯)或其它类型的高顺应性材料,所述材料可以是透明的、半透明的或不透明的。囊212能够具有不同的膨胀形状,包括热狗形、卵圆形、圆柱形等。为了处理人的支气管树,膨胀囊212的直径D可以为约12mm至约18mm。为了增强处理的灵活性,膨胀的囊的直径可以为约5mm至约25mm。囊212的大小可以被设定为能够处理其它动物的其它器官或组织。如图11所示,为了使囊212膨胀,将流体沿着递送腔326递送并通过入口225。冷却剂在腔室234内循环,然后沿着返回腔324向近侧流动。

图12和13展示了利用处理系统200的一个示例性方法。以在实施治疗前、治疗期间和/或治疗后,可以观察气道100来定位和评估处理位点和非目标组织。进入装置206可以是引导管、递送鞘、气管镜或内窥镜,并且可以包括一个或多个观察装置,诸如光学观察装置(例如,照相机)、光具组(例如,一组镜头)等。可以刺激(例如,电刺激)沿气道圆周的不同区域,以确定气道神经干或疾病状态的位置。可以通过测量沿气道长度实施刺激的点的远侧的气道平滑肌收缩来实现支气管收缩的检测。可以通过监测膨胀的囊的压力变化或气道近侧或与气道接触的其它类型的传感器来测量肌肉收缩。所述技术可以最小化或限制被处理的气道的圆周面积,从而降低或消除气道狭窄的风险。可以通过下述方式来确定神经位置:测量气道圆周上的点的神经电信号,以确定气道神经的位置。可以使用诸如冷空气、组胺或苯基二胍的气道神经信号刺激物来增加神经信号幅度,从而便于气道圆周周围的气道神经信号定位。

当沿着体腔移动图12的进入装置206时,塌陷的消融组件208被保持在工作通道386内。将消融组件208向远侧移出工作腔386并使其膨胀,从而将电极组件214移动至气道壁附近(例如,接近气道壁或与气道壁接触)。RF能量能够通过组织来加热组织(例如,表层组织和深层组织),从而在目标区域形成损伤。目标区域和相关的损伤大体上对应于图13和14的虚线。

本文使用的术语“损伤”是指被永久破坏的组织,即,指细胞死亡。在一些情况下,能量递送将对称为“损伤”的区域以外的细胞造成暂时的或非致死性的破坏。例如,本文所述的能量递送可以暂时破坏或改变上皮细胞或平滑肌细胞。然而,有利的是,通过使用差别冷却,这些细胞能够恢复并保持功能,因此不被认为是所述“损伤”的一部分。相比之下,消融组件208能够对位于气道壁深处或在气道壁外部的神经组织或其它目标组织造成永久性破坏,从而减弱导致某些肺病的神经信号。

图13的冷却区段209接触气道壁100,从而当电极组件214输出能量时能够冷却组织。这种通过RF能量进行表层和深层加热以及通过循环冷却剂进行表层冷却的净效果是将热量聚集到气道壁100的外层。结缔组织的温度可以高于上皮、基质和/或平滑肌的温度。例如,结缔组织的温度可以足够高而能对神经干组织或其它深层组织造成损伤,同时使气道的其它非目标组织保持在较低的温度以防止或限制对非目标组织的损伤。

图13和14显示了八处单独的损伤237a-h(统称为“237”)。相邻的损伤237沿着消融组件208的纵轴233彼此轴向偏离。如图14所示,每处损伤237可以具有约45度的弧长,使得损伤阵列基本上沿气道壁100的整个圆周延伸。暴露的电极元件的长度对应于损伤237的宽度。可以基于损伤237的期望宽度来选择暴露的电极元件的长度(例如,电极元件231d、231e的长度)。有利的是,可以同时形成损伤237。例如,可以同时形成所有的或大部分的损伤237,以避免必须在消融处理之间移动消融组件。在其它实施方案中,可以启动不同的电极229从而相继形成损伤。可以将电极组件214移动至不同的位置来消融不同的组织。因此,可以基于所需的处理同时地或相继地进行一次或多次损伤。

利用常规消融导管,消融过程可以足以导致瘢痕形成,而所述瘢痕可能导致局部的气道缩窄或狭窄。由于损伤237处于沿气道长度的不同位置,所以可以减轻狭窄的影响。所示的实施方案非常适于切断气道的神经支配,同时避免形成连续的瘢痕组织环。沿气道100的内圆周延伸360度的连续瘢痕组织环可以显著减小气道腔的截面积,进而显著增加气流阻力。交错的损伤237能够有助于减轻气道腔横截面积的减小。

图14显示了损伤237的位置。如图14所示,损伤237的外部轮廓沿气道100的长轴并在与所述长轴垂直的虚拟平面上的投影限定了基本连续的闭合环。因为神经干45沿气道100纵向延伸,所以损伤237可以处于足以确保消融所有神经干的深度。在其它实施方案中,电极组件214可仅用于处理气道圆周的一部分,例如气道圆周的180度、150度或130度。这对于有效切断气道100的神经支配来说可能就足够了。因此,可以有效切断神经信号而不会形成沿整个气道壁延伸的损伤,并这可以进一步减少狭窄的形成。

在RF消融期间,热量能够被集中在气道壁的一个或多个内层(例如,基质)中或集中在气道壁的内膜(例如,上皮)中。而且,支气管动脉分支中的一个或多个血管可以位于损伤内。能够控制使用电极214所产生的热量,使得当神经干组织受到破坏时,流经支气管动脉分支的血液能够保护这些分支免受热损伤,即使所述神经组织位于所述动脉分支附近。导管207可以产生相对较小区域的细胞死亡。例如,可以破坏气道壁100中间或沿气道壁100的外表面的2mm至3mm区段的组织。通过应用适当的功率和适当的冷却,能够在任何期望的深度产生损伤。

气道软骨环或软骨层的电阻通常显著大于气道软组织(例如,平滑肌或结缔组织)的电阻。气道软骨阻碍能量流(例如,电射频电流),并且使得当电极接近软骨时,由射频电能形成治疗性损伤而影响气道神经干变得具有挑战性。

所示的能量发射器214可以作为软骨间能量发射器。电极元件227的尺寸可以被设定为大体上符合软骨环235a、235b(统称为“235”)的间隔。如图13所示,每个电极元件227被放置在两个相邻的环235a、235b之间,使得损伤237完全置于软骨环235间的空间333内。

电极229可以作为软骨间定位器,其优先帮助将电极元件227坐入空间333中,进而使得易于进行处理或易于核实正确的定位。例如,电极元件227可以向外突出并易于移入和匹配更柔软的、顺应性更好的空间333中。因而电极229可用于指示消融组件208。

图15显示了电极,该电极是通过一根电源线连接的单极电极。可以同时将电力递送至所述电极。可以沿囊212放置任何数量的电极。例如,可以沿所述囊的圆周均匀地或不均匀地间隔一个或多个电极。

图16显示了方向相对于消融组件300的纵轴312具有斜向角的电极310a-310c(统称为“310”)。电源线316a-316c(统称为“316”)向分别的电极310提供能量。(尽管未显示,但是可将其它电极放置在消融组件300的看不见的后侧)。电极310可以是双极电极。举例来说,电极310a可以包括电极元件318a、319a,电极元件318a、319a可以为阳性和阴性(或阴极和阳极),以便在元件318a、319a之间传输RF能量。

可以基于所要形成的损伤的长度、相邻损伤间期望的圆周间隔等来选择电极310和纵轴312方向之间的角度α。所示的角度α为约45度。如果需要或希望的话,还可能是其它角度。相邻电极310之间可以存在未处理、未损伤的组织区域。

如图16所示,由电极或电极对310a产生的一处损伤在圆周方向上与由圆周上相邻的电极或电极对310b产生的下一处损伤的起始部分重叠,从而确保能够处理管状体结构的整个圆周(或其一部分)。如果通过电极310a所产生的损伤的一端纵向绘制一条虚拟的线,那么这条虚拟的线与310b所产生的相邻损伤的附近端相交或接近。因此,相邻损伤的末端沿轴312轴向偏离并在圆周方向上重叠。

图17显示了消融组件400,其包括可展开的篮414和电极413、415。篮414包括中空构件,冷却剂可流经所述中空构件来冷却电极413、415。可以选择篮414的纵向长度,使得篮414延伸跨过多个软骨环。电极413、415可被放置在所述环之间。例如,长形的篮414可以延伸跨过至少三个软骨环(由图17的竖直虚线431、432、433表示)。电极413放置在软骨环431、432之间。电极415放置在软骨环432、433之间。当篮414展开时,相邻排的电极413、415间的距离D大体上相当于软骨环间的距离,进而确保电极413、415能够坐入软骨环间。电极413a可以具有第一极性,电极413b可以具有相反的极性,使得能量能够在所述电极间流动。电极对413a、413b与相邻电极对415a、415b偏离一定角度,从而形成圆周方向上重叠并在轴向隔开的损伤。重叠D的距离足以确保能够处理气道的整个圆周。

图18显示了沿着腔427、429流动并分别通过减压元件423、425的流体。本文所用的术语“减压元件”是指,而不限于,被设置成能够降低工作流体的压力的装置。减压元件能够将工作流体的压力降低至等于或小于工作流体的汽化压力。工作流体可以包括制冷剂(例如,低温制冷剂或非低温制冷剂)。在一些实施方案中,减压元件的形式为减压阀或膨胀阀,它们能够使从中流过的工作流体的至少一部分汽化。减压元件汽化有效量的工作流体(例如,制冷剂、低温流体等)以降低工作流体的温度。在一些模式中,以重量计通过元件423、425的几乎全部或大部分工作流体被转换为低温、低压气体。在一些实施方案中,减压元件423、425可以是喷嘴阀、针型阀、焦耳-汤姆逊阀、节流阀元件或任何其它适于提供所需的压力下降的阀。例如,焦耳-汤姆逊阀能够从液体的膨胀回收工作能量,导致较低的下游温度。在一些实施方案中,能够用流量调节元件(例如,阀系统)替代减压元件,尤其是在工作流体为诸如水的非制冷剂的情况下。

参照图18,图18的高压气体P1通过递送腔427、429。高压气体P1通过元件423、425,并进入通道436、438,在通道436、438中压力下降至P2。压力从P1下降至P2导致气体温度从T1下降至T2。温度变化的幅度由下式计算:

T1-T2=μ(P1-P2)

其中

T为气体的温度;

P为气体的压力;

μ为气体的焦耳-汤姆逊系数;

下标1表示高压条件;以及

下标2表示低压条件。

如结合图19和20所讨论的,当通道436、438中的气体通过出口排出并下降至周围压力时,发生第二压力下降。如果将消融组件400用于呼吸系统,则周围压力为大气压。该温度下降为:

T2-T3=μ(P2-PATM)

焦耳-汤姆逊系数(μ)对于每种气体或气体混合物是特异的。μ的标准温度值为:

二氧化碳

空气

这些系数表明,对于给定的压力下降,CO2导致的温度下降比由空气产生的相似压力下降大5倍。

在肺中使用空气是可取的。可以使用二氧化碳,但条件是冷却剂气体的流速足够低而不超过个体将该额外的二氧化碳排出肺外的能力。如果冷却剂管道中的冷却剂为诸如液态空气或液态二氧化碳的高压液体,则冷却效果可被提高。高压液体经过减压元件(例如,节流阀)并经历从高压液体向高压气体的吸热相变,这使得气体的温度低于高压液体的温度。然后,如结合图19和20所讨论的,在通过出口441排出之前,该气体经过从P1至P2的焦耳-汤姆逊膨胀,使温度进一步下降。

图19和20显示了与图17和18的消融组件400大体上相似的消融组件437,但以下细节有所差别。消融组件437包括沿长形构件设置的开口或出口439的阵列。流经长形构件的冷却剂能够从开口439漏出以冷却邻近的组织。此外,设置在远端443的开口或出口441能够排出冷却剂。如图20所示,用箭头表示的冷却剂能够从出口439、441漏出。以这种方式,冷却剂能够冷却消融组件437并且能够提供直接的组织冷却。任选地,出口441可以被设置成能提供合适的压力下降,从而使冷却剂由上文所述的焦耳-汤姆逊膨胀汽化,由此降低冷却剂温度。

图21显示了消融组件450,其具有沿可展开构件453在圆周方向间隔开的V形电极。电极455具有末端456、457,末端456、457与相邻电极455的尖端459重叠。电极可以向V形目标区域输出能量,所述V形目标区域同样沿气道圆周间隔开而形成V形损伤。V形损伤间的未处理的组织能够帮助确保气道腔不会由于瘢痕组织或狭窄而显著变窄。

图22显示了消融组件460,其包括携带T形电极的可展开的元件462。电极463具有自由末端464,自由末端464与相邻电极467的末端465重叠。在圆周方向上对齐的电极461能够形成多处大体上为T形的损伤。在其它实施方案中,电极可以为U形、S形、W形、L形或任何其它合适的形状。此外,在这些实施方案的任何一个中,电极可以与图16所示的电极相似地以斜向或螺旋的模式纵向偏移。

图23显示了消融组件500,其包括可以将电极512放置在软骨环513、515(以虚线显示)之间的第一组长形构件511a-511d(统称为“511”)。长形构件521a-521d(统称为“521”)携带放置在软骨环515、518之间的电极523a、523b、523c、523d(统称为“523”)。电极512在环513、515之间形成损伤。电极523在环515、518之间形成损伤。长形构件511、521可以是柔韧的或弹性的杆或线,它们径向向外偏置,使电极抵靠气道壁,并且它们被设置成将能电极523放置在相对于电极512在圆周方向上偏离的位置,使得用每个电极对可以处理气道壁的不同的圆周区域。一个胶原间间隙内的损伤的一端在圆周方向上可以与相邻胶原间间隙的相邻损伤重叠。因而损伤可以轴向上彼此隔开,但在圆周方向上相对于体腔重叠。长形构件511、521可被缩回管状鞘510中,使长形构件511、521塌陷成适于导入气道中的径向收缩构形。

图24显示了具有可展开的能量发射器组件610的消融组件600。可展开的电极组件623可包围可展开的构件620的全部或大部分,可展开的构件620显示为囊。绝缘体625在电极组件623的一部分上的末端之间延伸。电极623可以具有锯齿形构造(显示的)、卷曲形构造或波浪形构造,从而能允许展开并且可以在囊620的周围延伸约90度至约360度。使用时,暴露的电极623可以面向待处理的气道区域,例如,神经干通常位于的后侧。或者,发射器组件610可以包括多个暴露的电极,所述电极由绝缘部分隔开,从而产生分散的损伤。

任选地,第二能量发射器618放置在能量发射器610的远侧。能量发射器618具有暴露的电极621和绝缘体623。电极621可以与电极623配合而形成在圆周方向上偏离并在轴向间隔互补的(例如,重叠的)损伤。例如,电极623可以沿气道壁的上部形成弧长为约180度的损伤。电极621可以沿气道壁的下部形成弧长为约180度的损伤。两处损伤共同沿气道壁的整个圆周延伸。可以同时产生或相继产生损伤。

图25显示了消融组件700,其包括电极组件710形式的能量发射器,电极组件710包裹在可展开的元件712周围。电极组件710包括管道731和多个电极715a-h(统称为“715”)。电极715可以同时或相继形成损伤。

参照图26,电极715a可以是中空的管状金属构件,当囊712膨胀时,所述电极以大体圆周方向定向。管道731连续递送冷却剂(盐水或其它冷却剂)通过电极716。

可以将不同的冷却剂递送通过囊712和管道731。冷却剂可以流经递送腔761、流经管道731来冷却电极715。另一冷却剂可以流经递送腔751并流入囊712。囊712和管道731中的冷却剂可以通过返回腔739流向近侧。在其它实施方案中,冷却剂连续流经电极组件710和囊712。

可以将单独的导线对与每个电极715进行电连接。可以独立地操作每个电极715。在其它实施方案中,电极715是双极的,并安排为相反的极性成对。如关于之前的实施方案所述,电极715可以相对彼此定向和放置从而形成软骨间空间内的损伤。将2009年5月8日提交的美国专利申请第12/463,304号和2010年10月27日提交的美国专利申请第12/913,702号通过引用全文并入本文,上述专利申请公开了可以与消融组件700一起使用的技术、材料、导管和部件。

电极715a-h沿螺旋形管道731排列,使得它们能够产生在圆周方向上彼此偏离(尽管会有一些重叠)并且在轴向彼此偏离的损伤。以轴向方向(与轴719平行)通过电极715a-h中的每一个绘制的虚拟线将与电极715a-h中的另一条虚拟线相交,从而确保能够处理气道的整个圆周。有利的是,电极沿螺旋形管道731间隔开,使得它们所产生的损伤沿气道纵向分开,因而减小导致狭窄的机会。

通过调节冷却剂的温度、冷却剂流速、冷却剂的载热能力、囊的热力学特性(例如,囊的热传递性能)或递送功率的量可以控制损伤形状。图27A-31B显示通过逐步提高囊的冷却所形成的温度谱图和相应的损伤。可以通过降低冷却剂温度或提高冷却剂流速或两者来提高囊的冷却能力。通过保持囊的冷却能力基本恒定同时改变电极的冷却剂容量或通过提高或降低递送至组织的功率,也能实现对损伤的定形。举例来说,图25的消融组件700能够用于形成图27B、27C、28B、29B、30B和31B的损伤。因为囊712的直径大于电极通道753的直径,所以相比于通过电极715a的高速流,沿囊表面的流速相对较低。这样产生了差别冷却。如果电极715a和囊712拥有独立的流动,则冷却剂可以处于不同的温度和/或流速以用于差别冷却。

图27A显示组织中的等温线80℃、60℃和40℃以及温度分布。图27B显示对应于图27A的等温线的损伤804。冷却通道753中的冷却剂仅有的能吸收大量热量的冷却剂。囊712不吸收大量热能且能够填充有温度大体上等于室温或在约20℃-30℃的范围内的流体。在一些实施方案中,利用环境空气来膨胀囊712,并且囊712能够保持电极715a抵靠组织825。在其它实施方案中,利用温盐水来膨胀囊712。损伤804具有大体上为半圆形的形状。可以分别通过降低或提高冷却通道753中冷却剂的温度来增加或减小半径r和深度D。此外或可选地,可以分别通过降低或提高冷却剂的流速来增加或减小半径r和深度D。

可以将冷的冷却剂递送通过囊712以减小组织表面825上的损伤的截面宽度。图28A和图28B显示当冷却剂冷却电极715a和当低温冷却剂以低速流经囊712时的等温线和相应的大体上为椭圆形的损伤804。囊712中的冷却剂吸收足量的热能,从而保护与囊-组织界面接触或邻近的组织。在一些实施方案中(包括图28B所示的实施方案),表面825上的损伤804截面宽度小于图27B中在表面825上的损伤804的横截面宽度。图28B的损伤804的截面宽度随深度而增加至最大宽度W最大,并随后下降至最深区域830。最大宽度W最大小于损伤804的深度D。图28B显示表面825上的损伤804的宽度不大于电极宽度的约150%。

图29A和图29B显示当低温冷却剂以高速流经囊712或者极低温度的冷却剂以低速流经囊712时的等温线和损伤804。类似泪滴形的损伤804从组织表面825延伸。损伤804的浅层或狭窄区域834的宽度约等于电极715a的截面宽度WE。因此,表面825上的损伤804具有的最大截面宽度不大于电极-组织界面的约150%。这确保了破坏最小量的表面组织。损伤804从浅层部分834至扩大的区域835向外逐渐变窄。损伤截面宽度随深度而逐渐增加至最大宽度W最大。最大宽度W最大可以比在表面825上的截面宽度大约1至约5倍。损伤804的最深区域830为部分圆形。

图30A和30B显示当极低温度的冷却剂以高速流经通过囊712时能够形成的等温线和泪滴形损伤804。损伤804从组织表面825延伸并具有狭窄的浅层区域834,该浅层区域834快速向外扩展至广深区域852。浅层区域834的宽度小于电极715a的宽度WE。截面宽度随深度而迅速增加至最大宽度W最大。因此,损伤804的大部分体积位于组织深处。

图31A和图31B显示当极低温度的冷却剂以极高的速度流经囊712时能够形成的等温线和相应的圆形损伤804。损伤804位于从组织表面825起的深度D处。损伤804的最大截面宽度W最大在深度D最大宽度处。损伤804与电极-组织界面是隔开的并根据冷却剂的流速和温度可以具有不同的形状。差别冷却能够用于获得其它埋入的损伤形状,诸如大体上为椭圆形、细长形等。

能够根据目标区域的位置来选择D最大宽度。为了破坏神经组织,D最大宽度可以为至少约2mm以确保损伤包括神经组织并且减轻或避免对平滑肌组织造成明显的损伤。这些实施方案非常适用于处理气道壁,因为平滑肌组织的深度通常不低于2mm。以这种方式,目标区域的截面宽度能够在比平滑肌组织更深的深度达到最大值。大部分的(以及在一些实施方案中基本上全部的)损伤位于非平滑肌组织的组织中,其在气道壁中的位置通常比平滑肌组织区域更深。另外,对气道壁中的平滑肌细胞的任何破坏可以小于在不破坏神经组织的情况下实质上改变气道的反应性或收缩(诸如由于哮喘、COPD或其它肺病)所需的破坏的量。

损伤能够通过保护区域与组织表面分开,在保护区域中大量的组织未被永久性破坏。图31B和图30B显示深度为DP的保护区域861。有利的是,因为保护区域861中的大量组织未被永久性破坏,其组织功能能够被保留。深度的DP可以为至少约1mm至约2mm以消融神经组织。

图32显示了螺旋形消融组件900,其包括弯曲的(显示为螺旋形)主体910(显示为逐渐变细以匹配气道的渐细)和电极912a、912b、912c(统称为“912”)。任选地,可以将一个或多个减压元件放置在主体910内来充当焦耳-汤姆逊阀,从而降低冷却剂的温度。

电极912可以大体上彼此相似,并且因此对于一个电极的描述也等同地适用于其它电极,除非另外指出。电极912a包括多个出口916、918。由箭头表示的冷却剂可以流出出口916、918。电极912a可与主体910的外表面连接。这允许电极912向外突出足够的距离,从而能与组织物理接触。电极912的排列能够产生这样的损伤,所述损伤在圆周方向上彼此偏离,但在其边缘具有某些圆周方向的重叠,即沿气道纵向向下通过一处损伤的末端绘制的虚拟线将与下一处损伤的末端相交。由于电极912沿螺旋体910间隔开,所以它们所产生的损伤在气道的轴向上也间隔开,进而降低狭窄的可能性。

主体910可以包含柔韧且导电的材料(如镍钛诺(Nitinol)),当启动时,这些材料能形成螺旋形或拔塞钻形。可以将暖流体递送通过主体910,导致主体910从递送配置(例如,伸直的配置)移动至展开配置(例如,拔塞钻形配置或螺旋形配置)。在其它实施方案中,主体910可以偏置于展开配置,并且可被递送出套管或工作腔以呈现展开配置。可以将消融组件900向近侧拉入套管或工作腔从而使消融组件900返回递送配置。在其它实施方案中,可以使用张紧器、牵引线、牵引杆等使主体910呈现不同的配置。

任选地,可以通过内部区域920放置囊。可以将大体上为圆锥形的囊、圆柱形的囊、热狗形的囊或其它合适形状的囊插入内部区域920。

图33显示了由管状传导性内部构件制成的螺旋形消融组件952,所述消融组件952具有一系列间隔开的形成电极960a、960b、960c(统称为“960”)的暴露区段,并在间隔区段上具有绝缘覆盖以形成绝缘区域962a、962b、962c。冷却剂能够通过消融组件520循环以冷却电极960。为了提供额外的组织冷却,任选地,冷却剂能够通过内部管状构件和/或绝缘性覆盖中的出口(未显示)递送出去。

图34显示了包括间隔开的双极电极1010a-f(统称为“1010”)阵列的消融组件1000。电极排列为相反极性对,使得在每个双极对之间斜向地产生损伤。电极1010可以形成跨越软骨环的斜向的损伤。如图35所示,消融组件1000放置在气道1012内。电极1010放置在所述环之间。电极1010a-c可以产生图36的损伤1030。损伤1030的一端1032接近环1034。另一端1036邻近环1038。末端1032、1036沿气道1012轴向彼此偏移。如图36所示,末端1032、1036的轴向偏移显著大于末端1032、1036间的圆周距离。在某些方案中,末端1032、1036间的距离为至少1毫米、5毫米、10毫米。在一些实施方案中,末端1032、1036间的轴向距离大于相邻软骨环间的距离。这确保了损伤能够跨越所述环。

图36的损伤1030的中间区段跨越环1034、1038之间的环1040。在消融组件1000背侧的电极1010d、1010e、1010f形成损伤1041。所示的损伤1041、1030位于对侧并处于沿气道的不同的轴向位置。

电极1010能够向外伸出足够的距离,从而能与气道组织相互作用,进行将电极1010保持位于软骨环之间。当以双极模式操作时,损伤形成并跨越所述环。形成损伤后,可以向近侧拉回导管或向远侧推动导管并用于形成轴向偏离的损伤。此外或可选地,可以转动导管,在沿气道1012的不同角度的位置处形成斜向的损伤。图36的损伤显示为连续的损伤。在其它实施方案中,损伤可以包括多处分散的间隔开的损伤。例如,损伤1030可以包括间隔开的损伤的阵列。

图37和38显示了在圆周方向上偏离并在轴向上间隔开、可通过内部喷射进行冷却的电极1050a、1050b。冷却剂流经递送腔1052并在开后1054离开。喷射的冷却剂沿开放的冷却通道1056流动以冷却电极1050a。冷却剂通过出口1062a、1062b离开腔室1060。冷却剂沿返回腔1072流动。当冷却时,可以以单极模式或双极模式操作电极1050a、1050b。

图39A-40B显示了消融组件1080,其包括电极组件1082形式的能量发射器。电极组件1082包括能够形成损伤1083(图39B和40B)的电极1084a-f(统称为“1084”)阵列。可以形成大量不同类型的卷曲形、弯曲形、锯齿形、Z形或其它不同的构造。所示的损伤1083大体上为螺旋形并跨越多个软骨环。消融组件1080可以具有任何数量的这类电极组件1082。例如,可以将一对螺旋形消融组件1082放置在消融组件1080的外部。

所示的损伤1083是连续的,并且具有沿气道的长轴1089轴向间隔开的末端1085、1087。末端1085、1087彼此还成角度的偏离。如图39B和40B所示,末端1085、1087之间沿轴1089的距离大于相邻环之间的距离。这样,损伤1083跨越多个环。

电极1084可以是彼此接近而形成基本连续的损伤1083。在其它实施方案中,可以增加电极1084间的距离以提供多处间隔开的损伤。间隔开的损伤可以排列成与损伤1083相似的形状,但是还可能是其它形状和损伤图案。

图41显示了消融组件1100,其具有包裹在囊1111周围的电极组件1110。电极组件1110包括适于容纳冷却剂的管1113,并具有与囊1111的内部连通的远端1115。将电极安装、附着、喷涂或以其它方式连接于管1113的外部。以这种方式,可以通过导管将冷却剂递送至囊1111的内部,以膨胀囊1111,冷却剂从囊1111流经管1113,进而冷却电极。或者,冷却剂可以冷却电极,随后冷却囊1111。电极组件1110和囊1111可以提供差别冷却,以形成具有某种形状的损伤。

图42-44显示了可从递送配置(图42)移动至展开配置(图43和44)的消融组件1200。在递送配置中,消融组件1200的远侧部分1211与导管杆1213的近侧部分排成线,以便与消融组件1200所插入的气道或其它体腔的纵轴大体上对齐。在展开配置中,消融组件1200的远侧部分1211弯曲或变形,从而形成环1215,环1215位于横向于导管杆1213近端的纵轴的平面内。以这种方式,环1215可以在气道的内壁周围延伸,从而将电极1220置于气道的一系列圆周方向上间隔开的位置处。

在展开配置中,所述环可以是螺旋形的或者可以位于与导管杆1213的纵轴成斜向角度的平面内,使得电极1220被置于沿气道壁轴向分开的位置处。可以利用各种公知的手段来展开环1215。例如,牵引线可以可滑动地延伸通过导管杆的腔,并被固定在远端附近的点,使得牵引线上的张力能将环1215展开成所需的配置。或者,导管的远侧部分可以被预定型为展开配置,并且可以是有弹性的,使得远侧部分在递送期间可被压缩在鞘内,然后,通过缩回所述鞘而被释放,使得远侧部分恢复展开配置。

出口1210a-1210c(统称为“1210”)为组织提供直接的冷却剂冷却。可独立操作电极1220a-c(统称为“1120”)以形成分散的损伤,或者共同操作形成用于形成连续损伤的一个总电极。可将电极1220置于近侧主干支气管的两个软骨环之间,以处理气道圆周的大约三分之一(例如,气道的前中部区域或前后部区域)。然后将电极1220再向远侧置于两个远侧软骨环之间来处理气道壁的另外三分之一的前后部或前中部。再次移动电极120来处理气道的后部三分之一,例如膜部分。冷却剂可以通过出口1210递送以冷却组织。消融组件1200可用于相继地消融血管的不同区段,并可以向远侧和向近侧移动,在损伤间提供足够的间隔,从而减轻瘢痕组织或狭窄(如果有的话)。

本文所公开的递送装置能够处理消化系统、神经系统、血管系统或其它系统。例如,能够通过血管递送本文所公开的长形组件、管腔内导管和递送装置来处理血管系统。本文所公开的处理系统及其部件能够用作其它医疗操作的附属手段,所述其它医疗方法诸如能提供到达所需靶点的微创操作、开放式操作、半开放式操作或其它手术操作(例如,肺体积缩小手术)。各种胸部外科手术可提供进入肺组织。用于提供到达目标区域的进入技术和方法能够由医生和/或机器人系统来执行。本领域技术人员了解多种能到达目标区域的不同的方法。

导线、递送鞘、光学仪器、引入器、套管、活检针或其它适当的医疗器具能用于引导所述递送设备。如果目标处理位点处于患者的远侧位置(例如,图1的肺根24附近的处理位点),则很多工具和技术能够用于到达位点。例如,使用诸如如上所述的内窥镜和气管镜的可操作的递送装置可以很容易地将柔性的长形组件放置于个体体内。

半刚性或刚性长形组件能够通过以下方式来递送:使用套管、接入口,使用半开放式操作的刚性递送鞘、开放式操作或能提供较直的递送通道的其它递送工具/方法。有利的是,半刚性或刚性长形组件的刚性能足够强,从而到达和处理远处组织,诸如迷走神经、神经分支、神经纤维和/或沿气道的神经干,而不通过气道递送长形组件。本文所公开的实施方案和技术能够与其它操作一起使用,诸如支气管热成形术。

除非上下文另有要求,整个说明书和权利要求都遵循:词语“包括(comprise)”及其变形词,诸如“包括(comprises)”和“包括(comprising)”,都应被解释为开放、包括的含义,即解释为“包括但不限于”。

可以将上述不同的实施方案组合以提供其它实施方案。在上文的详细描述的教导下,可以对实施方案进行这些改变和其它改变。本文所公开的实施方案、特征、系统、装置、材料、方法和技术在一些实施方案中与以下文献所描述的实施方案、特征、系统、装置、材料、方法和技术中的任何一个或多个相似:2009年5月8日提交的申请第12/463,304号、2010年10月27日提交的美国申请第12/913,702号、2009年10月27日提交的美国临时专利申请第61/255,367号和2009年11月11日提交的美国临时专利申请第61/260,348号。通过引用将这些申请中每一个整体合并入本文。此外,本文所描述的实施方案、特征、系统、装置、材料、方法和技术在某些实施方案中可以应用于上述美国专利申请系列第12/463,304号和于2010年10月27日提交的美国申请第12/913,702号中所公开的实施方案、特征、系统、装置、材料、方法和技术或与它们组合使用。例如,美国专利申请系列第12/463,304号和于2010年10月27日提交的美国申请第12/913,702号中公开的装置可以合并本文所公开的电极或其它特征。

另外,本文所描述的实施方案、特征、系统、递送装置、材料、方法和技术在某些实施方案中可以应用于上述2009年5月8日提交的申请第12/463,304号、2010年10月27日提交的美国申请第12/913,702、2009年10月27日提交的美国临时专利申请第61/255,367号和2009年11月11日提交的美国临时专利申请第61/260,348号所公开的实施方案、特征、系统、装置、材料、方法和技术中的任何一种或多种或者与它们结合使用。

通常,在以下的权利要求书中,所用的术语不应当解释为将权利要求限制于说明书和权利要求书所公开的具体实施方案,而应当解释为包括权利要求所表示的全部范围的等同方式的所有可能的实施方案。因此,权利要求书不受公开内容的限制。

可以将上文所述的各实施方案组合而提供其它实施方案。本说明书引用的和申请资料表列出的全部美国专利、美国专利申请公开、美国专利申请、外国专利、外国专利申请和非专利出版物通过引用全文并入本文。如果必要的话可以利用不同专利、申请和出版物的构思改动所述实施方案的各个方面,从而提供其它实施方案。

在上文的相似描述的教导下,可以对所述实施方案进行这些改变和其它改变。通常,在以下的权利要求书中,术语不应当被解释为将权利要求书限制于本说明书和权利要求书所公开的具体的实施方案,而应当被解释为包括这些权利要求所享有的等同项的全部范围的所有可能的实施方案。因此,权利要求书不应受公开内容的限制。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1