用于微波消融的天线组件及采用其的微波消融针的制作方法

文档序号:11929837阅读:451来源:国知局
用于微波消融的天线组件及采用其的微波消融针的制作方法与工艺

本实用新型涉及微波治疗设备技术领域,更具体地涉及一种用于微波消融的天线组件及采用其的微波消融针。



背景技术:

近年来,微波消融逐渐成为治疗肝癌的重要的治疗手段之一。微波消融是利用微波在极性分子,如水中的热效应,使病变区域瞬间达到很高的温度,组织凝固,脱水坏死,从而达到治疗的目的。

从微波天线设计上说,目前市场上主流的消融针有两种:一种是未采用扼流技术的消融天线,例如公开号为CN103142307A的中国专利申请公开;另一种是采用扼流环(槽)的消融天线,例如公开号为CN104688335A的中国专利申请公开,其主体结构如图1所示。

在未采取扼流技术的情况下,部分微波会沿着同轴线外导体的外表面向后“逃逸”,从而导致消融区成椭球形。采用扼流环(槽)技术的消融天线能有效抑制微波反向逃逸,获得较圆的消融区,但为了稳定扼流环(槽)的性能,需要在天线的辐射区填充对温度稳定的高介电常数介质,从而导致循环水无法到达消融针的头部。针头部温度过高容易烧坏消融针,甚至可能引起消融针爆裂,导致医疗事故。



技术实现要素:

有鉴于此,本实用新型的目的在于提供一种用于微波消融的天线组件及采用其的微波消融针。

为了实现上述目的,作为本实用新型的一个方面,本实用新型提供了一种用于微波消融的天线组件,包括:

辐射器,用于将用于消融的微波发射出去;

冷却水通道,用于对所述辐射器进行冷却;

同轴线,用于将微波发生器产生的所述用于消融的微波传输给所述辐射器;其中,在所述同轴线的最外层上形成有一软磁铁氧体薄膜的扼流圈。

其中,所述软磁铁氧体薄膜的相对磁导率大于50。

其中,所述软磁铁氧体薄膜的材料为镍锌钴铁氧体。

其中,所述软磁铁氧体薄膜的长度大于等于2mm。

其中,所述软磁铁氧体薄膜的厚度在0.05~0.1mm范围之间。

其中,所述辐射器为铜“帽”或同轴线的最前端。

其中,所述辐射器为铜“帽”,且所述辐射器的馈电点到所述铜“帽”最前端的距离与到所述软磁铁氧体薄膜的距离的差值在0~2mm之间。

其中,所述软磁铁氧体薄膜周围未填充高介电常数介质。

其中,所述高介电常数介质为氧化锆。

作为本实用新型的另一个方面,本实用新型还提供了一种微波消融针,所述微波消融针包含有如上所述的天线组件。

基于上述技术方案可知,本实用新型的天线组件和微波消融针具有如下有益效果:

(1)软磁铁氧体薄膜能有效地抑制沿同轴线外壁后向传输的微波;

(2)采用软磁铁氧体扼流技术,不需要在辐射区填充稳定介质,允许循环水进入辐射区,能够有效控制消融针头部的温度,避免温度过高烧坏消融针及医疗事故。

附图说明

图1是现有技术的用于微波消融的天线组件的主体结构示意图;

图2是本实用新型的用于微波消融的天线组件的主体结构示意图;

图3和图4分别是未采用扼流技术与采用软磁铁氧体扼流的两种消融天线的吸收场分布图。

具体实施方式

为使本实用新型的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本实用新型作进一步的详细说明。

本实用新型公开了一种用于微波消融的天线组件,该天线组件包括辐射器、冷却水通道和同轴线,其中辐射器,用于将用于消融的微波发射出去;冷却水通道,用于对所述辐射器进行冷却;同轴线,用于将微波发生器产生的所述用于消融的微波传输给所述辐射器;在所述同轴线的最外层上形成有一软磁铁氧体薄膜的扼流圈。

该软磁铁氧体薄膜可以选用高磁导率软磁铁氧体材料,其中相对于真空的相对磁导率优选大于50,这样的材料例如优选镍锌钴软磁铁氧体。该软磁铁氧体薄膜的形状随着同轴线的外形而变化,通常为圆环状,其长度不小于2mm,优选为2mm;厚度在0.05mm~0.1mm范围之间,优选为0.1mm。作为本实用新型的创新点,该软磁铁氧体薄膜周围未填充任何高介电常数介质,例如氧化锆等相对于真空的相对介电常数在25以上的高介电常数陶瓷材料。

在上述天线组件中,辐射器可以为铜“帽”,也可以直接为同轴线的最前端。当辐射器为铜“帽”时,辐射器的馈电点到铜“帽”最前端的距离与到软磁铁氧体薄膜的距离的差值在0~2mm之间,从而采用软磁铁氧体扼流后,该天线组件相当于对称全波振子天线,其近场分布比半波振子天线更加均匀。

本实用新型还公开了一种微波消融针,其中包含有上述的天线组件。

下面结合附图对本实用新型的技术方案进行进一步的阐述说明。

图2为本实用新型的用于微波消融的软磁铁氧体天线组件的主体结构示意图。如图所示,图中各部分依次为:不锈钢进水管1、软磁铁氧体薄膜环2、同轴线外导体层3、同轴线内芯4、同轴线介质层5、PTFE(聚四氟乙烯)进水管6、铜“帽”7、玻璃纤维外管8、陶瓷刺头9。软磁铁氧体薄膜环2通过镀敷工艺紧密贴合在同轴线外导体层3上,其与同轴线内芯4、铜“帽”7以及同轴线部分外导体共同构成了微波发射单元。进水管为一环状薄膜,套在同轴线各部分及铜“帽”7外面,且与同轴线各部分及铜“帽”辐射器7之间有一定的间隙,从而该进水管内壁的间隙允许水流流过而构成进水通道。进水管外套设有玻璃纤维外管8,玻璃纤维外管8与进水管之间的间隙构成了出水通道。该进水管前半节采用不锈钢材料,在铜“帽”7部分则为PTFE材料。

由此可见,本实用新型采用软磁铁氧体材料进行扼流,将软磁铁氧体喷镀在同轴线外导体表面,形成一层极薄的薄膜。由于软磁铁氧体材料有极高的磁导率,喷镀有软磁铁氧体的同轴线外导体上相当于加载了一个感值很大的电感,这个“电感”能有效隔断高频电流沿同轴线外表面向后传输,从而阻止了微波向后“逃逸”。

上述方案中,软磁铁氧体材料的扼流性能只与其材料本身特性有关,与天线周围环境无关。所以天线周围不需填充其他性能稳定的材料。这样,循环水到针头的通道是畅通的。

上述方案中,馈电点到铜“帽”末端和到软磁铁氧体薄膜的距离均为约1/2波长(组织里)。所以采用软磁铁氧体扼流后,微波天线相当于对称全波振子天线,其近场分布比半波振子天线更加均匀。

此外,上述方案中,铜“帽”主要作用是延长和加固同轴线内芯,也可以直接使用同轴内芯。馈电点到铜“帽”末端和到软磁铁氧体薄膜的距离也可以不相等,距离也可以有变化,例如变长或变短1mm~2mm。进水管、外管以及刺头的材质及厚度也可以根据实际情况进行选择,但要保证进水管和外管在天线辐射区域是非金属材料。

经过实验验证,本实用新型的软磁铁氧体薄膜能有效地抑制沿同轴线外壁后向传输的微波。图3和图4分别为未采用扼流技术与采用软磁铁氧体扼流的两种消融天线的吸收场分布图。如图3、4所示,通过对比,可以发现采用软磁铁氧体扼流技术的消融天线消融区域是比较理想的球形,表明扼流效果还比较令人满意。

以上所述的具体实施例,对本实用新型的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本实用新型的具体实施例而已,并不用于限制本实用新型,凡在本实用新型的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1