治疗RNA介导的疾病的化合物和方法与流程

文档序号:15879774发布日期:2018-11-09 17:42阅读:184来源:国知局
本申请要求2016年2月1日提交的美国临时申请第62/289,671号的权益,其全文以引用的方式并入本文中。本发明涉及可用于调节rna转录物的生物学以治疗各种疾病和病况的化合物和方法。本发明还提供鉴别结合化合物并且因此可药化的rna转录物的方法,筛选药物候选物的方法,和测定目标rna上的药物结合位点和/或反应位点的方法。
背景技术
:核糖核酸(rna)按照惯例被视为基因与蛋白质之间的仅仅瞬态的媒介,其中脱氧核糖核酸(dna)的蛋白质编码部分转录成rna,所述rna接着翻译成蛋白质。rna被认为缺乏规定的三级结构,并且即使在三级结构存在时,其也被认为基本上与rna的作为瞬态信使的功能无关。这种理解受到如下认知的挑战:rna(包括非编码rna(ncrna))在细胞中起着众多关键调节作用,并且rna可以具有复杂并且规定的三级结构。所有哺乳动物疾病最终都由转录物组介导。就信使mrna(mrna)是转录物组的一部分并且所有蛋白质表达都衍生自mrna而言,有可能通过调节相关蛋白质的表达和通过转而调节相应上游mrna的翻译来干预蛋白质介导的疾病。但mrna仅是转录物组的一小部分:其它转录的rna也直接通过rna结构(例如,核糖核蛋白)的结构和功能以及经由蛋白质表达和作用来调节细胞生物学,包括(但不限于)mirna、lncrna、lincrna、snorna、snrna、scarna、pirna、cerna和假基因。在这个阶段干预的药物有可能调节任何和所有的细胞过程。在大多数情况下,例如反义rna或sirna的现有治疗形态尚未克服例如药物递送、吸收、向目标器官的分布、药代动力学和细胞渗透的重大挑战。相比之下,小分子长期以来成功地越过这些屏障,并且使其适用作药物的这些品质容易通过一系列类似物优化以克服此类挑战。鲜明对比之下,不存在针对结合到通常在细胞内部少得多的rna目标筛选小分子的得到验证的一般方法。应用小分子作为产生治疗益处的rna的配体得到药物发现团体的关注极少或尚未得到其关注。用小分子调节剂靶向rna转录物组代表了治疗多种rna介导的疾病的未被开发的治疗方法。因此,仍需要开发可用作治疗剂的小分子rna调节剂。附图说明图1展示了钩连和点击(pearl-seq;rna连接的邻位增强活化)方法的基本步骤。小分子配体结合到目标rna结构(此处是茎-环特征),连接到小分子的修饰部分(rmod)与目标rna的邻近2'-oh形成共价键,并且后续变性和测序展现了修饰的位置。图2展示了三种广泛类型的本文所描述化合物的一般结构:i型、ii型和iii型,所述化合物在任选的即点基团的存在或位置方面不同。(rna配体=与折叠rna的小分子结合剂;x=键联;系链=连接rna配体与rna弹头;rna弹头=使核糖上的2'-oh基团酰化或磺酰化的一系列亲电子试剂;clickgrp.=实现包括测序的拉下和聚焦分析的即点基团。)图3展示了三种广泛类型的本文所描述rna共轭物的一般结构:i型、ii型和iii型,所述rna共轭物在任选的即点基团的存在或位置方面不同。目标rna经由与目标rna的核糖上的2'-oh基团之一的共价键共价共轭到rna弹头或修饰部分。图4展示了如下流程:例示性钩连和点击化合物(此处是系拴到包含携有羰基(咪唑基)酰化基团和叠氮基甲基即点基团的吡啶的修饰部分的茶碱)结合到目标rna,使其酰化(“钩连”其),并且接着经历与结合到生物素的4-二苯并环辛炔醇(dibo)基团的点击反应,用于用抗生物素蛋白或其它生物素结合蛋白的另一拉下程序。图5展示了用于组装i型化合物的通过酰胺键来接合的组分的通用化流程。图6展示了用于组装ii型化合物的通过酰胺键来接合的组分的通用化流程。图7展示了用于组装iii型化合物的通过酰胺键来接合的组分的通用化流程。图8展示了用于组装i型化合物的通过酰胺键来接合的组分的通用化流程(相对于图5方向性逆转)。图9展示了用于组装ii型化合物的通过酰胺键来接合的组分的通用化流程(相对于图6方向性逆转)。图10展示了用于组装iii型化合物的通过酰胺键来接合的组分的通用化流程(相对于图7方向性逆转)。图11展示了用于组装i型化合物的通过rna配体与系链之间的酰胺键和系链与rna弹头(修饰部分)之间的醚键来接合的组分的通用化流程。图12展示了用于组装ii型化合物的通过rna配体与系链之间的酰胺键和系链与rna弹头(修饰部分)之间的醚键来接合的组分的通用化流程。图13展示了用于组装iii型化合物的通过rna配体与系链之间的酰胺键和系链与rna弹头(修饰部分)之间的醚键来接合的组分的通用化流程。图14展示了用于组装i型化合物的通过rna配体与系链之间的醚和系链与rna弹头(修饰部分)之间的酰胺来接合的组分的通用化流程。图15展示了用于组装ii型化合物的通过rna配体与系链之间的醚和系链与rna弹头(修饰部分)之间的酰胺来接合的组分的通用化流程。图16展示了用于组装iii型化合物的通过rna配体与系链之间的醚和系链与rna弹头(修饰部分)之间的酰胺来接合的组分的通用化流程。图17展示了用于组装i型化合物的通过rna配体与系链之间的酰胺和系链与rna弹头(修饰部分)之间的醚来接合的组分的通用化流程。图18展示了用于组装ii型化合物的通过rna配体与系链之间的酰胺和系链与rna弹头(修饰部分)之间的醚来接合的组分的通用化流程。图19展示了用于组装iii型化合物的通过rna配体与系链之间的酰胺和系链与rna弹头(修饰部分)之间的醚来接合的组分的通用化流程。图20展示了用于组装i型化合物的通过rna配体与系链之间的醚和系链与rna弹头(修饰部分)之间的酰胺来接合的组分的通用化流程。图21展示了用于组装ii型化合物的通过rna配体与系链之间的醚和系链与rna弹头(修饰部分)之间的酰胺来接合的组分的通用化流程。图22展示了用于组装iii型化合物的通过rna配体与系链之间的醚和系链与rna弹头(修饰部分)之间的酰胺来接合的组分的通用化流程。图23展示了用于组装i型化合物的通过rna配体与系链之间的醚和系链与rna弹头(修饰部分)之间的醚来接合的组分的通用化流程。图24展示了用于组装ii型化合物的通过rna配体与系链之间的醚和系链与rna弹头(修饰部分)之间的醚来接合的组分的通用化流程。图25展示了用于组装iii型化合物的通过rna配体与系链之间的醚和系链与rna弹头(修饰部分)之间的醚来接合的组分的通用化流程。图26展示了用于组装i型化合物的通过rna配体与系链之间的酰胺和系链与rna弹头(修饰部分)之间的酰胺来接合的组分的通用化流程。这种方法利用二酸系链,即在每一端上携有羧酸的系链。图27展示了用于组装ii型化合物的通过rna配体与系链之间的酰胺和系链与rna弹头(修饰部分)之间的酰胺来接合的组分的通用化流程。这种方法利用二酸系链,即在每一端上携有羧酸的系链。图28展示了用于组装iii型化合物的通过rna配体与系链之间的酰胺和系链与rna弹头(修饰部分)之间的酰胺来接合的组分的通用化流程。这种方法利用二酸系链,即在每一端上携有羧酸的系链。图29展示了用于组装i型化合物的通过rna配体与系链之间的酰胺和系链与rna弹头(修饰部分)之间的酰胺来接合的组分的通用化流程。这种方法利用二胺系链,即在每一端上携有氨基的系链。图30展示了用于组装ii型化合物的通过rna配体与系链之间的酰胺和系链与rna弹头(修饰部分)之间的酰胺来接合的组分的通用化流程。这种方法利用二胺系链,即在每一端上携有氨基的系链。图31展示了用于组装iii型化合物的通过rna配体与系链之间的酰胺和系链与rna弹头(修饰部分)之间的酰胺来接合的组分的通用化流程。这种方法利用二胺系链,即在每一端上携有氨基的系链。图32展示了四环素的结构上系链基团的连接点。图33展示了茶碱、三蝶烯、利奈唑胺和蒽-马来酰亚胺狄尔斯-阿尔德(diels-alder)加合物小分子配体的结构上系链基团的连接点。图34展示了smn2配体的结构上系链基团的连接点。图35展示了氨基糖苷卡那霉素a的结构上系链基团的连接点。图36展示了ribocil的结构上系链基团的连接点。图37展示了具有系链基团的连接点的茶碱配体的结构。图38展示了具有系链基团的连接点的四环素配体的结构。图39展示了具有系链基团的连接点的三蝶烯配体的结构。图40展示了具有系链基团的连接点的三蝶烯配体的结构。图41展示了具有系链基团的连接点的蒽-马来酰亚胺狄尔斯-阿尔德加合物配体的结构。图42展示了具有系链基团的连接点的ribocil配体的结构。图43展示了具有系链基团的连接点的smn2配体的结构。图44展示了具有系链基团的连接点的利奈唑胺和特地唑胺配体的结构。图45展示了例示性即点基团的结构。图46展示了用于键联rna配体与修饰部分的例示性系链基团。图47展示了系链基团的其它实例。图48展示了系链基团的其它实例。图49展示了系链基团的其它实例。图50展示了系链基团的其它实例。图51展示了系链基团的其它实例。图52展示了系链基团的其它实例。图53展示了系链基团的其它实例。图54展示了可以用以与rna2'-oh形成共价加合物的例示性广泛类别的修饰基团。图55展示了可以用以与rna2'-oh形成共价加合物的例示性类别的内酯和内酰胺修饰基团。图56展示了可以用以与rna2'-oh形成共价加合物的例示性类别的芳烃羰基咪唑修饰基团。图57展示了可以用以与rna2'-oh形成共价加合物的例示性类别的芳烃羰基苯酯修饰基团。图58展示了基于磺酰基的修饰基团的结构。顶部三种结构是已知可使丝氨酸蛋白酶中的催化位点丝氨酸磺酰化的特定试剂。剩余结构是可以用以与rna2'-oh形成共价加合物的例示性类别的磺酰基氟化物修饰基团。图59展示了可以用以与rna2'-oh形成共价加合物的例示性类别的呋喃羰基苯酯修饰基团。图60可以用以与rna2'-oh形成共价加合物的例示性类别的呋喃羰基苯酯修饰基团。图61展示了可以用以与rna2'-oh形成共价加合物的例示性类别的芳烃羰基苯酯修饰基团。图62展示了可以用以与rna2'-oh形成共价加合物的例示性类别的芳烃羰基苯酯修饰基团。图63展示了可以用以与rna2'-oh形成共价加合物的例示性类别的靛红酸酐修饰基团。图64展示了可以用以与rna2'-oh形成共价加合物的例示性类别的β-内酯修饰基团。图65展示了可以用以与rna2'-oh形成共价加合物的例示性类别的β-内酰胺修饰基团。图66展示了例示性基于三蝶烯的钩连化合物(小分子配体+系链基团+修饰基团)。图67展示了例示性基于茶碱的钩连化合物(小分子配体+系链基团+修饰基团)。图68展示了例示性基于茶碱的钩连和点击化合物(小分子配体+系链基团+修饰基团+即点基团)。图69展示了例示性拉下部分,其包括生物素和能够与即点基团反应的基团。图70展示了包含四环素作为小分子配体以及各种例示性系链基团和修饰部分的例示性化合物。图71展示了包含被取代的三蝶烯作为小分子配体以及各种例示性系链基团和修饰部分的例示性化合物,其中一些还包括即点基团。图72展示了包含被取代的三蝶烯作为小分子配体以及各种例示性系链基团、修饰部分和即点基团的例示性化合物。图73展示了包含smn2转录物结合化合物作为小分子配体以及各种例示性系链基团、修饰部分和即点基团的例示性化合物。图74展示了包含ribocil作为小分子配体以及各种例示性系链基团、修饰部分和即点基团的例示性化合物。图75展示了包含被取代的三蝶烯作为小分子配体以及各种例示性系链基团和修饰部分的例示性化合物,其中一些还包括即点基团。图76展示了shape方法的基本步骤(shape=通过引物延伸来分析的选择性2'-羟基酰化;map=突变图谱分析)。首先,使rna暴露于shape试剂,其在相对可达的核苷酸的2'-oh基团处反应以形成共价加合物。使被修饰的rna分离并且逆转录。逆转录酶“通读”rna中的化学加合物并且将与原始序列(红色)非互补的核苷酸并入到cdna中。通过任何大规模平行方法测序组装了突变的图谱。将测序读数与参考序列比较,并且测定每个核苷酸处的突变率、针对背景校正并且归一化,产生shape反应性图谱。shape反应性与二级结构相关,可以展现竞争性和替代性结构,或定量对局部核苷酸可达性的作用。图77展示了用于获取包括系链基团的连接点的数种茶碱小分子配体的反应流程。图78展示了用于获取包括系链基团的连接点的数种茶碱小分子配体的反应流程。图79展示了用于获取包括系链基团的连接点的数种茶碱小分子配体的反应流程。图80展示了用于获取包括系链基团的连接点的数种茶碱小分子配体的反应流程。图81展示了用于获取包括系链基团的连接点的数种四环素小分子配体的反应流程。图82展示了用于获取包括系链基团的连接点的数种四环素小分子配体的反应流程。图83展示了用于获取包括系链基团的连接点的数种四环素小分子配体的反应流程。图84展示了用于获取包括系链基团的连接点的数种四环素小分子配体的反应流程。图85展示了用于获取包括系链基团的连接点的数种三蝶烯小分子配体的反应流程。图86展示了用于获取包括系链基团的连接点的数种三蝶烯小分子配体的反应流程。图87展示了用于获取包括系链基团的连接点的数种三蝶烯小分子配体的反应流程。图88展示了用于获取包括系链基团的连接点的数种三蝶烯小分子配体的反应流程。图89展示了用于获取包括系链基团的连接点的数种三蝶烯小分子配体的反应流程。图90展示了用于获取包括系链基团的连接点的数种三蝶烯小分子配体的反应流程。图91展示了用于获取包括系链基团的连接点的数种三蝶烯小分子配体的反应流程。图92展示了用于获取包括系链基团的连接点的数种三蝶烯小分子配体的反应流程。图93展示了用于获取包括系链基团和修饰部分的数种四环素小分子配体的反应流程。图94展示了用于获取包括系链基团和修饰部分的数种三蝶烯小分子配体的反应流程。图95展示了在所描述的方法中可能出现的可能模糊性和由2'-ohrna核糖的邻位诱导的修饰对序列数据消除模糊性的方式。因为一个配体结合事件可以产生就rna一级序列来说在远端但在折叠结构中在近端的核糖的修饰,所以存在两个或更多个可能的配体结合位点。来自系链基团的shape-map和/或sar的数据可以解决模糊性。shape-map和ring-map可以测定rna的实际的未配体化的结构。不同系链基团长度和其它特征将导致shape修饰模式不同地反应,从而解决了模糊性。图96展示了用于平行合成钩连化合物文库的流程。图97展示了化合物ark-132的合成途径。图98展示了化合物ark-134的合成途径。图99展示了化合物ark-135和ark-136的合成途径。图100展示了化合物ark-188的合成途径。图101展示了化合物ark-190的合成途径。图102展示了化合物ark-191的合成途径。图103展示了化合物ark-195的合成途径。图104展示了化合物ark-197的合成途径。图105展示了基于ribocil骨架的化合物的合成途径。图106展示了测定荧光对3wjrna构筑体的浓度的依赖性的校准实验。图107展示了用两种rna3wj构筑体在各种浓度下对化合物ark000007和ark000008进行的荧光猝灭实验的结果。图108展示了以下三种rna3wj构筑体的可能结构,小分子配体的推定结合位点展示为三角形:a)rna3wj_1.0.0_5ib_3fam(具有一个未配对核苷酸的顺式3wj);b)split3wj.1_up_5ib+split3wj.1_down_3fam(呈1:1混合物形式的反式3wj);和c)split3wj.2_up_5ib+split3wj.2_down_3fam(呈1:1混合物形式的反式3wj)。图109展示了测量化合物ark0000013和ark0000014与以下rna构筑体的相互作用的荧光猝灭数据:a)rna3wj_1.0.0_5ib_3fam(具有一个未配对核苷酸的顺式3wj);b)split3wj.1_up_5ib+split3wj.1_down_3fam(呈1:1混合物形式的反式3wj);和c)split3wj.2_up_5ib+split3wj.2_down_3fam(呈1:1混合物形式的反式3wj)。图110展示了用3wj_0.0.0_5ib_3famrna构筑体测试的化合物ark000007和ark000008的热偏移数据。数据分析显示ark000007的显著作用,熔解温度偏移约5℃(即61.2℃到65.6℃)。相比之下,对于ark000008仅观测到极小作用。这些数据表明,ark000007的存在增加了3wj的稳定性。图111展示了ark0000013和ark0000014在rna3wj_1.0.0_5ib_3fam(具有一个未配对核苷酸的顺式3wj)存在下的热偏移数据。图112展示了ark0000013和ark0000014在split3wj.1_up_5ib+split3wj.1_down_3fam存在下的热偏移数据。图113展示了ark0000013和ark0000014在split3wj.2_up_5ib+split3wj.2_down_3fam存在下的热偏移数据。图114展示了cpnq的结构、分配的质子共振、nmr谱和表位作图结果。图115展示了hp-ac008002-e01的结构、分配的质子共振、nmr谱和表位作图结果。根据初步分配将按比例调整的std效应绘制到分子上。两种rna构筑体的数据表明,吡啶环的质子比苯环更紧密邻近rna。可能由于所述区域中的缓冲信号重叠而未观察到脂肪族ch2基团。图116展示了hp-ac008001-e02的结构、分配的质子共振、nmr谱和表位作图结果。根据初步分配将按比例调整的std效应绘制到分子上。两种rna构筑体的数据表明,最接近杂环的芳香族质子更紧密邻近rna质子。可能由于所述区域中的直接饱和伪影/缓冲信号重叠而无法通过std评估脂肪族质子共振(通过waterlogsy来表位作图)。图117展示了hp-at005003-c03的结构、分配的质子共振、nmr谱和表位作图结果。根据初步分配将按比例调整的std效应绘制到分子上。由于信号重叠,ch2基团的个别分配是不可能的。两种rna构筑体的数据表明,呋喃部分的质子比苯基更紧密邻近rna质子。图118展示了使用t4rna连接酶1腺苷酸化衔接子生成伊鲁米那(illumina)小rna-seq文库制剂的步骤。图119展示了使用t4rna连接酶1腺苷酸化衔接子生成伊鲁米那小rna-seq文库制剂的步骤。图120展示了用于del实验的rna目标序列的page分析。凝胶泳道展示:1:nmr缓冲液中的htt17cag;2:在与中性抗生物素蛋白树脂一起培育之前;3:在与中性抗生物素蛋白树脂一起培育之后的上清液;4:在室温下与del化合物一起培育1小时之后的rna。在热释放之后由树脂回收rna。图121展示了用于本发明中的表面等离子共振(spr)方法的例示性步骤。图122展示了用于本发明中的表面等离子共振(spr)方法的例示性步骤。具体实施方式1.本发明的某些实施例的一般描述;定义rna目标以及与疾病和病症的关联绝大多数在治疗上解决的分子目标是蛋白质。然而,现在应理解,多种rna分子在健康细胞和病变细胞中都起重要调节作用。虽然仅1-2%的人类基因组编码蛋白质,但现在已知大部分基因组被转录(卡宁希(carninci)等人,科学(science)309:1559-1563;2005)。因此,非编码转录物(非编码转录物组)代表了一大组新的治疗目标。例如微rna(mirna)和长非编码rna(lncrna)的非编码rna调节转录、剪接、mrna稳定性/衰变和翻译。另外,mrna的例如5′非翻译区(5′utr)、3′utr和内含子的非编码区可以在影响mrna表达水平、选择性剪接、翻译效率以及mrna和蛋白质亚细胞定位方面起调节作用。rna二级和三级结构对于这些调节活性来说很关键。gwas研究已经显著表明,相对于编码转录物,在非编码转录物组中存在多得多的单核苷酸多态性(snp)与人类疾病相关(毛拉诺(maurano)等人,科学337:1190-1195;2012)。因此,治疗靶向非编码rna和mrna的非编码区可以产生治疗先前难治的人类疾病的新颖药剂。当前阻断mrna的治疗方法需要例如以下的方法:基因疗法(纳尔迪尼(naldini),自然(nature)2015,526,351-360)、基因组编辑(考克斯(cox)等人,自然医学(naturemedicine)2015,21,121-131)或广泛范围的寡核苷酸技术(反义、rnai等)(班尼特(bennett)与斯韦兹(swayze),药理学和毒理学年鉴(annu.rev.pharmacol.toxicol.)2010,50,259-293)。寡核苷酸经由典型碱基/碱基杂交调节rna的作用。这种方法的魅力在于,寡核苷酸的碱性药效团可以由易受阻断的序列以简单明了的方式规定。这些治疗形态各自遭遇相当大的技术、临床和调节挑战。寡核苷酸作为治疗剂(例如反义、rnai)的一些限制包括不利药代动力学、缺乏经口生物可用性和缺乏血脑屏障穿透,后者阻止肠胃外药物施用用于治疗神经疾病之后递送到脑或脊髓。另外,寡核苷酸无法在无例如脂质纳米粒子的复杂递送系统的情况下有效地摄取到实体肿瘤中。最后,摄取到细胞和组织中的绝大多数寡核苷酸保持在例如内体的非功能性区室中,并且仅一小部分物质离开以进入目标所位于的细胞溶质和/或细胞核。“传统”小分子可以被优化以展现极佳的从肠的吸收、极佳的向目标器官的分布和极佳的细胞渗透。本发明涵盖结合目标rna并且调节其活性的具有有利药物特性的“传统”(即,“里宾斯基顺应性(lipinski-compliant)”(里宾斯基等人,先进药物递送评论(adv.drugdeliv.rev.)2001,46,3-26)小分子的用途。因此,在一个方面,本发明提供一种鉴别结合到目标rna并且调节其功能的小分子的方法,其包含以下步骤:针对结合到所述目标rna筛选一或多种所公开的化合物,和通过本文所公开的rna结合分析来分析结果。在一些实施例中,筛选方法使用筛选文库鉴别新的rna目标。在一些实施例中,目标rna选自mrna或非编码rna。在一些实施例中,rna结合分析鉴别结合位点在目标rna上的一级序列中的位置。在一些实施例中,小分子是里宾斯基顺应性的。靶向mrna在mrna内,非编码区可以影响mrna和蛋白质表达的水平。简单来说,这些非编码区包括影响翻译效率的ires和上游开放阅读框(uorf);影响剪接效率和选择性剪接模式的内含子序列;影响mrna和蛋白质定位的3′utr序列;以及控制mrna衰变和半衰期的元件。这些rna元件的治疗调节可以具有有益效果。此外,mrna可以含有例如三核苷酸重复序列的简单重复序列的扩增。这些含有重复序列扩增的rna可能具毒性并且已经被观察到可驱动疾病病理,尤其是在某些神经和肌肉骨胳疾病中(参见给切尔(gatchel)与佐格比(zoghbi),自然·遗传学综述(naturerev.gen.)2005,6,743-755)。另外,剪接可以被调节以跳跃具有引入终止密码子的突变的外显子以便解除在翻译期间的过早终止。小分子可以在多种背景下用以调节前mrna的剪接以获得治疗益处。一个实例是脊髓性肌萎缩(sma)。sma是运动神经元存活(smn)蛋白质量不足的结果。人类具有两种形式的smn基因,smn1和smn2。sma患者具有突变的smn1基因并且因此仅仅依赖于smn2的其smn蛋白质。smn2基因在外显子7中具有导致低效剪接的沉默突变以使得外显子7在大多数smn2转录物中被跳跃,导致生成在细胞中快速降解的缺陷蛋白质,因此限制由这种基因座产生的smn蛋白质的量。在smn2转录物的剪接期间促进外显子7的高效纳入的小分子将是有效的sma治疗(帕拉奇诺(palacino)等人,自然化学生物学(naturechem.biol.),2015,11,511-517)。因此,在一个方面,本发明提供一种鉴别调节目标前mrna的剪接以治疗疾病或病症的小分子的方法,其包含以下步骤:针对结合到所述目标前mrna筛选一或多种所公开的化合物;和通过本文所公开的rna结合分析来分析结果。在一些实施例中,前mrna是smn2转录物。在一些实施例中,疾病或病症是脊髓性肌萎缩(sma)。即使在缺陷剪接不导致疾病的情况下,剪接模式的改变也可以用以矫正疾病。如果外显子序列同框,那么导致过早翻译终止的无义突变可以通过外显子跳跃来消除。这可以产生至少部分功能性的蛋白质。使用外显子跳跃的一个实例是肌缩蛋白基因用于杜氏肌营养不良(dmd)。在dmd患者中产生过早终止密码子的多种不同突变可以通过由寡核苷酸促进的外显子跳跃来消除(综述于费尔克拉夫(fairclough)等人,自然·遗传学综述,2013,14,373-378中)。预期结合rna结构并且影响剪接的小分子具有类似效应。因此,在一个方面,本发明提供一种鉴别调节目标前mrna的剪接模式以治疗疾病或病症的小分子的方法,其包含以下步骤:针对结合到所述目标前mrna筛选一或多种所公开的化合物;和通过本文所公开的rna结合分析来分析结果。在一些实施例中,前mrna是肌缩蛋白基因转录物。在一些实施例中,小分子促进外显子跳跃以消除过早翻译终止。在一些实施例中,疾病或病症是杜氏肌营养不良(dmd)。最后,mrna和其翻译产物的表达可以受5′和3′utr中的靶向非编码序列和结构影响。举例来说,5′utr中的rna结构可以影响翻译效率。5′utr中的例如发夹的rna结构已经被证实可影响翻译。一般来说,rna结构被认为在mrna的翻译中起关键作用。这些rna结构的两个实例是可以影响主开放阅读框的翻译的水平的内部核糖体进入位点(ires)和上游开放阅读框(uorf)(科马尔(komar)和哈佐格卢(hatzoglou),肿瘤学前沿(frontiersoncol.)5:233,2015;温加滕-加贝(weingarten-gabbay)等人,科学351:pii:aad4939,2016;卡尔沃(calvo)等人,美国国家科学院院刊(proc.natl.acad.sci.usa)106:7507-7512;勒凯纳(lequesne)等人,病理学杂志(j.pathol.)220:140-151,2010;巴尔博萨(barbosa)等人,公共科学图书馆·遗传学(plosgenetics)9:e10035529,2013)。举例来说,所有人类mrna中有几乎一半具有uorf,并且其中的许多减少主orf的翻译。靶向这些rna的小分子可以用以调节特异性蛋白质水平以获得治疗益处。因此,在一个方面,本发明提供一种制备调节目标前mrna或mrna的表达或翻译效率以治疗疾病或病症的小分子的方法,其包含以下步骤:针对结合到所述目标前mrna或mrna筛选一或多种所公开的化合物;和通过本文所公开的rna结合分析来分析结果。在一些实施例中,小分子结合位点是5′utr、内部核糖体进入位点或上游开放阅读框。本发明涵盖基于靶向特异性蛋白质的同源mrna来上调或下调其表达的小分子的用途。因此,本发明提供用小分子调节与目标mrna相关的下游蛋白质表达的方法,其中所述小分子根据本文所公开的筛选方法鉴别。在另一个方面,本发明提供一种制备调节与目标mrna相关的下游蛋白质表达以治疗疾病或病症的小分子的方法,其包含以下步骤:针对结合到所述目标mrna筛选一或多种所公开的化合物;和通过本文所公开的rna结合分析来分析结果。在一些实施例中,本发明提供一种治疗由mrna介导的疾病或病症的方法,其包含向有需要的患者施用本发明化合物的步骤。此类化合物详细描述于本文中。靶向调节rna最大rna目标组是转录但不翻译成蛋白质的rna,被称为“非编码rna”。非编码rna是高度保守的并且许多种非编码rna发挥广泛范围的调节功能。如本文所用,术语“非编码rna”包括(但不限于)微rna(mirna)、长非编码rna(lncrna)、长基因间非编码rna(lincrna)、piwi相互作用rna(pirna)、竞争性内源rna(cerna)和假基因。这些子类别的非编码rna各自提供许多具有重大治疗潜力的rna目标。因此,在一些实施例中,本发明提供治疗由非编码rna介导的疾病的方法。在一些实施例中,疾病由mirna、lncrna、lincrna、pirna、cerna或假基因导致。在另一个方面,本发明提供一种制备调节目标非编码rna的活性以治疗疾病或病症的小分子的方法,其包含以下步骤:针对结合到所述目标非编码rna筛选一或多种所公开的化合物;和通过本文所公开的rna结合分析来分析结果。在一些实施例中,目标非编码rna是mirna、lncrna、lincrna、pirna、cerna或假基因。mirna是调节基因表达的短双链rna(参见埃利奥特(elliott)与拉多梅里(ladomery),rna的分子生物学(molecularbiologyofrna),第2版)。每种mirna可以影响许多人类基因的表达。人类中存在接近2,000种mirna。这些rna调节许多生物过程,包括细胞分化、细胞命运、运动、存活和功能。mirna表达水平在不同组织、细胞类型和疾病背景之间不同。其常常异常表达于肿瘤对正常组织中,并且其活性可以在癌症中起重要作用(关于综述,参见克罗斯(croce),自然·遗传学综述(naturerev.genet.)10:704-714,2009;迪克霍伦(dykxhoorn)癌症研究(cancerres.)70:6401-6406,2010)。mirna已经被证实可调节致癌基因和肿瘤抑制因子,并且其自身可以充当致癌基因或肿瘤抑制因子。一些mirna已经被证实可促进上皮-间充质转化(emt)以及癌细胞侵袭和转移。在致癌mirna的情况下,其抑制可以是有效抗癌治疗。因此,在一个方面,本发明提供一种制备调节目标mirna的活性以治疗疾病或病症的小分子的方法,其包含以下步骤:针对结合到所述目标mirna筛选一或多种所公开的化合物;和通过本文所公开的rna结合分析来分析结果。在一些实施例中,mirna调节致癌基因或肿瘤抑制因子,或充当致癌基因或肿瘤抑制因子。在一些实施例中,疾病是癌症。在一些实施例中,癌症是实体肿瘤。存在多种可以在治疗上靶向的致癌mirna,包括mir-155、mir-17~92、mir-19、mir-21和mir-10b(参见斯塔尔赫特(stahlhut)与斯拉克(slack),基因组医学(genomemed.)2013,5,111)。mir-155在发炎、高血压、心力衰竭和癌症中起病理作用。在癌症中,mir-155触发致癌级联和细胞凋亡抗性,以及增加癌细胞侵袭。变化的mir-155表达已经描述于多种癌症中,反映了分期、进展和治疗结果。报告mir-155过度表达的癌症是乳腺癌、甲状腺癌、结肠癌、子宫颈癌和肺癌。其据报告在乳腺癌的药物抗性中起一定作用。mir-17~92(也被称为oncomir-1)是多顺反子1kb初级转录物,其包含mir-17、20a、18a、19a、92-1和19b-1。其由myc活化。mir-19改变多种造血细胞中的基因表达和信号转导路径,并且其触发白血病生成和淋巴瘤生成。其牵涉于多种多样的人类实体肿瘤和血液癌症中。mir-21是降低多种肿瘤抑制因子的表达的致癌mirna。其刺激癌细胞侵袭并且与多种多样的人类癌症相关,包括乳腺癌、卵巢癌、子宫颈癌、结肠癌、肺癌、肝癌、脑癌、食道癌、前列腺癌、胰腺癌和甲状腺癌。因此,在上文所描述的方法的一些实施例中,目标mirna选自mir-155、mir-17~92、mir-19、mir-21或mir-10b。在一些实施例中,疾病或病症是选自以下的癌症:乳腺癌、卵巢癌、子宫颈癌、甲状腺癌、结肠癌、肝癌、脑癌、食道癌、前列腺癌、肺癌、白血病或淋巴结癌。在一些实施例中,癌症是实体肿瘤。除肿瘤学以外,mirna还在包括心血管和代谢疾病的许多其它疾病中起作用(奎安特(quiant)和奥尔森(olson),临床研究杂志(j.clin.invest.)123:11-18,2013;奥尔森,科学转化医学(sciencetrans.med.)6:239ps3,2014;巴菲(baffy),临床医学杂志(j.clin.med.)4:1977-1988,2015)。许多成熟mirna的长度相对短并且因此可能缺乏充足的待由小分子靶向的折叠三维结构。然而,据相信,此类mirna的水平可以通过结合初级转录物或前mirna以阻断成熟mirna的生物合成的小分子降低。因此,在上文所描述的方法的一些实施例中,目标mirna是初级转录物或前mirna。lncrna是不编码蛋白质的具有超过200个核苷酸(nt)的rna(参见林恩(rinn)与常(chang),生物化学年鉴(ann.rev.biochem.)2012,81,145-166;关于综述,参见莫里斯(morris)和马蒂克(mattick),自然·遗传学综述15:423-437,2014;马蒂克和林恩,自然结构与分子生物学(naturestructural&mol.biol.)22:5-7,2015;艾耶尔(iyer)等人,自然遗传学(naturegenetics)47:199-208,(2015))。其可以在转录、剪接和mrna衰变的层面影响蛋白质编码mrna的表达。大量的研究已经显示,lncrna可以通过募集通过改变染色质结构而增加或降低转录的表观遗传调节因子来调节转录(例如,霍洛克(holoch)和莫阿塞德(moazed),自然·遗传学综述16:71-84,2015)。lncrna与包括以下的人类疾病相关:癌症、发炎性疾病、神经疾病和心血管疾病(例如普赖斯纳(presner)和辛莱岩(chinnaiyan),癌症发现(cancerdiscovery)1:391-407,2011;约翰逊(johnson),疾病神经生物学(neurobiologyofdisease)46:245-254,2012;古契(gutscher)和迪德里希斯(diederichs),rna生物学(rnabiology)9:703-719,2012;库马尔(kumar)等人,公共科学图书馆·遗传学9:e1003201,2013;凡德范德福特(vandevondervoort)等人,分子神经科学前沿(frontiersinmolecularneuroscience),2013;李(li)等人,国际分子科学杂志(int.j.mol.sci.)14:18790-18808,2013)。可以对lncrna进行靶向以上调或下调特异性基因和蛋白质的表达以获得治疗益处(例如,瓦勒斯泰特(wahlestedt),自然·药物发现综述(naturereviewsdrugdiscovery)12:433-446,2013;久尔(guil)和埃斯特尔(esteller),自然·结构与分子生物学19:1068-1075,2012)。一般来说,lncrna相对于mrna以较低水平表达。许多lncrna与染色质物理缔合(沃尔纳(werner)等人,细胞报道(cellreports)12,1-10,2015)并且非常接近于蛋白质编码基因地转录。其常常在其转录位点保持物理缔合并且顺式局部起作用以调节邻近mrna的表达。lncrna的突变和失调与人类疾病相关;因此,存在众多的可以是治疗目标的lncrna。因此,在上文所描述的方法的一些实施例中,目标非编码rna是lncrna。在一些实施例中,lncrna与癌症、发炎性疾病、神经疾病或心血管疾病相关。lncrna调节蛋白质编码基因的表达,在多个不同水平下作用以影响转录、选择性剪接和mrna衰变。举例来说,lncrna已经被证实结合到表观遗传调节因子prc2以促进其募集到如下基因,其转录接着经由染色质修饰而抑制。lncrna可以形成介导其与各种调节蛋白的缔合的复杂结构。结合到这些lncrna结构的小分子可以用以调节通常由个别lncrna调节的基因的表达。一种例示性目标lncrna是hotair,由人类染色体12上的hoxc基因座表达的lncrna。其表达水平较低(约100个rna拷贝/细胞)。不同于许多lncrna,hotair可以反式起作用以影响远端基因的表达。其结合表观遗传抑制因子prc2以及lsd1/corest/rest复合物,另一抑制性表观遗传调节因子(蔡(tsai)等人,科学329,689-693,2010)。hotair是高度结构化的rna,其超过50%的核苷酸参与碱基配对。其常常在各种类型的癌症中失调(往往上调)(姚(yao)等人,国际分子科学杂志15:18985-18999,2014;邓(deng)等人,公共科学图书馆·综合(plosone)9:e110059,2014)。与具有低表达水平的患者相比,具有高hotair表达水平的癌症患者具有显著更差的预后。hotair据报告参与控制细胞凋亡、增殖、转移、血管生成、dna修复、化学抗性和肿瘤细胞代谢。其高度表达于转移性乳腺癌中。原发性乳房肿瘤中的高表达水平是后续转移和死亡的显著预测因子。hotair还被报告与食管鳞状细胞癌相关,并且其是结肠直肠癌、子宫颈癌、胃癌和子宫内膜癌中的预后因子。因此,hotair结合小分子是新颖抗癌药物候选物。因此,在上文所描述的方法的一些实施例中,目标非编码rna是hotair。在一些实施例中,疾病或病症是乳腺癌、食管鳞状细胞癌、结肠直肠癌、子宫颈癌、胃癌或子宫内膜癌。lncrna之中的另一潜在癌症目标是malat-1(转移相关的肺腺癌转录物1),也被称为neat2(细胞核富集的丰富转录物2)(古奇纳(gutschner)等人,癌症研究73:1180-1189,2013;布朗(brown)等人,自然·结构与分子生物学21:633-640,2014)。其是局限于核斑中的高度保守的7kb细胞核lncrna。其遍在表达于正常组织中,但在许多癌症中上调。malat-1是包括肺癌的多种癌症中的转移发展的预测性标记。其呈现为充当基因表达的调节因子,潜在影响转录和/或剪接。malat-1基因敲除小鼠不具有表型,表明其具有有限的正常功能。然而,malat-1缺陷癌细胞在小鼠异种移植肿瘤模型中迁移削弱并且形成更少肿瘤。阻断malat-1的反义寡核苷酸(aso)在肿瘤植入小鼠中之后防止转移形成。一些小鼠异种移植肿瘤模型数据表明,通过aso进行malat-1基因敲落可以抑制原发性肿瘤生长和转移两个方面。因此,预期靶向malat-1的小分子可有效抑制肿瘤生长和转移。因此,在上文所描述的方法的一些实施例中,目标非编码rna是malat-1。在一些实施例中,疾病或病症是malat-1上调的癌症,例如肺癌。在一些实施例中,本发明提供一种治疗由非编码rna(例如hotair或malat-1)介导的疾病或病症的方法,其包含向有需要的患者施用本发明化合物的步骤。此类化合物详细描述于本文中。靶向毒性rna(重复序列rna)mrna中的简单重复序列常常与人类疾病相关。其往往(但非排他地)是具有三个核苷酸的重复序列,例如cag(“三联体重复序列”)(关于综述,参见给切尔和佐格比,自然·遗传学综述6:743-755,2005;克日左赛克(krzyzosiak)等人,核酸研究(nucleicacidsres.)40:11-26,2012;布德沃斯(budworth)和麦克默里(mcmurray),分子生物学方法(methodsmol.biol.)1010:3-17,2013)。三联体重复序列在人类基因组中很丰富,并且其往往会经数代经历扩增。约40种人类疾病与重复序列的扩增相关。由三联体扩增所导致的疾病被称为三联体重复序列扩增疾病(tred)。健康个体具有可变数目的三联体重复序列,但存在阈值,超过所述阈值的更高重复序列数目会导致疾病。阈值对于不同病症不同。三联体重复序列可能不稳定。在基因被遗传时,重复序列的数目可能会增加,并且病况可能从一代到下一代更严重或更早发作。当个别具有处于正常范围中的多种重复序列时,预期其不会在被传到下一代时扩增。当重复序列数目处于前突变范围中(正常但不稳定的重复序列数目)时,那么重复序列在传到下一代时可能或可能不扩增。携有前突变的正常个体并不具有病况,但有风险生下遗传了处于全突变范围中的三联体重复序列并且将会受影响的孩子。tred可以是常染色体显性的、常染色体隐性的或x连锁的。较为常见的三联体重复序列病症是常染色体显性的。重复序列可以在mrna的编码或非编码部分中。在重复序列在非编码区内的情况下,重复序列可以位于5′utr、内含子或3′utr序列中。由编码区内的重复序列所导致的疾病的一些实例展示于表1中。表1:重复序列存在于mrna的编码区中的重复序列扩增疾病疾病基因重复序列正常重复序列数目疾病重复序列数目hdhttcag6-3536-250drplaatn1cag6-3549-88sbmaarcag9-3638-62sca1atxn1cag6-3549-88sca2atxn2cag14-3233-77sca3atxn3cag12-4055-86sca6cacna1acag4-1821-30sca7atxn7cag7-1738-120sca17tbpcag25-4247-63由mrna的非编码区内的重复序列所导致的疾病的一些实例展示于表2中。表2:重复序列存在于mrna的非编码区中的重复序列扩增疾病疾病基因重复序列重复序列位置正常重复序列数目疾病重复序列数目脆性xfmr1cgg5′utr6-53≥230dm1dmpkctg3′utr5-37≥50frdafxngaa内含子7-34≥100sca8atxn8ctg非编码反义16-37110-250sca10atxn10attct内含子9-32800-4500sca12ppp2r2bcag5′utr7-2866-78c9ftd/alsc9orf72ggggcc内含子~30100s由重复序列产生的毒性可以是毒性rna自身的作用的直接结果,或在重复序列扩增在编码序列中的情况下,是由于rna和/或异常蛋白质的毒性。重复序列扩增rna可以通过将关键rna结合蛋白(rbp)螯合到核灶中来起作用。螯合的rbp的一个实例是肌盲家族蛋白质mbnl1。rbp的螯合导致剪接的缺陷以及rna和蛋白质的细胞核-细胞质转运的缺陷。rbp的螯合作用还可以影响mirna生物合成。rna生物学中的这些扰动可以深深影响神经元功能和存活,导致多种神经疾病。rna中的重复序列形成结合rbp并且影响正常rna生物学的二级和三级结构。一种特定实例疾病是强直性肌营养不良(dm1;营养不良性肌强直),一种特征为肌肉无力和在收缩之后肌肉放松缓慢的常见遗传形式的肌肉疾病(马丘卡-慈利(machuca-tzili)等人,肌肉神经(musclenerve)32:1-18,2005)。其由营养不良性肌强直蛋白激酶(dmpk)基因的3′utr中的cug扩增导致。含这种重复序列的rna通过对剪接调节因子mbnl1和cug重复序列结合蛋白(celf1)的作用而导致误调节数种发育调节的转录物的选择性剪接(惠勒(wheeler)等人,科学325:336-339,2009)。结合dmpk转录物内的cug重复序列的小分子将改变rna结构并且防止核灶形成并且缓解对这些剪接调节因子的作用。脆性x综合征(fxs),最常见的遗传形式的智力迟钝,是fmr1基因的5′utr内的cgg重复序列扩增的结果(罗扎诺(lozano)等人,难治与罕见疾病研究(intractableraredis.res.)3:134-146,2014)。fmrp对于许多mrna的翻译调节来说和对于蛋白质运输来说很关键,并且其是突触发育和神经可塑性的必需蛋白质。因此,其缺陷导致神经病理学。靶向这种cgg重复序列rna的小分子可以缓解对fmr1mrna和fmrp蛋白质表达的抑制。具有非常高的未满足的医疗需要的另一tred是亨廷顿氏病(huntington'sdisease,hd)。hd是具有运动、认知和精神变化的进行性神经病症(祖卡托(zuccato)等人,生理学评论(physiolrev.)90:905-981,2010)。其被表征为聚谷氨酰胺或聚q病症,因为htt基因的编码序列内的cag重复序列导致蛋白质具有呈现为对转录、囊泡运输、粒线体功能和蛋白酶体活性具有有害效应的聚谷氨酰胺重复序列。然而,httcag重复序列rna自身也展现毒性,包括mbnl1蛋白质螯合到核包涵体中。一个其它特定实例是c9orf72(染色体9开放阅读框72)基因中的ggggcc重复序列扩增,其在家族性额颞痴呆(ftd)和肌萎缩性侧索硬化(als)中很普遍(凌(ling)等人,神经元(neuron)79:416-438,2013;霍伊斯勒(haeusler)等人,自然507:195-200,2014)。重复序列rna结构形成螯合关键rna结合蛋白的核灶。ggggcc重复序列rna还结合并且螯合rangap1以削弱rna和蛋白质的核质转运(张(zhang)等人,自然525:56-61,2015)。选择性靶向这些重复序列扩增rna中的任一种可以在这些神经疾病中增加治疗益处。本发明涵盖一种治疗疾病或病症的方法,其中异常rna自身引起致病效应,而非通过蛋白质表达的机制或蛋白质表达的调节来起作用。在一些实施例中,疾病或病症由例如上文或表1和2中所描述的那些的重复序列rna介导。在一些实施例中,疾病或病症是重复序列存在于mrna的编码区中的重复序列扩增疾病。在一些实施例中,疾病或病症是重复序列存在于mrna的非编码区中的重复序列扩增疾病。在一些实施例中,疾病或病症选自亨廷顿氏病(hd)、齿状核红核-苍白球路易体萎缩(drpla)、脊髓-延髓肌肉萎缩(sbma)或选自sca1、sca2、sca3、sca6、sca7或sca17的脊髓小脑共济失调(sca)。在一些实施例中,疾病或病症选自脆性x综合征(fragilexsyndrome)、强直性肌营养不良(dm1或营养不良性肌强直)、弗里德希氏共济失调(friedreich'sataxia,frda)、选自sca8、sca10或sca12的脊髓小脑共济失调(sca)或c9ftd(肌萎缩性侧索硬化或als)。在一些实施例中,疾病是肌萎缩性侧索硬化(als)、亨廷顿氏病(hd)、额颞痴呆(ftd)、强直性肌营养不良(dm1或营养不良性肌强直)或脆性x综合征。在一些实施例中,本发明提供一种治疗由重复序列rna介导的疾病或病症的方法,其包含向有需要的患者施用本发明化合物的步骤。此类化合物详细描述于本文中。还提供一种制备调节目标重复序列扩增rna的活性以治疗疾病或病症的小分子的方法,其包含以下步骤:针对结合到所述目标重复序列扩增rna筛选一或多种所公开的化合物;和通过本文所公开的rna结合分析来分析结果。在一些实施例中,重复序列扩增rna导致选自以下的疾病或病症:hd、drpla、sbma、sca1、sca2、sca3、sca6、sca7或sca17。在一些实施例中,疾病或病症选自脆性x综合征、dm1、frda、sca8、sca10、sca12或c9ftd。其它目标rna和疾病/病况已知许多种另外的rna与疾病或病况之间存在关联,其中的一些如下展示于表3中。因此,在上文所描述的方法的一些实施例中,目标rna选自表3中的目标rna。在一些实施例中,疾病或病症选自表3中的疾病或病症。表3:目标rna和相关疾病/病况2.化合物和其实施例现在已经发现,本发明化合物和其药学上可接受的组合物有效用作用于药物发现的药剂;用作用于治疗、预防或减轻与目标rna相关的疾病或病况的rna调节剂;和用于测定目标rna的活性位点或变构位点的位置和/或结构和/或三级结构的方法。在一个方面,本发明化合物和其药物组合物可用于鉴别选择性结合到目标rna上的一或多个结合位点(例如活性或变构位点)以治疗、预防或减轻与目标rna相关的疾病或病况的小分子配体。在另一个方面,本发明化合物和其药物组合物例如通过调节目标rna以治疗、预防或减轻与目标rna相关的疾病或病况而可用作治疗剂。举例来说,在不希望受理论束缚的情况下,所公开的化合物可以通过使修饰部分共价结合到目标rna的接近小分子配体的结合位点的2'-oh而充当目标rna的不可逆抑制剂。在另一个方面,本发明化合物和其药物组合物可用于测定目标rna的活性位点或变构位点的位置和/或结构和/或三级结构。在一些实施例中,本发明提供一种化合物,其包含:(a)选择性结合到目标rna上的一或多个结合位点的小分子配体;(b)与目标rna的一或多个2'-oh形成共价键的修饰部分(或“弹头”);(c)任选的即点基团;(d)任选的拉下基团;和(e)共价键联小分子配体和修饰部分以及任选的即点基团的系链基团。不希望受任何特定理论束缚,据相信,本发明化合物选择性结合到目标rna上的一或多个活性或变构位点或通过小分子配体与目标rna的结构之间的结合相互作用来测定的其它位点;共价修饰目标rna的一或多个2'-oh基团;并且随后可以用以通过对2'-oh修饰的核苷酸的分布进行测序分析来鉴别活性位点或其它结合位点,因为2'-oh修饰的模式将受连接rna配体与rna弹头的系链的长度和构象限制。目标rna在接触化合物之前可以在细胞内部,在细胞溶解物中,或呈分离形式。所公开化合物的文库的筛选将鉴别目标rna的活性的高度有效的小分子调节剂。应理解,通过此类筛选来鉴别的此类小分子可以用作目标rna的调节剂以治疗、预防或减轻有需要的患者的疾病或病况。在某些实施例中,所提供化合物属于如图2和图5-31中所示的三个群组:i型、ii型和iii型。i型化合物具有通式i:或其药学上可接受的盐;其中:配体是小分子rna结合剂;t1是二价系链基团;并且rmod是rna修饰部分;其中每种变量如下文所定义。ii型化合物具有通式ii:或其药学上可接受的盐;其中:配体是小分子rna结合剂;t1和t2中的每一个独立地是二价系链基团;rmod是rna修饰部分;并且并且rcg是即点基团;其中每种变量如下文所定义。iii型化合物具有通式iii:或其药学上可接受的盐;其中:配体是小分子rna结合剂;t1是三价系链基团;t2是二价系链基团;rmod是rna修饰部分;并且rcg是即点基团;其中每种变量如下文所定义。在另一个方面,本发明提供一种rna共轭物,其包含目标rna和具有式i、ii或iii中的任一个的化合物,其中rmod与所述目标rna形成共价键。在一些实施例中,本发明提供一种式iv的rna共轭物:其中配体是结合到目标rna的小分子;rna代表目标rna;t1是二价系链基团;并且rmod是rna修饰部分;其中rmod与rna之间的-o-代表从目标rna的2'羟基到rmod的共价键;其中每种变量如下文所定义。在一些实施例中,本发明提供一种式v的rna共轭物:其中配体是结合到目标rna的小分子;rna代表目标rna;t1是三价系链基团;t2是二价系链基团;rmod是rna修饰部分;并且rcg是即点基团;其中rmod与rna之间的-o-代表从目标rna的2'羟基到rmod的共价键;其中每种变量如下文所定义。在一些实施例中,本发明提供一种式vi的rna共轭物:其中配体是结合到目标rna的小分子;rna代表目标rna;t1和t2各自独立地是二价系链基团;rmod是rna修饰部分;并且rcg是即点基团;其中rmod与rna之间的-o-代表从目标rna的2'羟基到rmod的共价键;其中每种变量如下文所定义。在另一个方面,本发明提供一种共轭物,其包含目标rna、式ii或iii的化合物和拉下基团,其中rmod与所述目标rna形成共价键。在一些实施例中,本发明提供一种式vii的rna共轭物:其中配体是结合到目标rna的小分子;rna代表目标rna;t1是三价系链基团;t2是二价系链基团;rmod是rna修饰部分;rcg是即点基团;并且rpd是拉下基团;其中rmod与rna之间的-o-代表从目标rna的2'羟基到rmod的共价键;其中每种变量如下文所定义。在一些实施例中,rcg是在一些实施例中,本发明提供一种式viii的rna共轭物:其中配体是结合到目标rna的小分子;rna代表目标rna;t1和t2是二价系链基团;rmod是rna修饰部分;并且rpd是拉下基团;其中rmod与rna之间的-o-代表从目标rna的2'羟基到rmod的共价键;其中每种变量如下文所定义。在一些实施例中,rcg是在一些实施例中,化合物或共轭物选自图5-31中所示的那些式,或其药学上可接受的盐、立体异构体或互变异构体。在一些实施例中,化合物选自图66-68、70-75或77-94中所示的那些,或其药学上可接受的盐、立体异构体或互变异构体。小分子rna配体能够结合rna的新颖小分子配体的设计和合成呈现出基本上未被开发的治疗潜力。已知包括以下的某些小分子配体结合到rna:大环内酯(例如,红霉素、阿奇霉素)、生物碱(例如,黄连素、巴马亭)、氨基糖苷(例如,巴龙霉素、新霉素b、卡那霉素a)、四环素(例如,多西环素、氧四环素)、茶碱、ribocil、三蝶烯和恶唑烷酮(例如,利奈唑胺、特地唑胺),为搜寻小分子作为rna靶向药物铺路。此外,现在已经发现,包含喹啉核心的某些化合物能够结合rna,cpnq是所述化合物之一。cpnq具有以下结构:因此,在一些实施例中,小分子配体选自cpnq或其药学上可接受的盐。在其它实施例中,配体选自与cpnq相关的喹啉化合物,例如以下表6或7中任一个中或图97-105中任一个中提供的那些;或其药学上可接受的盐。在一些实施例中,根据如本文所描述的每一个实施例,cpnq或与cpnq相关的喹啉在一或多个可用位置被修饰以用系链(-t1-和/或-t2-)、即点基团(-rcg)或弹头(-rmod)置换氢。举例来说,cpnq或与cpnq相关的喹啉可以具有下式之一:或其药学上可接受的盐;其中rmod任选地被-rcg或-t2-rcg取代,并且进一步任选地被拉下基团取代。式ix或x的化合物可以进一步任选地被一或多个如下文所定义的任选的取代基(例如1或2个任选的取代基)取代。有机染料、氨基酸、生物辅因子、金属络合物以及肽也展示出rna结合能力。有可能调节rna,例如核糖开关、具有扩增的核苷酸重复序列的rna分子和病毒rna元件。如本文所用,术语“结合目标rna的小分子”、“小分子rna结合剂”、“亲和力部分”或“配体部分”包括通常被分类为能够以充足亲和力和特异性结合到目标rna以用于所公开方法中或用以治疗、预防或减轻与目标rna相关的疾病的小分子的所有化合物。用于本发明中的结合rna的小分子可以结合到目标rna的一或多个二级或三级结构元件。这些位点包括rna三链体、发夹、凸起环、假结、内部环和本文所描述或提及的其它高级rna结构基序。因此,在一些实施例中,结合到目标rna的小分子(例如,以上式i-viii中的配体)选自大环内酯、生物碱、氨基糖苷、四环素家族成员、恶唑烷酮、smn2配体(例如,图34中所示的那些)、ribocil或其类似物、蒽、三蝶烯、茶碱或其类似物、或cpnq或其类似物。在一些实施例中,结合到目标rna的小分子选自巴龙霉素、新霉素(例如新霉素b)、卡那霉素(例如卡那霉素a)、利奈唑胺、特地唑胺、截短侧耳素、ribocil、nvs-sm1、蒽、三蝶烯、或cpnq或其类似物;其中每个小分子可以任选地被一或多个如下文所定义的“任选的取代基”(例如1、2、3或4个,例如1或2个任选的取代基)取代。在一些实施例中,小分子选自图32-36中所示的那些,或其药学上可接受的盐、立体异构体或互变异构体。在一些实施例中,小分子选自图37-44中所示的那些,或其药学上可接受的盐、立体异构体或互变异构体。在一些实施例中,小分子选自图97-105中所示的那些,或其药学上可接受的盐、立体异构体或互变异构体。在一些实施例中,小分子选自表6或7中所示的那些,或其药学上可接受的盐、立体异构体或互变异构体。在一些实施例中,配体结合到目标rna中的接合、茎-环或凸起。在一些实施例中,配体结合到核酸三向接合(3wj)。在一些实施例中,3wj是两个rna分子之间的反式3wj。在一些实施例中,3wj是mirna与mrna之间的反式3wj。本发明化合物包括在本文中一般描述的化合物,并且通过本文中所公开的类别、子类和种类进一步说明。如本文中所用,除非另外指明,否则以下定义应适用。出于本发明的目的,化学元素根据元素周期表,cas版,化学与物理手册(handbookofchemistryandphysics),第75版来鉴别。另外,有机化学的一般原理描述于“有机化学(organicchemistry)”,托马斯索雷尔(thomassorrell),大学科学书籍(universitysciencebooks),索萨利托(sausalito):1999和“马奇高等有机化学(march'sadvancedorganicchemistry)”,第5版,编辑:史密斯m.b.(smith,m.b.)和马奇j.(march,j.),约翰·威利父子公司(johnwiley&sons),纽约(newyork):2001中,这些文献的全部内容特此以引用的方式并入。如本文所用,术语“脂肪族”或“脂肪族基团”意指完全饱和或含有一或多个不饱和单元的直链(即,非支链)或支链的被取代或未被取代的烃链,或完全饱和或含有一或多个不饱和单元、但不是芳香族的单环烃或双环烃(在本文中也被称为“碳环”、“环脂肪族”或“环烷基”),其与分子的其余部分具有单一连接点。除非另外规定,否则脂肪族基团含有1-6个脂肪族碳原子。在一些实施例中,脂肪族基团含有1-5个脂肪族碳原子。在其它实施例中,脂肪族基团含有1-4个脂肪族碳原子。在其它实施例中,脂肪族基团含有1-3个脂肪族碳原子,并且在其它实施例中,脂肪族基团含有1-2个脂肪族碳原子。在一些实施例中,“环脂肪族”(或“碳环”或“环烷基”)是指完全饱和或含有一或多个不饱和单元、但不是芳香族的单环c3-c6烃,其与分子的其余部分具有单一连接点。适合的脂肪族基团包括(但不限于)直链或支链的被取代或未被取代的烷基、烯基、炔基和其杂合物,例如(环烷基)烷基、(环烯基)烷基或(环烷基)烯基。如本文所用,术语“桥接双环”是指具有至少一个桥键的饱和或部分不饱和的任何双环系统,即碳环或杂环。如iupac所定义,“桥键”是未分支原子链或原子或连接两个桥头的价键,其中“桥头”是键结到三个或更多个骨架原子(除氢以外)的环系统的任何骨架原子。在一些实施例中,桥接双环基团具有7-12个环成员和0-4个独立地选自氮、氧或硫的杂原子。此类桥接双环基团在所述领域中是众所周知的并且包括在下文中阐述的那些基团,其中每个基团在任何可取代碳或氮原子处连接到分子的其余部分。除非另外规定,否则桥接双环基团任选地被一或多个如关于脂肪族基团阐述的取代基取代。另外或或者,桥接双环基团的任何可取代氮任选地被取代。例示性桥接双环包括:术语“低碳烷基”是指c1-4直链或支链烷基。例示性低碳烷基是甲基、乙基、丙基、异丙基、丁基、异丁基和叔丁基。术语“低碳卤烷基”是指被一或多个卤素原子取代的c1-4直链或支链烷基。术语“杂原子”意指氧、硫、氮、磷或硅中的一或多种(包括氮、硫、磷或硅的任何氧化形式;任何碱性氮的季铵化形式;或杂环的可取代氮,例如n(如3,4-二氢-2h-吡咯基中)、nh(如吡咯烷基中)或nr+(如n-被取代的吡咯烷基中))。如本文所用,术语“不饱和”意指部分具有一或多个不饱和单元。如本文所用,术语“二价c1-8(或c1-6)饱和或不饱和、直链或支链烃链”是指如本文所定义的直链或支链的二价亚烷基、亚烯基和亚炔基链。术语“亚烷基”是指二价烷基。“亚烷基链”是聚亚甲基,即-(ch2)n-,其中n是正整数,优选1到6、1到4、1到3、1到2或2到3。被取代的亚烷基链是一或多个亚甲基氢原子被取代基置换的聚亚甲基。适合的取代基包括下文关于被取代的脂肪族基团所描述的取代基。术语“亚烯基”是指二价烯基。被取代的亚烯基链是一或多个氢原子被取代基置换的含有至少一个双键的聚亚甲基。适合的取代基包括下文关于被取代的脂肪族基团所描述的取代基。如本文所用,术语“环亚丙基”是指以下结构的二价环丙基:术语“卤素”意指f、cl、br或i。如在“芳烷基”、“芳烷氧基”或“芳氧基烷基”中单独或作为较大部分的一部分使用的术语“芳基”是指具有总共五到十四个环成员的单环或双环系统,其中系统中的至少一个环是芳香族并且其中系统中的每个环含有3到7个环成员。术语“芳基”可以与术语“芳环”互换使用。在本发明的某些实施例中,“芳基”是指芳香族环系统,其包括(但不限于)苯基、联苯基、萘基、蒽基等,其可以具有一或多个取代基。如本文所用,在术语“芳基”范围内还包括芳香族环与一或多个非芳香族环稠合的基团,例如茚满基、邻苯二甲酰亚胺基、萘酰亚胺基、啡啶基或四氢萘基等。单独或作为较大部分(例如,“杂芳烷基”或“杂芳烷氧基”)的一部分使用的术语“杂芳基”和“杂芳-”是指具有5到10个环原子、优选5、6或9个环原子;在环状阵列中共有6、10或14个π电子;并且除了碳原子之外具有一到五个杂原子的基团。术语“杂原子”是指氮、氧或硫,并且包括氮或硫的任何氧化形式以及碱性氮的任何季铵化形式。杂芳基包括(但不限于)噻吩基、呋喃基、吡咯基、咪唑基、吡唑基、三唑基、四唑基、恶唑基、异恶唑基、恶二唑基、噻唑基、异噻唑基、噻二唑基、吡啶基、哒嗪基、嘧啶基、吡嗪基、吲哚嗪基、嘌呤基、萘啶基和喋啶基。如本文所用,术语“杂芳基”和“杂芳-”还包括杂芳香族环与一或多个芳基、环脂肪族或杂环基环稠合的基团,其中连接基团或点位于杂芳香族环上。非限制性实例包括吲哚基、异吲哚基、苯并噻吩基、苯并呋喃基、二苯并呋喃基、吲唑基、苯并咪唑基、苯并噻唑基、喹啉基、异喹啉基、噌啉基、酞嗪基、喹唑啉基、喹喔啉基、4h-喹嗪基、咔唑基、吖啶基、吩嗪基、吩噻嗪基、吩恶嗪基、四氢喹啉基、四氢异喹啉基和吡啶并[2,3-b]-1,4-恶嗪-3(4h)-酮。杂芳基可以是单环或双环的。术语“杂芳基(heteroaryl)”可以与术语“杂芳基环(heteroarylring)”、“杂芳基(heteroarylgroup)”或“杂芳香族基(heteroaromatic)”互换使用,所述术语中的任一个包括任选地被取代的环。术语“杂芳烷基”是指被杂芳基取代的烷基,其中烷基和杂芳基部分独立地任选地被取代。如本文所用,术语“杂环(heterocycle)”、“杂环基(heterocyclyl)”、“杂环基(heterocyclicradical)”和“杂环(heterocyclicring)”可互换使用并且是指稳定5到7元单环或7-10元双环杂环部分,其是饱和或部分不饱和的,并且除了碳原子之外具有一或多个、优选一到四个如上文所定义的杂原子。当关于杂环的环原子使用时,术语“氮”包括被取代的氮。作为一个实例,在具有0-3个选自氧、硫或氮的杂原子的饱和或部分不饱和环中,氮可以是n(如3,4-二氢-2h-吡咯基中)、nh(如吡咯烷基中)或+nr(如n-被取代的吡咯烷基中)。杂环可以在任何杂原子或碳原子处连接到其侧基,从而产生稳定结构,并且任何环原子可以任选地被取代。此类饱和或部分不饱和杂环基的实例包括(但不限于)四氢呋喃基、四氢噻吩基、吡咯烷基、哌啶基、吡咯啉基、四氢喹啉基、四氢异喹啉基、十氢喹啉基、恶唑烷基、哌嗪基、二恶烷基、二氧杂环戊烷基、二氮呯基、恶氮呯基、噻氮呯基、吗啉基和奎宁环基。术语“杂环(heterocycle)”、“杂环基(heterocyclyl)”、“杂环基环(heterocyclylring)”、“杂环基(heterocyclicgroup)”、“杂环部分(heterocyclicmoiety)”和“杂环基(heterocyclicradical)”在本文中可互换使用,并且还包括杂环基环与一或多个芳基、杂芳基或环脂肪族环稠合的基团,例如吲哚啉基、3h-吲哚基、色满基、菲啶基或四氢喹啉基。杂环基可以是单环或双环的。术语“杂环基烷基”是指被杂环基取代的烷基,其中烷基和杂环基部分独立地任选地被取代。如本文所用,术语“部分不饱和”是指包括至少一个双键或三键的环部分。如本文所定义,术语“部分不饱和”打算涵盖具有多个不饱和位点的环,但并不打算包括芳基或杂芳基部分。如本文所描述,本发明化合物可以含有“任选地被取代的”部分。一般来说,术语“被取代的”无论前面有还是没有术语“任选地”,都意指指定部分的一或多个氢被适合的取代基置换。除非另外指示,否则“任选地被取代的”基团可以在基团的每个可取代位置处具有适合的取代基(“任选的取代基”),并且当任何既定结构中的超过一个位置可以被超过一个选自规定基团的取代基取代时,在每一位置处取代基可以是相同或不同的。本发明所设想的取代基组合优选是引起稳定或化学上可行的化合物形成的取代基组合。如本文所用,术语“稳定”是指化合物在经历允许其产生、检测以及在某些实施例中其回收、纯化和用于本文所公开的一或多种目的的条件时基本上不发生改变。“任选地被取代的”基团的可取代碳原子上的适合单价取代基独立地是卤素;-(ch2)0-4r○;-(ch2)0-4or○;-o(ch2)0-4r○;-o-(ch2)0-4c(o)or○;-(ch2)0-4ch(or○)2;-(ch2)0-4sr○;-(ch2)0-4ph,其可以被r○取代;-(ch2)0-4o(ch2)0-1ph,其可以被r○取代;-ch=chph,其可以被r○取代;-(ch2)0-4o(ch2)0-1-吡啶基,其可以被r○取代;-no2;-cn;-n3;-(ch2)0-4n(r○)2;-(ch2)0-4n(r○)c(o)r○;-n(r○)c(s)r○;-(ch2)0-4n(r○)c(o)nr○2;-n(r○)c(s)nr○2;-(ch2)0-4n(r○)c(o)or○;-n(r○)n(r○)c(o)r○;-n(r○)n(r○)c(o)nr○2;-n(r○)n(r○)c(o)or○;-(ch2)0-4c(o)r○;-c(s)r○;-(ch2)0-4c(o)or○;-(ch2)0-4c(o)sr○;-(ch2)0-4c(o)osir○3;-(ch2)0-4oc(o)r○;-oc(o)(ch2)0-4sr-;sc(s)sr○;-(ch2)0-4sc(o)r○;-(ch2)0-4c(o)nr○2;-c(s)nr○2;-c(s)sr○;-sc(s)sr○;-(ch2)0-4oc(o)nr○2;-c(o)n(or○)r○;-c(o)c(o)r○;-c(o)ch2c(o)r○;-c(nor○)r○;-(ch2)0-4ssr○;-(ch2)0-4s(o)2r○;-(ch2)0-4s(o)2or○;-(ch2)0-4os(o)2r○;-s(o)2nr○2;-(ch2)0-4s(o)r○;-n(r○)s(o)2nr○2;-n(r○)s(o)2r○;-n(or○)r○;-c(nh)nr○2;-p(o)2r○;-p(o)r○2;-op(o)r○2;-op(o)(or○)2;sir○3;-(c1-4直链或支链亚烷基)o-n(r○)2;或-(c1-4直链或支链亚烷基)c(o)o-n(r○)2,其中每个r○可以如下文所定义被取代并且独立地是氢、c1-6脂肪族基、-ch2ph、-o(ch2)0-1ph、-ch2-(5-6元杂芳基环)、或具有0-4个独立地选自氮、氧或硫的杂原子的5-6元饱和、部分不饱和或芳基环,或不管以上定义,两个独立存在的r○与其中间原子结合在一起形成具有0-4个独立地选自氮、氧或硫的杂原子的3-12元饱和、部分不饱和或芳基单或双环,其可以如下文所定义被取代。r○(或通过将两个独立存在的r○与其中间原子结合在一起所形成的环)上的适合单价取代基独立地是卤素、-(ch2)0-2r●、-(卤基r●)、-(ch2)0-2oh、-(ch2)0-2or●、-(ch2)0-2ch(or●)2、-o(卤基r●)、-cn、-n3、-(ch2)0-2c(o)r●、-(ch2)0-2c(o)oh、-(ch2)0-2c(o)or●、-(ch2)0-2sr●、-(ch2)0-2sh、-(ch2)0-2nh2、-(ch2)0-2nhr●、-(ch2)0-2nr●2、-no2、-sir●3、-osir●3、-c(o)sr●、-(c1-4直链或支链亚烷基)c(o)or●或-ssr●,其中每个r●未被取代或在前面有“卤基”的情况下仅仅被一或多个卤素取代,并且独立地选自c1-4脂肪族基、-ch2ph、-o(ch2)0-1ph、或具有0-4个独立地选自氮、氧和硫的杂原子的5-6元饱和、部分不饱和或芳基环。r○的饱和碳原子上的适合二价取代基包括=o和=s。“任选地被取代的”基团的饱和碳原子上的适合二价取代基包括以下:=o、=s、=nnr*2、=nnhc(o)r*、=nnhc(o)or*、=nnhs(o)2r*、=nr*、=nor*、-o(c(r*2))2-3o-或-s(c(r*2))2-3s-,其中每个独立存在的r*选自氢、可以如下文所定义被取代的c1-6脂肪族基、或具有0-4个独立地选自氮、氧或硫的杂原子的未被取代的5-6元饱和、部分不饱和或芳基环。结合到“任选地被取代的”基团的邻位可取代碳的适合二价取代基包括:-o(cr*2)2-3o-,其中每个独立存在的r*选自氢、可以如下文所定义被取代的c1-6脂肪族基、或具有0-4个独立地选自氮、氧或硫的杂原子的未被取代的5-6元饱和、部分不饱和或芳基环。r*的脂肪族基团上的适合取代基包括卤素、-r●、-(卤基r●)、-oh、-or●、-o(卤基r●)、-cn、-c(o)oh、-c(o)or●、-nh2、-nhr●、-nr●2或-no2,其中每个r●未被取代或在前面有“卤基”时仅被一或多个卤素取代,并且独立地是c1-4脂肪族基、-ch2ph、-o(ch2)0-1ph或具有0-4个独立地选自氮、氧和硫的杂原子的5-6元饱和、部分不饱和或芳基环。“任选地被取代的”基团的可取代氮上的适合取代基包括或其中每个独立地是氢、可以如下文所定义被取代的c1-6脂肪族基、未被取代的-oph、或具有0-4个独立地选自氮、氧或硫的杂原子的未被取代的5-6元饱和、部分不饱和或芳基环,或不管以上定义,两个独立存在的与其中间原子结合在一起形成具有0-4个独立地选自氮、氧或硫的杂原子的未被取代的3-12元饱和、部分不饱和或芳基单或双环。的脂肪族基团上的适合取代基独立地是卤素、-r●、-(卤基r●)、-oh、-or●、-o(卤基r●)、-cn、-c(o)oh、-c(o)or●、-nh2、-nhr●、-nr●2或-no2,其中每个r●未被取代或在前面有“卤基”时仅被一或多个卤素取代,并且独立地是c1-4脂肪族基、-ch2ph、-o(ch2)0-1ph或具有0-4个独立地选自氮、氧和硫的杂原子的5-6元饱和、部分不饱和或芳基环。如本文所用,术语“药学上可接受的盐”是指在合理医学判断范围内适用于与人类和低等动物的组织接触而无不当毒性、刺激、过敏反应等,并且与合理利益/风险比相称的那些盐。药学上可接受的盐在本领域中众所周知。举例来说,s.m.贝尔奇(s.m.berge)等人在以引用的方式并入本文中的药物科学杂志(j.pharmaceuticalsciences),1977,66,1-19中详细描述了药学上可接受的盐。本发明化合物的药学上可接受的盐包括衍生自适合无机酸和有机酸以及无机碱和有机碱的盐。药学上可接受的无毒酸加成盐的实例是氨基与无机酸(例如盐酸、氢溴酸、磷酸、硫酸和过氯酸)或有机酸(例如乙酸、草酸、马来酸、酒石酸、柠檬酸、琥珀酸或丙二酸)形成的盐,或通过使用本领域中所用的其它方法(例如离子交换)形成的盐。其它药学上可接受的盐包括己二酸盐、海藻酸盐、抗坏血酸盐、天冬氨酸盐、苯磺酸盐、苯甲酸盐、硫酸氢盐、硼酸盐、丁酸盐、樟脑酸盐、樟脑磺酸盐、柠檬酸盐、环戊烷丙酸盐、二葡糖酸盐、十二烷基硫酸盐、乙烷磺酸盐、甲酸盐、富马酸盐、葡庚糖酸盐、甘油磷酸盐、葡糖酸盐、半硫酸盐、庚酸盐、己酸盐、氢碘化物、2-羟基-乙烷磺酸盐、乳糖酸盐、乳酸盐、月桂酸盐、月桂基硫酸盐、苹果酸盐、马来酸盐、丙二酸盐、甲烷磺酸盐、2-萘磺酸盐、烟酸盐、硝酸盐、油酸盐、草酸盐、棕榈酸盐、双羟萘酸盐、果胶酸盐、过硫酸盐、3-苯基丙酸盐、磷酸盐、特戊酸盐、丙酸盐、硬脂酸盐、琥珀酸盐、硫酸盐、酒石酸盐、硫氰酸盐、对甲苯磺酸盐、十一烷酸盐、戊酸盐等。衍生自适当碱的盐包括碱金属盐、碱土金属盐、铵盐和n+(c1-4烷基)4盐。代表性碱金属盐或碱土金属盐包括钠盐、锂盐、钾盐、钙盐、镁盐等。其它药学上可接受的盐包括(适当时)使用平衡离子(例如卤离子、氢氧根、羧酸根、硫酸根、磷酸根、硝酸根、低碳烷基磺酸根和芳基磺酸根)形成的无毒铵、季铵和胺阳离子。除非另外陈述,否则本文描绘的结构还意指包括所述结构的所有异构(例如,对映异构、非对映异构和几何异构(或构象异构))形式;例如关于每个不对称中心的r和s构型、z和e双键异构体、以及z和e构象异构体。因此,本发明化合物的单一立体化学异构体以及对映异构、非对映异构和几何异构(或构象异构)混合物都在本发明的范围内。除非另外陈述,否则本发明化合物的所有互变异构形式都在本发明的范围内。另外,除非另外陈述,否则本文所描绘的结构还意指包括仅在存在一或多个同位素增浓原子方面不同的化合物。举例来说,包括由氘或氚置换氢或由13c或14c增浓的碳置换碳的具有本发明结构的化合物在本发明的范围内。此类化合物适用作(例如)分析工具,用作生物分析中的探针,或用作根据本发明的治疗剂。在某些实施例中,所提供化合物的弹头部分r1包含一或多个氘原子。如本文所用,术语“抑制剂”被定义为以可测量亲和力结合到和/或调节或抑制目标rna的化合物。在某些实施例中,抑制剂的ic50和/或结合常数是小于约100μm、小于约50μm、小于约1μm、小于约500nm、小于约100nm、小于约10nm或小于约1nm。如本文所用,术语“可测量亲和力”和“可测量地抑制”意指在包含本发明化合物或其组合物和目标rna的样品与包含目标rna、在无所述化合物或其组合物存在下的等效样品之间的下游生物效应有可测量变化。如本文所用,术语“rna”(核糖核酸)意指天然存在或合成的寡核糖核苷酸,与来源(例如,rna可以由人类、动物、植物、病毒或细菌产生,或可以是合成来源的)、生物环境(例如,rna可以在细胞核中、在血液中循环、在体外、在细胞溶解物中、或呈分离或纯形式)或物理形式(例如,rna可以呈单、双或三链形式(包括rna-dna杂合体),可以包括表观遗传修饰、天然转录后修饰、人工修饰(例如,通过化学或体外修饰来获得)或其它修饰,可以结合到例如金属离子、小分子、蛋白质伴侣蛋白或辅因子,或可以呈变性、部分变性或折叠状态,包括任何天然或非天然二级或三级结构,例如接合(例如,顺式或反式三向接合(3wj))、四链体、发夹、三链体、发夹、凸起环、假结和内部环等,和rna所呈现的任何瞬态形式或结构)无关。在一些实施例中,rna的长度是100个或更多个核苷酸。在一些实施例中,rna的长度是250个或更多个核苷酸。在一些实施例中,rna的长度是350、450、500、600、750、or1,000、2,000、3,000、4,000、5,000、7,500、10,000、15,000、25,000、50,000个或更多个核苷酸。在一些实施例中,rna的长度在250与1,000个核苷酸之间。在一些实施例中,rna是前rna、前mirna或前转录物。在一些实施例中,rna是非编码rna(ncrna)、信使rna(mrna)、微rna(mirna)、核酶、核糖开关、lncrna、lincrna、snorna、snrna、scarna、pirna、cerna、假基因、病毒rna或细菌rna。如本文所用,术语“目标rna”意指具有能够结合本文所描述的小分子配体的二级或三级结构的任何类型的rna。目标rna在接触化合物之前可以在细胞内部,在细胞溶解物中,或呈分离形式。共价修饰部分多种共价修饰部分(即例如以上式i-x中所示的rmod)可以用于本发明。在一些实施例中,共价修饰剂是芳基-c(o)-x、杂芳基-c(o)-x、芳基-so2-x或杂芳基-so2-x,其中x是适当离去基,例如卤化物,或n-杂芳基,例如咪唑基。在一些实施例中,共价修饰部分是图54-65中所示的修饰部分中的一个。如本文所用,术语“共价修饰部分”或“弹头”意指包括能够选择性地与rna的不受限的核苷酸形成共价键以产生2'-修饰的rna的反应性官能团的任何小分子基团。在一些实施例中,共价修饰部分是键结到反应性官能团的芳香族或杂芳香族基团。在一些实施例中,反应性官能团选自磺酰基卤化物、芳烃羰基咪唑、活性酯、环氧化物、环氧乙烷、氧化剂、醛、烷基卤化物、苯甲基卤化物、异氰酸酯或其它基团,例如赫曼森(hermanson),生物共轭技术(bioconjugatetechniques),第二版,学术出版社(academicpress),2008描述的基团。在一些实施例中,反应性官能团是活性酯。活性酯可以与rna的不受限的2'-羟基(或另外比邻近2'-羟基反应性更大的基团)反应以产生2'-共价修饰的rna。在一些实施例中,活性酯是酰基咪唑。在一些实施例中,反应性官能团选自芳基酯、杂芳基酯、磺酰基卤化物、内酯、内酰胺、α,β-不饱和酮、醛、烷基卤化物或苯甲基卤化物。在一些实施例中,反应性官能团选自芳基酯、杂芳基酯、磺酰基氟化物或内酰胺。在一些实施例中,共价修饰部分是1-甲基-7-硝基靛红酸酐(1m7)、苯甲酰氰(bzcn)、2-甲基烟碱酸咪唑化物(nai)或2-甲基-3-糠酸咪唑化物(fai)。适用于本发明的共价修饰部分的其它实例描述于wo2015/054247、us2014/0154673和u.s.8,313,424中,其中的每一个特此以引用的方式并入。系链基团本发明涵盖使用多种多样的二价或三价系链基团(系链;例如,如例如以上式i-x中所示的变量t1和t2)以提供对目标rna的邻近结合位点的2'-oh基团的最优结合和反应性。在一些实施例中,t1和t2选自图46-53中所示的那些。举例来说,在一些实施例中,t1和/或t2是具有例如1-10个乙二醇亚单元的聚乙二醇(peg)基团。在一些实施例中,t1和/或t2是任选地被取代的c1-12脂肪族基团或包含1-8个氨基酸的肽。在一些实施例中,系链的例如长度、刚度、疏水性和/或其它特性的物理特性被选择以优化目标rna的2'-oh与修饰部分(弹头)之间的邻位诱导的共价键形成模式。在一些实施例中,系链的物理特性(例如以上物理特性)被选择,以便在化合物结合到目标rna的活性或变构位点后,修饰部分选择性地与目标rna的邻近活性位点或变构位点的一或多个2'-oh基团反应。即点基团多种生物正交反应配偶体(例如,以上式i-x中的rcg)可以用于本发明以使本文所描述的化合物与拉下部分偶联。如本文所用,术语“生物正交化学”或“生物正交反应”是指可以在活系统中进行而不干扰天然生物化学过程的任何化学反应。因此,“生物正交反应配偶体”是能够经历与适当反应配偶体的生物正交反应以使本文所描述的化合物偶联到拉下部分的化学部分。在一些实施例中,生物正交反应配偶体共价连接到化学修饰部分或系链基团。在一些实施例中,生物正交反应配偶体选自即点基团或能够经历硝酮/环辛炔反应、肟/腙形成、四嗪连接、基于胩的点击反应或四环庚烷连接的基团。在一些实施例中,生物正交反应配偶体是即点基团。术语“即点”基团是指能够经历点击反应的化学部分,例如叠氮化物或炔烃。点击反应倾向于涉及高能(“负载弹簧”)试剂与界限分明的反应坐标,产生宽范围的选择性成键事件。实例包括应变环亲电子试剂(环氧化物、氮丙啶、吖丙啶鎓离子、表锍离子)的亲核捕获、某些羰基反应性(例如,醛与肼或羟胺之间的反应)和数种环加成反应。叠氮化物-炔烃1,3-偶极环加成和狄尔斯-阿尔德环加成是两种此类反应。此类点击反应(即,偶极环加成)与高活化能相关并且因此需要热量或催化剂。实际上,铜催化剂使用常规地用于点击反应中。然而,在点击化学特别可用的某些情况下(例如,在生物共轭反应中),铜的存在可能是有害的(参见沃尔贝斯f.(wolbers,f.)等人;电泳(electrophoresis)2006,27,5073)。因此,开发在不使用金属催化的情况下进行偶极环加成反应的方法。此类“无金属”点击反应利用活化部分以便促进环加成。因此,本发明提供适用于无金属点击化学的即点基团。某些无金属的点击部分是文献中已知的。实例包括4-二苯并环辛炔醇(dibo)(来自宁(ning)等人;应用化学国际版(angewcheminted),2008,47,2253);gem-二氟化环辛炔(difo或dfo)(来自科莱里(codelli)等人;美国化学学会杂志(j.am.chem.soc.)2008,130,11486-11493.);二芳基氮杂环辛炔酮(barac)(来自朱厄特(jewett)等人;美国化学学会杂志2010,132,3688.);或二环壬炔(bcn)(来自多梅霍特(dommerholt)等人;应用化学国际版,2010,49,9422-9425)。如本文所用,短语“适用于无金属的点击化学的部分”是指能够在不使用金属催化剂的情况下进行偶极环加成的官能团。此类部分包括活化炔烃(例如应变环辛炔)、肟(例如氧化腈前体)或氧杂降冰片二烯,用于偶联到叠氮化物以形成环加成产物(例如,三唑或异恶唑)。在一些实施例中,即点基团选自图45或69中所示的那些。拉下基团多种拉下基团(例如以上式i-x中的rpd)可以用于本发明。在一些实施例中,拉下基团含有与即点基团反应以将拉下基团连接到化合物的其余部分的生物正交反应配偶体,以及允许选择性分离或检测拉下化合物的适当基团。举例来说,在拉下基团中使用抗生物素蛋白或抗生蛋白链菌素将允许仅分离如下文进一步详细阐释已经被‘钩连的’那些rna。在一些实施例中,拉下基团选自图69中所示的那些。用于聚焦拉下的另一方法采用使用呈现与所关注rna的序列互补的序列的dna微阵列拉下所关注rna的标准方法。这将允许选择性分离所关注rna,其可以经由测序分析以确定是否连接任何钩构筑体。3.提供本发明化合物的一般方法本发明化合物一般可以通过本领域的技术人员已知的用于类似化合物的合成和/或半合成方法和通过本文实例和图中详细描述的方法制备或分离。举例来说,各种本发明化合物可以参考图5-31或77-94或96合成。在详细说明、实例和图中描绘的流程和化学反应中,在描绘具体保护基(“pg”)、离去基(“lg”)或转化条件时,本领域普通技术人员将了解,其它保护基、离去基和转化条件也是适合的并且被涵盖在内。此类基团和转化详细描述于马奇高等有机化学:反应、机制和结构(march'sadvancedorganicchemistry:reactions,mechanisms,andstructure),m.b.史密斯(m.b.smith)和j.马奇(j.march),第5版,约翰·威利父子公司,2001;综合有机转化(comprehensiveorganictransformations),r.c.拉罗克(r.c.larock),第2版,约翰·威利父子公司,1999;和有机合成中的保护基(protectinggroupsinorganicsynthesis),t.w.格林(t.w.greene)和p.g.m.伍兹(p.g.m.wuts),第3版,约翰·威利父子公司,1999中,所述文献中的每一个的全部内容特此以引用的方式并入本文中。如本文所用,短语“离去基”(lg)包括(但不限于)卤素(例如氟离子、氯离子、溴离子、碘离子)、磺酸根(例如甲磺酸根、甲苯磺酸根、苯磺酸根、溴苯磺酸根、硝基苯磺酸根、三氟甲磺酸根)、重氮鎓等。如本文所用,短语“氧保护基”包括例如羰基保护基、羟基保护基等。羟基保护基在本领域中是熟知的并且包括详细描述于有机合成中的保护基,t.w.格林和p.g.m.伍兹,第3版,约翰·威利父子公司,1999中的羟基保护基,所述文献的全部内容以引用的方式并入本文中。适合羟基保护基的实例包括(但不限于)酯、烯丙基醚、醚、硅烷基醚、烷基醚、芳烷基醚和烷氧基烷基醚。此类酯的实例包括甲酸酯、乙酸酯、碳酸酯和磺酸酯。特定实例包括甲酸酯、苯甲酰基甲酸酯、氯乙酸酯、三氟乙酸酯、甲氧基乙酸酯、三苯基甲氧基乙酸酯、对氯苯氧基乙酸酯、3-苯基丙酸酯、4-氧代戊酸酯、4,4-(亚乙基二硫基)戊酸酯、新戊酸酯(三甲基乙酰酯)、巴豆酸酯、4-甲氧基-巴豆酸酯、苯甲酸酯、对苯甲基苯甲酸酯、2,4,6-三甲基苯甲酸酯、碳酸酯,例如甲酯、9-芴基甲酯、乙酯、2,2,2-三氯乙酯、2-(三甲基硅烷基)乙酯、2-(苯基磺酰基)乙酯、乙烯酯、烯丙酯和对硝基苯甲酯。此类硅烷基醚的实例包括三甲基硅烷基醚、三乙基硅烷基醚、叔丁基二甲基硅烷基醚、叔丁基二苯基硅烷基醚、三异丙基硅烷基醚和其它三烷基硅烷基醚。烷基醚包括甲基醚、苯甲基醚、对甲氧基苯甲基醚、3,4-二甲氧基苯甲基醚、三苯甲基醚、叔丁基醚、烯丙基醚和烯丙氧基羰基醚或衍生物。烷氧基烷基醚包括缩醛,例如甲氧基甲基醚、甲硫基甲基醚、(2-甲氧基乙氧基)甲基醚、苯甲氧基甲基醚、β-(三甲基硅烷基)乙氧基甲基醚和四氢吡喃基醚。芳烷基醚的实例包括苯甲基醚、对甲氧基苯甲基醚(mpm)、3,4-二甲氧基苯甲基醚、邻硝基苯甲基醚、对硝基苯甲基醚、对卤基苯甲基醚、2,6-二氯苯甲基醚、对氰基苯甲基醚以及2-和4-吡啶甲基醚。氨基保护基在本领域中是熟知的并且包括详细描述于有机合成中的保护基,t.w.格林和p.g.m.伍兹,第3版,约翰·威利父子公司,1999中的氨基保护基,所述文献的全部内容以引用的方式并入本文中。适合氨基保护基包括(但不限于)芳烷基胺、氨基甲酸酯、环酰亚胺、烯丙基胺、酰胺等。此类基团的实例包括叔丁氧基羰基(boc)、乙氧基羰基、甲氧基羰基、三氯乙氧基羰基、烯丙氧基羰基(alloc)、苯甲氧基羰基(cbz)、烯丙基、邻苯二甲酰亚胺、苯甲基(bn)、芴基甲基羰基(fmoc)、甲酰基、乙酰基、氯乙酰基、二氯乙酰基、三氯乙酰基、苯乙基、三氟乙酰基、苯甲酰基等。本领域的技术人员应了解,存在于本发明化合物中的各种官能团(例如脂肪族基团、醇、羧酸、酯、酰胺、醛、卤素和腈)可以通过包括(但不限于)还原、氧化、酯化、水解、部分氧化、部分还原、卤化、脱水、部分水合和水合的本领域中熟知的技术相互转化。“马奇高等有机化学”,第5版,编者:史密斯m.b.和马奇j.,约翰·威利父子公司,纽约:2001,所述文献的全部内容以引用的方式并入本文中。此类相互转化可能需要前述技术中的一或多种,并且用于合成本发明化合物的某些方法描述于下文例证和图中。4.用途、配制和施用药学上可接受的组合物根据另一实施例,本发明提供一种组合物,其包含本发明化合物或其药学上可接受的衍生物和药学上可接受的载剂、佐剂或媒剂。本发明组合物中的化合物的量是使得可有效可测量地抑制或调节生物样品或患者中的目标rna或其突变体。在某些实施例中,本发明组合物中的化合物的量是使得可有效可测量地抑制或调节生物样品或患者中的目标rna。在某些实施例中,配制本发明组合物用于向需要此类组合物的患者施用。在一些实施例中,配制本发明组合物用于向患者口服施用。如本文所用,术语“患者”意指动物,优选哺乳动物,并且最优选人类。术语“药学上可接受的载剂、佐剂或媒剂”是指不会破坏一起配制的化合物的药理学活性的无毒载剂、佐剂或媒剂。可以在本发明组合物中使用的药学上可接受的载剂、佐剂或媒剂包括(但不限于)离子交换剂、氧化铝、硬脂酸铝、卵磷脂、血清蛋白(例如人类血清白蛋白)、缓冲物质(例如磷酸盐)、甘氨酸、山梨酸、山梨酸钾、饱和植物脂肪酸的偏甘油酯混合物、水、盐或电解质(例如硫酸鱼精蛋白、磷酸氢二钠、磷酸氢钾、氯化钠、锌盐)、胶态二氧化硅、三硅酸镁、聚乙烯吡咯烷酮、基于纤维素的物质、聚乙二醇、羧甲基纤维素钠、聚丙烯酸酯、蜡、聚乙烯-聚氧丙烯嵌段聚合物、聚乙二醇和羊毛脂。“药学上可接受的衍生物”意指在向接受者施用后能够直接或间接提供本发明化合物或其抑制活性的代谢物或残余物的本发明化合物的任何无毒盐、酯、酯的盐或其它衍生物。本发明组合物可以经口、肠胃外、通过吸入喷雾、局部、经直肠、经鼻、经颊、经阴道或经由植入式贮器施用。如本文所用,术语“肠胃外”包括皮下、静脉内、肌肉内、关节内、滑膜内、胸骨内、鞘内、肝内、病灶内和颅内注射或输注技术。优选地,组合物经口、经腹膜内或经静脉内施用。本发明组合物的无菌可注射形式可以是水性或油性悬浮液。这些悬浮液可以根据本领域中已知的技术使用适合的分散剂或湿润剂和悬浮剂来配制。无菌可注射制剂也可以是在无毒肠胃外可接受的稀释剂或溶剂中的无菌可注射溶液或悬浮液,例如呈在1,3-丁二醇中的溶液形式。可以采用的可接受媒剂和溶剂是水、林格氏溶液(ringer'ssolution)和等张氯化钠溶液。另外,常规地采用无菌不挥发性油作为溶剂或悬浮介质。出于这个目的,可以采用任何温和不挥发性油,包括合成单酸甘油酯或二酸甘油酯。例如油酸的脂肪酸和其甘油酯衍生物适用于制备可注射剂,天然药学上可接受的油(例如橄榄油或蓖麻油,尤其呈其聚氧乙基化形式)也是。这些油溶液或悬浮液还可以含有长链醇稀释剂或分散剂,例如羧甲基纤维素或常用于配制药学上可接受的剂型(包括乳液和悬浮液)的类似分散剂。出于配制的目的,还可以使用其它常用的表面活性剂(例如吐温(tween)、斯潘(span))和常用于制造药学上可接受的固体、液体或其它剂型中的其它乳化剂或生物可用性增进剂。本发明的药学上可接受的组合物可以按任何经口可接受剂型经口施用,所述剂型包括(但不限于)胶囊、片剂、水性悬浮液或溶液。在用于经口使用的片剂的情况下,常用载剂包括乳糖和玉米淀粉。典型地还添加例如硬脂酸镁的润滑剂。对于以胶囊形式经口施用,适用的稀释剂包括乳糖和干燥玉米淀粉。当为了经口用途需要水性悬浮液时,将活性成分与乳化剂和悬浮剂组合。必要时,还可以添加某些甜味剂、调味剂或着色剂。或者,本发明的药学上可接受的组合物可以按用于经直肠施用的栓剂形式施用。这些栓剂可以通过将药剂与适合的非刺激性赋形剂混合来制备,所述赋形剂在室温下是固体但在直肠温度下是液体并且因此将在直肠中熔融以释放药物。此类物质包括可可脂、蜂蜡以及聚乙二醇。本发明的药学上可接受的组合物还可以局部施用,尤其当治疗目标包括通过局部施用容易达到的区域或器官(包括眼睛、皮肤或下部肠道的疾病)时。容易制备适用于这些区域或器官中的每一个的局部配制物。对下部肠道的局部施用可以直肠栓剂配制物(参见上文)或以适合的灌肠剂配制物实现。还可以使用局部经皮贴片。对于局部施用来说,所提供的药学上可接受的组合物可以含有悬浮或溶解于一或多种载剂中的活性组分的适合软膏形式配制。用于本发明化合物的局部施用的载剂包括(但不限于)矿物油、液体矿脂、白矿脂、丙二醇、聚氧乙烯、聚氧丙烯化合物、乳化蜡和水。或者,所提供的药学上可接受的组合物可以含有活性组分悬浮或溶解于一或多种药学上可接受的载剂中的适合洗剂或乳膏形式配制。适合载剂包括(但不限于)矿物油、脱水山梨糖醇单硬脂酸酯、聚山梨醇酯60、鲸蜡酯蜡、鲸蜡硬脂醇、2-辛基十二烷醇、苯甲醇和水。对于眼科使用,所提供的药学上可接受的组合物可以在有或无例如氯苄烷铵的防腐剂存在下,配制为于ph经调整的等张无菌生理食盐水中的微粉化悬浮液或优选配制为于ph经调整的等张无菌生理食盐水中的溶液。或者,对于眼科使用,药学上可接受的组合物可以配制为例如矿脂的软膏。本发明的药学上可接受的组合物还可以通过鼻气雾剂或吸入施用。此类组合物根据药物配制领域中所熟知的技术制备,并且可以采用苯甲醇或其它适合防腐剂、增强生物可用性的吸收促进剂、碳氟化合物和/或其它常规增溶剂或分散剂,以于生理食盐水中的溶液形式制备。最优选地,配制本发明的药学上可接受的组合物以用于经口施用。此类配制物可以随或不随食物一起施用。在一些实施例中,本发明的药学上可接受的组合物不随食物一起施用。在其它实施例中,本发明的药学上可接受的组合物随食物一起施用。可以与载剂物质组合以产生呈单一剂型的组合物的本发明化合物的量将取决于所治疗的宿主、特定施用模式而变化。优选地,应配制所提供的组合物以便可以向接受这些组合物的患者施用剂量介于每天每千克体重0.01-100mg之间的抑制剂。还应理解,针对任何特定患者的特定剂量和治疗方案将取决于多种因素,包括所用特定化合物的活性、年龄、体重、整体健康状况、性别、饮食、施用时间、排泄率、药物组合以及治疗医师的判断和所治疗特定疾病的严重程度。组合物中本发明化合物的量还将取决于组合物中的特定化合物。化合物和药学上可接受的组合物的用途本文所描述的化合物和组合物通常可用于调节目标rna以击退rna介导的疾病或病况。化合物在本发明中用以调节目标rna的活性可以在体外、体内或细胞系中进行分析。体外分析包括测定目标rna的调节的分析。替代性体外分析定量化合物结合到目标rna的能力。用于分析在本发明中用以调节目标rna的化合物的详细条件阐述于以下实例中。如本文所用,术语“治疗(treatment/treat/treating)”是指逆转、缓解如本文所描述的疾病或病症或其一或多种症状,延迟其发作,或抑制其进展。在一些实施例中,治疗可以在已经出现一或多种症状后施用。在其它实施例中,治疗可以在不存在症状下施用。举例来说,治疗可以在症状发作之前向易感个体(例如,根据症状病史和/或根据遗传学或其它易感性因素)施用。还可以在症状已经消退之后继续进行治疗,例如以预防或延迟其复发。所提供的化合物是目标rna的调节剂并且因此可用于治疗一或多种与目标rna相关或受目标rna(例如,的下游)影响的病症。因此,在某些实施例中,本发明提供一种用于治疗rna介导的病症的方法,其包含向有需要的患者施用本发明化合物或其药学上可接受的组合物的步骤。如本文所用,术语“rna介导的”病症、疾病和/或病况如本文所用意指已知rna(例如过度表达、不足表达、突变、错误折叠、致病或致癌的rna)在其中起一定作用的任何疾病或其它有害病况。因此,本发明的另一实施例涉及治疗或减轻已知rna(例如过度表达、不足表达、突变、错误折叠、致病或致癌的rna)在其中起一定作用的一或多种疾病的严重程度。在一些实施例中,本发明提供一种用于治疗一或多种病症、疾病和/或病况的方法,其中所述病症、疾病或病况包括(但不限于)细胞增殖性病症。细胞增殖性病症本发明提供了用于通过调节目标rna来诊断和预后细胞增殖性病症(例如,癌症)和治疗这些病症的方法和组合物。本文所描述的细胞增殖性病症包括例如癌症、肥胖以及增殖依赖性疾病。此类病症可以使用本领域中已知的方法诊断。癌症在一个实施例中,癌症包括(但不限于)白血病(例如,急性白血病、急性淋巴细胞性白血病、急性髓细胞性白血病、急性成骨髓细胞性白血病、急性早幼粒细胞性白血病、急性骨髓单核细胞性白血病、急性单核细胞性白血病、急性红白血病、慢性白血病、慢性髓细胞性白血病、慢性淋巴细胞性白血病)、真性红细胞增多症、淋巴瘤(例如,霍奇金氏病(hodgkin'sdisease)或非霍奇金氏病)、瓦尔登斯特伦氏巨球蛋白血症(waldenstrom'smacroglobulinemia)、多发性骨髓瘤、重链疾病以及实体肿瘤,例如肉瘤和癌瘤(例如,纤维肉瘤、粘液肉瘤、脂肪肉瘤、软骨肉瘤、成骨肉瘤、脊索瘤、血管肉瘤、内皮肉瘤、淋巴管肉瘤、淋巴内皮肉瘤、滑膜瘤、间皮瘤、尤文氏瘤(ewing'stumor)、平滑肌肉瘤、横纹肌肉瘤、结肠癌、胰腺癌、乳腺癌、卵巢癌、前列腺癌、鳞状细胞癌、基底细胞癌、腺癌、汗腺癌、皮脂腺癌、乳头状癌、乳头状腺癌、囊腺癌、髓质癌、支气管癌、肾细胞癌、肝细胞瘤、胆管癌、绒膜癌、精原细胞瘤、胚胎性癌、维尔姆斯瘤(wilm'stumor)、子宫颈癌、子宫癌、睾丸癌、肺癌、小细胞肺癌、膀胱癌、上皮癌、神经胶质瘤、星形细胞瘤、成神经管细胞瘤、颅咽管瘤、室管膜瘤、松果体瘤、成血管细胞瘤、听神经瘤、少突神经胶质瘤、神经鞘瘤、脑膜瘤、黑素瘤、成神经细胞瘤以及成视网膜细胞瘤)。在一些实施例中,癌症是黑素瘤或乳腺癌。在另一实施例中,癌症包括(但不限于)间皮瘤、肝胆(肝和胆管)癌、骨癌、胰腺癌、皮肤癌、头或颈癌、皮肤或眼内黑素瘤、卵巢癌、结肠癌、直肠癌、肛区癌、胃癌、胃肠(胃、结肠直肠和十二指肠)癌、子宫癌、输卵管癌、子宫内膜癌、子宫颈癌、阴道癌、外阴癌、霍奇金氏病、食道癌、小肠癌、内分泌系统癌、甲状腺癌、副甲状腺癌、肾上腺癌、软组织肉瘤、尿道癌、阴茎癌、前列腺癌、睾丸癌、慢性或急性白血病、慢性骨髓性白血病、淋巴细胞性淋巴瘤、膀胱癌、肾或输尿管癌、肾细胞癌、肾盂癌、非霍奇金氏淋巴瘤、脊轴瘤、脑干神经胶质瘤、垂体腺瘤、肾上腺皮质癌、胆囊癌、多发性骨髓瘤、胆管癌、纤维肉瘤、成神经细胞瘤、成视网膜细胞瘤或前述癌症中的一或多种的组合。在一些实施例中,本发明提供一种治疗有需要的患者的肿瘤的方法,其包含向患者施用本文所描述的化合物、盐或药物组合物中的任一种。在一些实施例中,肿瘤包含本文所描述的癌症中的任一种。在一些实施例中,肿瘤包含黑素瘤癌症。在一些实施例中,肿瘤包含乳腺癌。在一些实施例中,肿瘤包含肺癌。在一些实施例中,肿瘤包含小细胞肺癌(sclc)。在一些实施例中,肿瘤包含非小细胞肺癌(nsclc)。在一些实施例中,肿瘤通过遏制肿瘤的进一步生长来治疗。在一些实施例中,肿瘤通过使肿瘤的大小(例如,体积或质量)相对于治疗之前的肿瘤大小减小至少5%、10%、25%、50%、75%、90%或99%来治疗。在一些实施例中,肿瘤通过使患者中的肿瘤的量相对于治疗之前的肿瘤量减少至少5%、10%、25%、50%、75%、90%或99%来治疗。其它增殖性疾病其它增殖性疾病包括例如肥胖、良性前列腺增生、牛皮癣、异常角质化、淋巴组织增生病症(例如,淋巴系统细胞异常增殖的病症)、慢性类风湿性关节炎、动脉硬化、再狭窄以及糖尿病性视网膜病。特此以引用的方式并入的增殖性疾病包括美国专利第5,639,600号和第7,087,648号中所描述的那些。发炎性病症和疾病本发明化合物还可用于治疗皮肤的发炎性或过敏性病况,例如牛皮癣、接触性皮炎、异位性皮炎、斑秃、多形性红斑、疱疹样皮炎、硬皮病、白斑病、超敏性血管炎、荨麻疹、大疱性类天疱疮、红斑狼疮、全身性红斑性狼疮症、寻常天疱疮、落叶型天疱疮、副肿瘤性天疱疮、获得性大疱性表皮松懈、寻常痤疮以及皮肤的其它发炎性或过敏性病况。本发明化合物还可以用于治疗其它疾病或病况,例如具有发炎性组分的疾病或病况,例如治疗眼睛的疾病和病况,例如眼过敏、结膜炎、干性角膜结膜炎和春季结膜炎;影响鼻部的疾病,包括过敏性鼻炎;以及牵涉自身免疫反应或具有自身免疫组分或病因的发炎性疾病,包括自身免疫血液病症(例如溶血性贫血、再生障碍性贫血、纯红细胞贫血和特发性血小板减少症)、全身性红斑性狼疮症、类风湿性关节炎、多软骨炎、硬皮病、韦格纳肉牙肿病(wegenergranulamatosis)、皮肌炎、慢性活动性肝炎、重症肌无力、史蒂芬-约翰逊综合征(steven-johnsonsyndrome)、特发性口炎性腹泻、自身免疫发炎性肠病(例如溃疡性结肠炎和克罗恩氏病(crohn'sdisease))、肠易激综合征、脂泻病、牙周炎、透明膜病、肾病、肾小球病、酒精性肝病、多发性硬化症、内分泌眼病变、格雷氏病(grave'sdisease)、肉状瘤病、肺泡炎、慢性超敏性肺炎、多发性硬化症、原发性胆汁性肝硬化、葡萄膜炎(前和后)、休格连氏综合征(sjogren'ssyndrome)、干性角膜结膜炎和春季角膜结膜炎、间质肺纤维化、牛皮癣性关节炎、全身性幼年型特发性关节炎、隐热蛋白相关周期综合征、肾炎、血管炎、憩室炎、间质性膀胱炎、肾小球肾炎(有或无肾病综合征,例如包括特发性肾病综合征或微小变化肾病变)、慢性肉芽肿性疾病、子宫内膜异位、钩端螺旋体病肾病、青光眼、视网膜病、衰老、头痛、疼痛、复合区域性疼痛综合征、心脏肥大、肌肉萎缩、分解代谢病症、肥胖、胎儿生长迟缓、高胆固醇血症、心脏病、慢性心力衰竭、间皮瘤、无汗性外胚层发育异常、贝塞特氏病(behcet'sdisease)、色素失禁症、佩吉特氏病(paget'sdisease)、胰腺炎、遗传性周期性发热综合征、哮喘(过敏性和非过敏性、轻度、中度、重度、支气管炎的和运动诱导的)、急性肺损伤、急性呼吸窘迫综合征、嗜曙红细胞增多、超敏反应、过敏反应、鼻窦炎、眼睛过敏、二氧化硅诱导的疾病、copd(减少损害、气道发炎、支气管过度反应、重塑或疾病进展)、肺病、囊性纤维化、酸诱导的肺损伤、肺高血压、多发性神经病变、白内障、肌肉发炎结合全身性硬化症、包涵体肌炎、重症肌无力、甲状腺炎、艾迪森氏病(addison'sdisease)、扁平苔癣、1型糖尿病或2型糖尿病、阑尾炎、特应性皮炎、哮喘、过敏、睑炎、细支气管炎、支气管炎、滑囊炎、子宫颈炎、胆管炎、胆囊炎、慢性移植排斥、结肠炎、结膜炎、克罗恩氏病、膀胱炎、泪腺炎、皮炎、皮肌炎、脑炎、心内膜炎、子宫内膜炎、肠炎、小肠结肠炎、上髁炎、附睾炎、筋膜炎、纤维组织炎、胃炎、肠胃炎、过敏性紫癜、肝炎、化脓性汗腺炎、免疫球蛋白a肾病变、间质性肺病、喉炎、乳腺炎、脑膜炎、脊髓炎、心肌炎、肌炎、肾炎、卵巢炎、睾丸炎、骨炎、耳炎、胰腺炎、腮腺炎、心包炎、腹膜炎、咽炎、胸膜炎、静脉炎、肺炎(pneumonitis)、肺炎(pneumonia)、多发性肌炎、直肠炎、前列腺炎、肾盂肾炎、鼻炎、输卵管炎、鼻窦炎、口腔炎、滑膜炎、肌腱炎、扁桃体炎、溃疡性结肠炎、葡萄膜炎、阴道炎、血管炎或外阴炎。在一些实施例中,可以根据本发明的方法治疗的发炎性疾病是皮肤疾病。在一些实施例中,皮肤的发炎性疾病选自接触性皮炎、异位性皮炎、斑秃、多形性红斑、疱疹样皮炎、硬皮病、白斑病、超敏性血管炎、荨麻疹、大疱性类天疱疮、寻常天疱疮、落叶型天疱疮、副肿瘤性天疱疮、获得性大疱性表皮松懈以及皮肤的其它发炎性或过敏性病况。在一些实施例中,可以根据本发明的方法治疗的发炎性疾病选自急性和慢性痛风、慢性痛风性关节炎、牛皮癣、牛皮癣性关节炎、类风湿性关节炎、幼年型类风湿性关节炎、全身性幼年型特发性关节炎(sjia)、隐热蛋白相关周期综合征(caps)和骨关节炎。在一些实施例中,可以根据本发明的方法治疗的发炎性疾病是th17介导的疾病。在一些实施例中,th17介导的疾病选自全身性红斑性狼疮症、多发性硬化症和发炎性肠病(包括克罗恩氏病或溃疡性结肠炎)。在一些实施例中,可以根据本发明的方法治疗的发炎性疾病选自休格连氏综合征;过敏性病症;骨关节炎;眼睛病况,例如眼过敏、结膜炎、干性角膜结膜炎和春季结膜炎;以及影响鼻部的疾病,例如过敏性鼻炎。代谢疾病在一些实施例中,本发明提供一种治疗代谢疾病的方法。在一些实施例中,代谢疾病选自1型糖尿病、2型糖尿病、代谢综合征或肥胖。根据本发明的方法的化合物和组合物可以使用对于治疗癌症、自身免疫病症、增生性病症、发炎性病症、神经退化性或神经病症、精神分裂症、骨相关病症、肝病或心脏病症或减轻其严重程度有效的任何量和任何施用途径来施用。所需的确切量将因受试者而异,这取决于受试者的物种、年龄和一般状况、感染的严重程度、特定药剂、其施用模式等。优选地按单位剂型配制本发明化合物以实现易于施用和剂量均一性。如本文所用,表述“单位剂型”是指适于待治疗患者的药剂的物理离散单位。然而,应理解,本发明化合物和组合物的每日总用量将由主治医师在合理医学判断范围内决定。针对任何特定患者或有机体的特定有效剂量水平将取决于多种因素,包括所治疗的病症和病症的严重程度;所用特定化合物的活性;所用特定组合物;患者的年龄、体重、一般健康状况、性别和饮食;所用特定化合物的施用时间、施用途径和排泄率;治疗持续时间;与所用特定化合物组合或同时使用的药物;和医学领域中众所周知的类似因素。如本文所用,术语“患者”意指动物,优选哺乳动物,并且最优选人类。本发明的药学上可接受的组合物可以经口、经直肠、肠胃外、脑池内、阴道内、腹腔内、局部(如通过散剂、软膏或滴剂)、经颊、作为经口或鼻喷雾等等向人类和其它动物施用,取决于所治疗感染的严重程度。在某些实施例中,本发明化合物可以经口或肠胃外以每天每公斤受试者体重约0.01mg到约50mg并且优选约1mg到约25mg的剂量水平一天一或多次施用,以获得所要治疗效果。用于经口施用的液体剂型包括(但不限于)药学上可接受的乳液、微乳液、溶液、悬浮液、糖浆和酏剂。除了活性化合物之外,液体剂型还可以含有本领域中常用的惰性稀释剂,例如水或其它溶剂、增溶剂和乳化剂,例如乙醇、异丙醇、碳酸乙酯、乙酸乙酯、苯甲醇、苯甲酸苯甲酯、丙二醇、1,3-丁二醇、二甲基甲酰胺、油(特别是棉籽油、花生油、玉米油、胚芽油、橄榄油、蓖麻油和芝麻油)、甘油、四氢糠醇、聚乙二醇和脱水山梨糖醇脂肪酸酯和其混合物。除惰性稀释剂之外,经口组合物还可以包括佐剂,例如湿润剂、乳化剂和悬浮剂、甜味剂、调味剂和芳香剂。可以根据已知技术使用适合分散剂或湿润剂和悬浮剂配制可注射制剂,例如无菌可注射水性或油性悬浮液。无菌可注射制剂也可以是在无毒肠胃外可接受的稀释剂或溶剂中的无菌可注射溶液、悬浮液或乳液,例如呈在1,3-丁二醇中的溶液形式。可以采用的可接受媒剂和溶剂是水、林格氏溶液u.s.p.和等张氯化钠溶液。另外,常规地采用无菌不挥发性油作为溶剂或悬浮介质。出于这个目的,可以采用任何温和不挥发性油,包括合成单酸甘油酯或二酸甘油酯。另外,在可注射剂制备中使用脂肪酸,例如油酸。可注射配制物可以例如通过经由细菌截留过滤器过滤或通过并入灭菌剂来灭菌,呈可以在使用前溶解或分散于无菌水或其它无菌可注射介质中的无菌固体组合物形式。为了延长本发明化合物的作用,通常需要减慢从皮下或肌肉内注射吸收化合物。这可以通过使用具有弱水溶性的结晶或非晶形物质的液体悬浮液来实现。化合物的吸收速率则取决于其溶解速率,溶解速率又可以取决于晶体大小和结晶形式。或者,通过将化合物溶解或悬浮于油媒剂中来实现肠胃外施用的化合物形式的延迟吸收。通过形成化合物在生物可降解聚合物(例如聚丙交酯-聚乙交酯)中的微胶囊基质来制造可注射积存形式。取决于化合物与聚合物的比率和所用特定聚合物的性质,可以控制化合物的释放速率。其它生物可降解聚合物的实例包括聚(原酸酯)和聚(酸酐)。还通过将化合物截留于与身体组织相容的脂质体或微乳液中来制备积存可注射配制物。用于直肠或阴道施用的组合物优选是栓剂,所述栓剂可以通过将本发明化合物与例如可可脂、聚乙二醇或栓剂蜡的适合无刺激性赋形剂或载剂混合而制备,所述赋形剂或载剂在环境温度下是固体、但在体温下是液体并且因此在直肠或阴道腔中熔融并且释放活性化合物。用于经口施用的固体剂型包括胶囊、片剂、丸剂、散剂和粒剂。在此类固体剂型中,活性化合物与以下各物混合:至少一种惰性药学上可接受的赋形剂或载剂,例如柠檬酸钠或磷酸二钙,和/或a)填充剂或增量剂,例如淀粉、乳糖、蔗糖、葡萄糖、甘露糖醇和硅酸;b)粘合剂,例如羧甲基纤维素、海藻酸盐、明胶、聚乙烯吡咯烷酮、蔗糖和阿拉伯胶;c)保湿剂,例如甘油;d)崩解剂,例如琼脂-琼脂、碳酸钙、马铃薯或木薯淀粉、海藻酸、某些硅酸盐和碳酸钠;e)溶液迟延剂,例如石蜡;f)吸收促进剂,例如季铵化合物;g)湿润剂,例如鲸蜡醇和单硬脂酸甘油酯;h)吸收剂,例如高岭土和膨润土;以及i)润滑剂,例如滑石、硬脂酸钙、硬脂酸镁、固体聚乙二醇、月桂基硫酸钠和其混合物。在胶囊、片剂和丸剂的情况下,剂型还可以包含缓冲剂。还可以使用类似类型的固体组合物作为使用例如乳糖(lactose/milksugar)以及高分子量聚乙二醇等的赋形剂的软和硬填充明胶胶囊中的填充剂。固体剂型片剂、糖衣药丸、胶囊、丸剂和粒剂可以用包衣和外壳(例如肠溶包衣和药物配制领域中众所周知的其它包衣)来制备。其可以任选地含有乳浊剂,并且还可以具有使其任选在肠道某一部分中以延迟方式仅释放或优先释放活性成分的组成。可以使用的包埋组合物的实例包括聚合物质和蜡。还可以使用类似类型的固体组合物作为使用例如乳糖以及高分子量聚乙二醇等的赋形剂的软和硬填充明胶胶囊中的填充剂。活性化合物还可以呈与一或多种如上文所提及的赋形剂形成的微胶囊化形式。片剂、糖衣药丸、胶囊、丸剂和粒剂的固体剂型可以用包衣和外壳(例如肠溶包衣、释放控制包衣以及药物配制领域中众所周知的其它包衣)来制备。在此类固体剂型中,活性化合物可以与至少一种惰性稀释剂(例如蔗糖、乳糖或淀粉)混合。正常实践时,此类剂型还可以包含除惰性稀释剂以外的额外物质,例如压片润滑剂和其它压片助剂,例如硬脂酸镁和微晶纤维素。在胶囊、片剂和丸剂的情况下,剂型还可以包含缓冲剂。其可以任选地含有乳浊剂,并且还可以具有使其任选在肠道某一部分中以延迟方式仅释放或优先释放活性成分的组成。可以使用的包埋组合物的实例包括聚合物质和蜡。用于局部或经皮施用本发明化合物的剂型包括软膏、糊剂、乳膏、洗剂、凝胶、散剂、溶液、喷雾剂、吸入剂或贴片。需要时,将活性组分与药学上可接受的载剂和任何所需防腐剂或缓冲剂在无菌条件下混合。眼科配制物、滴耳剂和滴眼剂也涵盖在本发明范围内。另外,本发明涵盖了使用经皮贴片,其具有使化合物可控制地递送到身体的附加优点。此类剂型可以通过将化合物溶解或分配于适当介质中制得。还可以使用吸收增强剂来增加化合物穿过皮肤的通量。可以通过提供速率控制膜或将化合物分散于聚合物基质或凝胶中来控制速率。根据一个实施例,本发明涉及一种调节生物样品中的目标rna的活性的方法,其包含使所述生物样品与本发明化合物或包含所述化合物的组合物接触的步骤。根据另一实施例,本发明涉及一种调节生物样品中的目标rna的活性的方法,其包含使所述生物样品与本发明化合物或包含所述化合物的组合物接触的步骤。在某些实施例中,本发明涉及一种不可逆地抑制生物样品中的目标rna的活性的方法,其包含使所述生物样品与本发明化合物或包含所述化合物的组合物接触的步骤。如本文所用,术语“生物样品”包括(但不限于)细胞培养物或其提取物;由哺乳动物获得的活组织检查物质或其提取物;以及血液、唾液、尿液、粪便、精液、眼泪或其它体液或其提取物。本发明的另一实施例涉及一种调节患者中的目标rna的活性的方法,其包含向所述患者施用本发明化合物或包含所述化合物的组合物的步骤。根据另一实施例,本发明涉及一种抑制患者中的目标rna的活性的方法,其包含向所述患者施用本发明化合物或包含所述化合物的组合物的步骤。根据某些实施例,本发明涉及一种不可逆地抑制患者中的目标rna的活性的方法,其包含向所述患者施用本发明化合物或包含所述化合物的组合物的步骤。在其它实施例中,本发明提供一种治疗有需要的患者的由目标rna介导的病症的方法,其包含向所述患者施用根据本发明的化合物或其药学上可接受的组合物的步骤。此类病症详细描述于本文中。例证如以下实例中所描绘,在某些例示性实施例中,化合物根据以下一般程序制备并且用于生物分析和本文一般描述的其它程序中。应了解,尽管一般方法描绘了某些本发明化合物的合成,但以下一般方法和本领域普通技术人员已知的其它方法可以适用于如本文所描述的所有化合物和这些化合物中的每一个的子类和种类。类似地,检定和其它分析可以根据本领域普通技术人员的知识进行调整。实例1:用于shape-map以定位和定量rna中的修饰位点的程序如上文所论述,多种rna分子在细胞中起重要调节作用。rna二级和三级结构对于这些调节活性来说很关键。各种工具可用于测定rna结构。最有效的方法之一是shape(选择性2'-羟基酰化和引物延伸)。这种方法利用所有rna中的核糖基团都具有反应性会受局部核苷酸柔性和对溶剂的可达性影响的2'-羟基的特征。这种2'-羟基在rna的为单链并且柔性的区域中具反应性,但在碱基配对的核苷酸处不具反应性。换句话说,shape反应性与核苷酸在rna二级结构内碱基配对的概率成反比。在这种2'-羟基处化学修饰rna的试剂可以用作探针以辨别rna结构。shape试剂是与柔性核苷酸的2'-羟基反应以形成2'-o-加合物的小分子,例如1-甲基-7-硝基靛红酸酐(1m7)和苯甲酰氰(bzcn)。除1m7以外,可以利用其它酰化亲电子试剂,例如2-甲基烟碱酸咪唑化物(nai)和2-甲基-3-糠酸咪唑化物(fai)。这种化学修饰所发生的位点可以通过引物延伸或通过免于核糖核酸外切酶消化来检测。shape-map(shape突变图谱分析)利用逆转录酶通读rna化学修饰并且并入与原始模板rna不互补的核苷酸的能力。通过这种错误并入,将通过shape试剂进行的2'-oh修饰的位点记录下来并且通过对cdna深度测序来检测。rna的二级结构可以通过测定相对于例如变性rna的对照在每个rna核苷酸位置处的shape反应性值来阐明。因为特异性rna分子在健康和病变人类细胞中起关键调节作用,所以选择性结合独特rna结构的小分子可以调节这些生物和病理生理过程,并且可以是有前景的新颖治疗候选物。除了使用shape-map测定rna结构之外,修改形式的shape-map可以用以(a)鉴别结合rna的小分子化合物和(b)测定目标rna上的这些化合物的相互作用的位点。本发明的中心特征是将小分子或小分子文库系拴到shape试剂。在使shape试剂酰化的情况下,系链使酰化事件与配体结合事件相关联。rna上的酰化模式将决定性地变化,因为酰化剂的活性将被限制于邻近rna上的配体结合袋的核糖。因此,可以根据如测序数据中所展现的变化的shape-map酰化模式推断配体结合袋的存在和位置。shape-map分析提供了一种可靠的获得折叠rna的三维结构的路径。shape-map的精髓在于:(1)沿着rna的整个主干(spine)所见的溶剂暴露的2'-oh基团的苯甲酰化水平很低。这种反应的成功依赖于核糖的2'-oh相对于其它反应性更小的醇的相对酸性(pka13)。流程1:目标rna的酰化(2)这些共价修饰的rna变性,随后酶介导形成相应cdna或cdna文库。(3)关键发现是,当形成cdna或cdna文库时,目标rna中苯甲酰化的rna核糖诱导碱基并入互补cdna链中。换句话说,存在“通读”,但2'-o-苯甲酰基核糖诱导cdna中的“突变”。(4)在对所得cdna测序后,具有随机突变的位点反映了原始折叠上暴露于溶剂的位点。当关于折叠rna的哪些部分暴露于溶剂的这些推断接着被施加为对用于预测rna结构的计算模型的约束时,可以得到rna的3d结构的高准确性模型。shape方法的包括替代性试剂、条件和数据分析的其它细节描述于wo2015/054247、us2014/0154673、u.s.7,745,614和u.s.8,313,424中,所述专利中的每一个特此以引用的方式并入。实例2:修改shape-map以鉴别小分子rna配体(钩连蠕虫以及钩连和点击(pearl-seq)方法)曾经鉴别结合到rna的小分子配体的努力集中于碱基配对或双链体rna中的典型结构基序:碱基之间的插入和/或沟结合。但这些基序并不支撑小分子选择性结合到特异性rna。然而,rna折叠成呈现有助于小分子结合的袋的巨多种复杂三级结构-与那些袋所呈现的形状和静电互补的小分子。就形状和静电的细节反映rna的潜在序列来说,小分子可以实现选择性,就像其在结合蛋白质袋时一样。实际上,现在存在结合到rna的药物类小分子的若干报道,所述小分子中有许多得到fda批准(参见下表4)。小分子配体,类别尽管一系列小分子化学型已经被证实可结合到折叠rna(古安(guan)与迪斯尼(disney),美国化学会化学生物学(acschem.biol.)20127,73-86,特此以引用的方式并入),但高通量筛选大文库(>105个化合物)以鉴别rna结合配体的报道有限。因此,针对rna结合合成优化的小分子的报道也很少。本发明弥补这些缺陷而铺路。以下是概述广泛化学型的表,所述化学型具有明显rna结合并且将充当起点以优化和验证我们的筛选方法,其转而将实现针对治疗关注的rna结构而系统性筛选基本上所有的已知化学型。表4:rna结合小分子这些发现展现了并未预期的分子作用机制。由于技术挑战相当大而仅难得地实行结合到折叠rna的小分子的有意设计,一个值得注意的实例是设计能够选择性结合到rna三向接合的基于三蝶烯的配体(巴洛斯(barros)等人,应用化学国际版2014,53,13746-13750)。基于三蝶烯的配体因此将提供具有rna结合能力的另一化学型以充当所描述的筛选方法中的另一起点。研究结合到rna的小分子的技术挑战包括许多rna在溶液中不稳定,天然结构在细胞中对未经修饰的rna在溶液中之间的差异相当大,以及常常难以在变性之后恢复原始(推测起来生物学相关)折叠。另外,与蛋白质目标形成对比,细胞中的目标rna的特异性分子“配偶体”和rna上的亚位点常常是未知的。最后,在测定其它生物分子(例如,dna、蛋白质)的结构中常常采用的方法,例如x射线晶体学、nmr和cryo-em,不是在商业相关时间范围中对rna进行精确结构测定的可靠路径。所有这些挑战共同促使rna成为针对小分子文库筛选的难以达成的目标。探索小分子rna调节剂的本发明方法的要素是利用目标rna上的2'-oh亲核试剂的普遍存在,将其用于与在shape-map中不同的目的(参见图1)。通过将例如酰化或磺酰化剂(又名‘弹头’)系拴到rna结合配体,这将对2'-oh共价修饰的位点施加新颖偏倚:具体来说,系链将强有力地促进邻近配体结合位点的核苷酸核糖的酰化。邻位将不限于序列中靠近的核糖,因为rna将是折叠的。弹头和系链的优化将通过使不因配体介导的与折叠rna上的结合袋的预缔合而加速的‘背景’酰化减到最少来致使酰化过程高度选择性。就我们可以在细胞中执行酰化事件来说,我们避开了关于rna结构在自由溶液中相对于rna结构在细胞内部的不良保真性的任何残留担忧。根据这些数据,我们可以推断对于药物发现和优化关键的广泛范围的信息:●rna上的与小分子互补的袋的存在。●目标rna上的结合到所鉴别的小分子的亚位点。●告知折叠rna的3d结构邻近结合袋的约束。●既定小分子还结合到的其它rna的一致性。除了以上方法之外,还有可能并入实现限制了测序广度的各种拉下方法的官能团。我们可以在弹头或系链上并入所谓的‘点击’基团。这些点击基团在rna配体介导的酰化之后实现便捷并入生物素,其转而允许抗生蛋白链菌素或抗生物素蛋白介导的仅对由钩构筑体靶向的那些rna的分离。这将促进总体发现过程并且限制所需要的测序的量。用于聚焦筛选细胞中的单一rna或rna类别的另一方法采用使用呈现与所关注rna的序列互补的序列的dna微阵列拉下所关注rna的标准方法。这将允许选择性分离所关注rna,其可以经由测序分析以确定是否连接任何钩构筑体。针对细胞中的单一rna的聚焦筛选还可以通过经由特异性引物延伸技术对目标测序来实现,因此避开了对分离所关注rna的需要。针对细胞内部的rna目标进行小分子前导鉴别的另一优点在于,存在许多将影响三维折叠的精确形状以及小分子结合袋的凹表面的转录后修饰。就这些转录后修饰根本难以鉴别、难以在病理细胞中评估并且甚至更难以在细胞外部以化学或酶方式再现来说,能够在其天然环境中解决rna目标存在相当大的优点。以下是促成作为筛选的目标的rna的复杂度的一些主要转录后修饰的表:表5转录后修饰介导修饰的酶腺嘌呤->肌苷作用于rna的腺苷脱氨酶(adar)鸟嘌呤->7-甲基鸟嘌呤rna(鸟嘌呤-7-)甲基转移酶5-甲基胞嘧啶->5-羟甲基胞嘧啶十-十一易位(tet)酶腺嘌呤->6-甲基腺嘌呤m6a甲基转移酶复合物胞嘧啶->5-甲基胞嘧啶nsun2和trdmt1共价亲和力转录物组学方法:1.鉴于评估其结合到在溶液中或细胞中的rna的潜力,将小分子配体选用于筛选。分子数目可以是小(1-10个)或大(>1,000,000个)。在机器人液体处置平台上实施这种技术使得在单一筛选周期中筛选>10,000个分子成为可能。2.使所选配体全部系拴到能够与rna上的核糖的2'-oh选择性(也就是说,邻位诱导的)形成共价键的弹头。为这种操作的焦点的反应是酰化和磺酰化。流程2:目标rna的酰化或磺酰化3.构筑体可以任选地含有能够参与获得与额外试剂、最重要地生物素的生物正交、生物相容性共价键的‘点击反应’的官能团。4.视需要使配体-系链-弹头或配体-系链-弹头-点击构筑体(分别是‘钩’或‘即点钩’)暴露于分离rna、合成rna或细胞中的rna一分钟到一小时,使得共价修饰到进行到完全。5.洗涤分离或合成rna以去除过量‘钩’。对于细胞中的rna,溶解细胞并且分离含rna的部分。6.取决于采用哪些构筑体,整个过程现在分成至少三个可能路径:7.可以对所有rna测序。由rna产生cdna的条件使用“通读”酰化或磺酰化核苷酸但与所述位点相对有随机碱基并入的逆转录酶。序列中展现随机并入(或‘突变’)的碱基展现酰化或磺酰化在原始rna上发生的位置。当使用‘钩’时,那些酰化或磺酰化将在于三维形式中邻近结合‘钩’的配体部分的袋的核苷酸处发生。换句话说,序列中的突变是指示目标rna上被既定配体结合的位置的‘信号’。8.或者,使用熟知技术,可以仅分离那些所关注rna并且仅对那些测序。虽然这种路径具有不检测配体与次级靶的缔合的缺点,但其具有缩减需要生成和分析的测序数据的量的优点。针对细胞中的单一rna的聚焦筛选还可以通过经由特异性引物延伸技术对目标测序来实现,因此避开了对分离所关注rna的需要。9.当‘钩’也携有可点击官能团时,第三路径可用。在这个路径上,使用熟知技术使在‘钩连’之后分离的rna经历点击反应以产生点击产物。典型的点击反应是叠氮化物/炔烃环加成(cu催化或非cu催化的)或狄尔斯-阿尔德环加成,但其它化学反应也符合‘钩’的描述。在大多数应用中,点击反应将用以将生物素连接到被‘钩连的’所有rna。用抗生物素蛋白或抗生蛋白链菌素的后续拉下将仅获得已经被‘钩连的’那些rna。这种路径享有两个优点:由既定配体‘钩连的’所有rna都将易于测序并且不必对整个转录物组测序。对于筛选大量的配体,点击步骤所赋予的效率相当高。实例3:用于钩连和点击化合物的shape-map程序(或者在本文中被称为pearl-seq)shape实验使用反应以在柔性rna核苷酸处形成共价2'-o-加合物的2'-羟基选择性试剂。shape可以使用纯化rna或完整细胞进行。shape-map方法利用导致逆转录酶错读shape修饰的核苷酸并且将与原始序列非互补的核苷酸并入到新合成的cdna中的条件。将shape加合物的位置和相对频率记录为cdna一级序列中的突变。在shape-map实验中,将rna用shape试剂处理或仅用溶剂处理,并且对rna进行修饰。使来自每个实验条件的rna逆转录,并且接着对所得cdna测序。通过从关于未经处理样品获得的数据减去经处理样品的数据并且针对变性(未折叠)对照rna的数据归一化,来鉴别反应位置。所述过程展示于图76中(图取自威克斯(weeks)等人,美国国家科学院院刊(pnas)2014,111,13858-63;还参见齐格弗里德(siegfried)等人,自然方法(naturemethods)2014;11:959-965,所述文献中的每一个特此以引用的方式并入)。shape-map可以根据详细公开的方法来进行和分析(马丁(martin)等人,rna2012;18:77-87;麦吉尼斯(mcguinness)等人,美国化学学会杂志2012;134:6617-6624;齐格弗里德等人,自然方法2014;11:959-965;莱文达(lavender)等人,公共科学图书馆计算生物学(ploscomput.biol.)2015;11(5)e1004230;麦吉尼斯等人,美国国家科学院院刊2015;112:2425-2430)。shape-map序列数据可以使用shapefinder(瓦萨(vasa)等人,rna2008;14:1979-1990)或shapemapper(齐格弗里德等人,自然方法2014;11:959-965)或其它软件进行分析。前述出版物中的每一个特此以引用的方式并入。shape-map可以对合成rna或从任何原核或真核细胞分离的rna进行。另外,shape-map可以对完整细胞(包括人类细胞)进行。对纯rna的shape-map在shape-map实验对纯rna进行的情况下,待分析的rna可以由多种不同方式生成。rna可以以寡核苷酸形式化学合成。典型地,合成寡核苷酸很短,长度是约20到100个核苷酸(nt)。然而,长达约200个nt的寡核苷酸可以化学合成。对于超过200个nt的rna,包括超长转录物,rna可以使用t7体外转录系统产生,所述系统是领域中熟知的并且可商购自多种来源(例如,埃皮森特雷(epicentre);麦迪逊(madison),威斯康星州(wi);新英格兰生物实验室(newenglandbiolabs),贝弗利(beverly),马萨诸塞州(ma))的试剂盒用于其;并且rna可以使用多种试剂盒(例如,megaclear试剂盒;安必逊/赛默飞世尔科学(ambion/thermofisherscientific))提纯。使rna变性,并且接着复原以折叠rna。或者,可以在维持天然rna结构的条件下从细胞轻缓地提取rna(夏兰(chillon)等人,酶学方法(methodsenzymol.)2015;558:3-37),并且接着对这种rna离体进行shape-map。如果使用变性的和复原的rna,那么使rna在95℃下变性2分钟,在冰上快速冷却2分钟,并且接着在37℃下在100mmhepes(ph8.0)、100mmnacl和10mmmgcl2中再折叠30分钟。各种shape试剂可用。在这个实例中,shape试剂是1-甲基-7-硝基靛红酸酐(1m7)。100到1000ngrna用于shape反应。将rna在37℃下与10mm1m7一起培育3分钟。平行进行缺乏shape试剂并且含有dmso而非1m7的对照反应。为了考虑加合物检测中的序列特异性偏倚,对rna使用1m7在强变性条件下在50mmhepes(ph8.0)、4mmedta和50%甲酰胺中在95℃下进行修饰。在修饰之后,可以使用rna亲和柱(rneasyminikit;凯杰(qiagen))或g-50旋转柱(通用电气医疗集团(gehealthcare))纯化rna。经处理的rna接着使用对目标rna具有特异性的引物经历逆转录(rt)以便通过传统方法来构筑cdna文库。具体来说,酶条件被选择以产生最小加合物诱导的逆转录终止和最大全长cdna产物。在所测试的二价金属离子中,锰最有效地促进庞大2'-o-加合物的位点处的酶通读。6mmmn2+用于rt反应(0.7mm预混合dntp、50mmtris-hcl(ph8.0)、75mmkcl、6mmmncl2和14mmdtt)。优选的逆转录酶是莫洛尼鼠(moloneymurine)白血病病毒逆转录酶(superscriptii,英杰)。rt反应运行3小时或更久。使用g-50旋转柱提纯反应产物。使用用于伊鲁米那测序的nebnext样品制备模块生成用于大规模平行测序的双链dna文库。使用100ng输入dna进行cdna文库的第二链合成(nebe6111),并且使用purelinkmicropcr提纯试剂盒(英杰k310250)纯化文库。使用nebnext末端修复模块(nebe6050)进行双链dna文库的末端修复。将反应体积调整到100μl,使其经历提纯步骤(安津考特(agencourt)ampurexp珠粒a63880,1.6:1的珠粒与样品比)、d(a)加尾(nebe6053),并且用快速连接模块(nebm2200)与伊鲁米那相容的分叉衔接子(truseq)连接。使用q5热启动、高保真聚合酶(nebm0493)进行乳液pcr44(30个循环)以维持文库样品多样性。将所得文库定量(qubit荧光计;生命技术公司(lifetechnologies)),使用生物分析仪(安捷伦(agilent))验证,汇集,并且使用伊鲁米那miseq或hiseq测序平台使其经历测序。如齐格弗里德等人,自然方法2014;11:959-965中所描述,可以使用shapemapper数据分析管线分析shape-map序列数据。细胞中的shape-map可以将例如1m7的shape-map试剂直接添加到细胞。可以在使用对目标rna具有特异性的引物进行rt-pcr之后对个别rna测序。或,可以通过对总shape-map转录物组深度测序(rna-seq)来分析众多的rna。可以在无拉下的情况下分析提取的rna,或可以通过使用抗生蛋白链菌素珠粒或抗生蛋白链菌素柱通过拉下生物素修饰的rna来分离被修饰的rna。除1m7以外,可以利用其它酰化亲电子试剂,例如2-甲基烟碱酸咪唑化物(nai)和2-甲基-3-糠酸咪唑化物(fai)。在这个细胞实例中,使用nai。可以使用多种细菌、酵母或哺乳动物细胞。优选地,细胞将是人类。可以采用确立的人类细胞系,例如hela或293。或者,如果期望待分析的rna在疾病基因型的背景下,那么可以使用例如成纤维细胞的患者来源的细胞。在遗传性神经或肌肉骨胳疾病的情况下(tred是此类实例),可以采用分化为神经元或肌肉细胞的患者来源的ips细胞。还有可能临在使细胞与化合物接触之前溶解细胞或以其它方式使其破裂。使哺乳动物细胞生长于推荐的培养基(典型地补充有10%胎牛血清、0.1mmmem非必需氨基酸(neaa)、2mml-谷氨酰胺和1%青霉素-链霉素的d-mem培养基)中。将细胞用磷酸盐缓冲生理食盐水(pbs)洗涤3次,接着刮下,并且在25℃下在700rpm下离心沉淀5分钟。将细胞(约3-6×107个)再悬浮于pbs和dmso(阴性对照;10%最终浓度)或含nai的dmso(添加到所要最终浓度,典型地200mm)中。将细胞悬浮液放置在37℃下并且反应多次。接着使反应物离心沉淀并且倾析。向集结细胞中添加1mltrizolls(安必逊),随后添加200μl氯仿。按照trizolls制造商说明书使rna沉淀。将集结粒用70%乙醇洗涤两次并且再悬浮于10μl无rna酶水中。如上文所描述进行逆转录、crna文库构筑、测序和数据分析。在一些情况下,可以通过使用例如抗生蛋白链菌素-生物素系统的工具拉下rna来增浓已经与小分子反应的rna。强抗生蛋白链菌素-生物素键可以用以将各种生物分子彼此连接或连接到固体载体。抗生蛋白链菌素可以用于纯化通过共轭到生物素来加标签的大分子。生物素可以经由点击化学并入到rna结合小分子-系链-反应性弹头中。在基于细胞的shape-map实验中,将细胞用以上化合物处理,从细胞提取rna,并且根据制造商说明书通过使总rna通过抗生蛋白链菌素柱(可以由西格玛-阿尔德里奇(sigma-aldrich)或赛默飞世尔科学获得)或通过使用抗生蛋白链菌素磁珠(可以由金斯瑞(genscript)、emd密理博(emdmillipore)或赛默飞世尔科学获得)来分离已经反应的rna。实例4:共价亲和力转录物组学基本概念的综述本发明的一重要特征是系链。系链使酰化事件与配体结合事件相关联,因此决定性地改变酰化模式,这如测序中的‘突变’一般被观察到,因为仅邻近配体结合袋的核糖将酰化。由此我们推断靶向rna上小分子结合位点的存在以及那些配体结合位点在转录物组上的位置。可以点击可点击生物素,并且接着与珠粒上的抗生蛋白链菌素复合,拉下还携有点击官能团的那些rna配体/系链/弹头构筑体(‘钩’)。这种点击/拉下方案使得能够仅对由‘钩’共价修饰的那些rna测序。分别对靶向rna执行的shape-map与ring-map方案使得能够构建靶向rna的结构模型作为将增强“共价亲和力转录物组学”序列数据的解释的框架。通过细胞中的自由配体的生物活性来测量成果。开发平台的实验(化合物和rna目标)构建文库实现共价亲和力转录物组学的文库将含有系拴到亲电子弹头的小分子(“rna配体”),所述弹头选择性地与目标rna中的核糖的2'-羟基不可逆地形成共价键。文库的多样性涵盖rna配体结构、系链结构和弹头结构的变化形式。将rna配体基于关于rna亲和力的结构决定簇的假设设计,并且接着合成并且连接到系链和弹头。作为一实例,将三蝶烯系列的配体设计以结合到rna中的三向接合(3wj)。或者,rna配体基于其与已知rna配体的类似性或与rna结合袋的互补性而选自可商购来源,购入,并且使其经历进一步合成以连接到系链和弹头。实例包括(但不限于):四环素抗生素、氨基糖苷抗生素、茶碱和类似结构(例如,黄嘌呤)、以及ribocil和类似结构、利奈唑胺和类似结构。在第三并且互补方法中,使用组合化学技术制备rna配体文库。具体来说,使所选系链连接到支撑有机合成的聚合物,并且通过一系列合成化学步骤,以一珠粒一化合物形式制得化合物。这些步骤导致在最终rna配体中并入由广泛范围的官能团连接的广泛范围的片段和反应物。那些化合物释放,并且最终脱珠粒步骤是连接rna弹头。作为文库的功能结果的关键要素,对于每个rna配体和rna弹头,并入多种结构多样的系链以便优化系链长度、系链柔性和耐受额外官能团(具体来说,点击官能团)的能力。所研究的特定系链包括含有一到六个乙烯单元的寡聚乙二醇、高度柔性(例如,含有一到六个氨基酸的寡甘氨酸或寡-n-甲基甘氨酸)或刚性更大(例如,含有一到六个氨基酸的寡脯氨酸或寡-4-羟基脯氨酸)的寡肽。将点击官能团并入到寡聚乙二醇系链中需要在系链的rna配体或rna弹头末端插入携有可点击官能团的氨基酸。将点击官能团并入到寡肽系链中仅仅需要用携有可点击官能团的氨基酸置换任一个氨基酸残基。rna弹头最初基于已经被证实可使rna在核糖上的2'-oh基团处酰化的那些特定弹头和相连官能团选择。此类弹头包括靛红酸酐、酰基咪唑、芳基酯(例如,阿司匹林)和磺酰基氟化物。额外弹头将通过(1)对前述弹头合成修饰以确立rna弹头的结构/活性关系以及(2)针对其使核糖2'-oh基团酰化的能力筛选可商购的亲电子试剂来鉴别。后者的实例包括已知可共价修饰丝氨酸水解酶中的催化丝氨酸的β-内酰胺抗生素和相关结构、β-内酯和缺电子的氨基甲酸酯。点击官能团选自所公开的点击试剂和反应物的标准‘工具包’。本发明工作集中于叠氮化物、炔烃(末端和应变)、二烯、四嗪和亲二烯体。当并入到系链片段(上文所提及)中时,其将典型地在并入的氨基酸的侧链上。当并入到rna弹头中时,所述增强的rna弹头的同时订制合成需要更仔细并且紧凑的设计。构建平台-i型钩有‘钩’在手,第一步骤是证实系拴到rna配体的rna弹头产生反映了与结合位点的系链限制的邻位的核糖修饰。这组结果是在已知rna/配体对中进一步优化邻位诱导的和亲和力诱导的核糖2'-oh共价修饰的基础。通过x射线晶体学来测定四环素与30s核糖体rna[布罗德森等人细胞2000,103,1143-1154]和进化适体[费雷-德安玛丽(ferré-d'amaré)等人,化学与生物学(chem&bio)2008]的结合位点和结合模式。最初针对这两种rna研究系拴到rna弹头的四环素以展现那些rna中的邻位诱导的核糖修饰。三蝶烯配体已经被证实[巴洛斯(barros)与切诺维斯(chenoweth),应用化学(angew.chem.)2014]可结合到rna三向接合中的形状互补腔中。系拴到rna弹头的三蝶烯使得能够探测三向接合中的邻近修饰。两种系统(四环素和三蝶烯)基于先例和结构得到很好控制,类似地实现对系链长度和系链刚度和rna弹头sar的很好控制的优化。这两种系统四环素和三蝶烯还实现了在新rna弹头的情形下对测序方法的优化。已经在分离的模型rna中证实了邻位诱导的核糖修饰模式后,使相同rna表达于细胞中并且使最优‘钩’暴露于那些细胞,证实‘钩’进入细胞、结合目标rna和以与非细胞条件中大体上相同的模式共价修饰其的能力。最初,测序通过使用pcr的目标特异性引物序列仅集中于所关注rna目标。然而,相同实验中的广泛pcr和深度测序得到细胞中的还由四环素钩或三蝶烯钩结合的所有rna的概括。这些数据反映了所选rna配体的固有选择性和使用测序方法在转录物组上评估选择性的能力。因为最终目的是鉴别可以从‘钩’释放并且展现所关注细胞生物学的rna配体,所以第一步骤是一系列竞争实验:(1)在初始无细胞钩连实验中,当自由(未系拴)rna配体添加到溶液时,其应与其同源‘钩’为占用小分子结合袋而竞争并且抑制邻位诱导的核糖修饰。(2)类似地,在细胞实验中,添加自由(未系拴)rna配体将产生相同竞争,但在由配体靶向的所有rna与同源‘钩’中。构建平台-ii与iii型钩已经以生物化学方式和在细胞中证实了邻位诱导的核糖2'-oh共价修饰后,对分别将可点击官能团并入到系链或rna弹头中的“ii型”或“iii型”执行相同实验。检查这些‘钩’以证实,其再现上文所描述的结果,并且所添加的可点击官能团不损害其作为rna‘钩’的功能。在以生物化学方式或在细胞中使ii型和iii型‘钩’暴露于rna之后,使所得钩/rna加合物暴露于携有生物素的可商购的互补点击剂。在第一例证中,‘钩’上的可点击官能团将是叠氮化物并且可点击生物素将是实现无铜环加成的应变环辛炔。重要的是监测点击反应的程度以确保点击反应达到完全。在实验在细胞中执行的那些情况下,可以在点击反应之前或之后溶解细胞。接着使所得点击加合物暴露于珠粒上的抗生蛋白链菌素并且拉下珠粒。在洗掉细胞碎片和非加合rna之后,可以使拉下的rna变性并且进行测序。追求所关注目标的化合物和条件家族性肌萎缩性侧索硬化(als)和额颞痴呆(ftd)的分子病因可以追踪到(ggggcc)六核苷酸重复序列在c9orf72中因一系列生成所致的聚积。选择性阻断脑中的这种异常rna具有引人注目的治疗潜力。这种rna是非常适合于‘钩’文库技术的初始并且临床上高价值的目标。使上文所描述的文库在两种背景下暴露于c9orf72六核苷酸重复序列rna结构:(1)变化长度的合成rna在溶液中和(2)在表达这种rna的来自患者的病变细胞中。这些暴露是一个‘钩’/孔。初始操作不需要可点击‘钩’,因为测序使用目标特异性引物执行。可点击‘钩’用作二级筛选以评估据测定结合到六核苷酸重复序列的药剂的转录物组宽的选择性。就存在极少或不存在结合到c9orf72六核苷酸重复序列的分子的先例来说,处理这种rna目标需要‘钩’文库配体多样性的广度。此外,就目标的构象可能很大程度上受细胞(例如,rna结合蛋白)的微环境影响来说,处理这种rna目标还需要能够筛选细胞中的小分子。备受关注的将是,是否鉴别结合到目标上的独特位点的分子;或目标的周期性是否以其折叠形式保留,产生一系列周期性的结合袋。最后,对于产生c9orf72rna目标的邻位诱导的修饰的那些‘钩’,将rna配体片段在不系拴到‘钩’构筑体的情况下再合成或再分离,并且测试与结合到内源c9orf72rna目标相一致的生物活性。对数种高价值的初始目标执行相同方案:myc和其它前mrna的5'-utr中的uorf、前mrna中的内含子、产生mir-155的初级转录物(pri-pre-mir-155)、以及lncrnamalat-1和hotair。omniplex实验有趣的是注意到,有可能以完全无偏倚的方式对广泛并且多样的‘钩’文库执行基于细胞的筛选。在这种情况下,借助充足测序资源,实现了全面的转录物组宽的目标鉴别。因此,在本发明的一些实施例中,(1)针对细胞筛选可点击‘钩’文库,(2)在每个孔中,将由rna弹头‘钩连的’所有rna拉下并且测序,和(3)可以分析所得序列数据以找到所用‘钩’文库中的由所有配体解决的所有目标。实例5:合成1a型弹头流程:合成1a型弹头2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-甲酸,1a型弹头.在室温下向2-氨基对苯二甲酸(2.0g,11.05mmol)于1,4-二恶烷(160ml)中的溶液中添加三光气(3.28g,11.05mmol)。在室温下搅拌所得反应混合物6小时。将反应混合物倾入去矿物质水(400ml)中并且用乙酸乙酯(3×150ml)萃取。将有机层合并、用盐水洗涤并且在减压下浓缩,得到呈灰白色固体状的弹头_1a型(2.2g,96.2%)。1hnmr(400mhz,dmso-d6)δ13.67ppm(1h,宽峰),11.89ppm(1h,宽峰),8.03-8.01ppm(1h,d),7.73-7.68ppm(2h,m)。ms(esi-ms):c9h5no5[mh]-的m/z计算值206.02,实验值206.17。实例6:合成1b型弹头流程:合成1b型弹头2-(甲基氨基)苯-1,4-二甲酸1,4-二甲酯(1).在室温下向2-氨基苯-1,4-二甲酸二甲酯(10.0g,0.05mol)于丙酮(150ml)中的溶液中依序添加碳酸钾(19.8g,0.143mol)和硫酸二甲酯(18.1g,0.143mol)。在60℃下搅拌所得反应混合物24小时。将反应混合物缓慢冷却到室温并且用水(200ml)稀释。接着用乙酸乙酯(4×750ml)萃取所得混合物。将有机层合并、用盐水洗涤并且在减压下浓缩,得到呈棕色固体状的粗1。通过在硅胶上进行柱色谱(7%etoac/己烷)纯化粗混合物,得到呈淡黄色固体状的1(4.5g,42%)。ms(esi-ms):c11h13no4[mh]+的m/z计算值224.08,实验值224.2。2-(甲基氨基)苯-1,4-二甲酸(2).在室温下向2-(甲基氨基)苯-1,4-二甲酸二甲酯(1)(4.5g,0.02mol)于thf(100ml)和水(50ml)中的溶液中添加氢氧化钾(3.4g,0.06mol)。在70℃下搅拌所得反应混合物4小时。将反应混合物冷却到室温、用水(200ml)稀释并且使用硫酸氢钾酸化。接着用乙酸乙酯(4×75ml)萃取所得混合物。将有机层合并、用盐水洗涤并且在减压下浓缩,得到呈米白色固体状的粗2(3.0g,76.33%)。粗混合物不经进一步纯化即用于下一步骤中。1hnmr(400mhz,dmso-d6)δ13.14ppm(1h,s),7.87-7.85ppm(1h,d,j=8.0hz),7.21-7.21ppm(1h,d,j=1.6hz),7.10-7.07(1h,dd,j=8.0),2.87(1h,s)。ms(esi-ms):c9h9no4[mh]+的m/z计算值196.05,实验值196.21。1-甲基-2,4-二氧代-2,4-二氢-1h-3,1-苯并恶嗪-7-甲酸,1b型弹头.在室温下向2-(甲基氨基)苯-1,4-二甲酸(2)(3.0g,0.015mol)于四氢呋喃(90ml)中的悬浮液中添加三光气(2.28g,0.076mol)。在30℃下搅拌所得反应混合物30分钟。将反应混合物冷却到室温、用水(50ml)稀释并且用乙酸乙酯(3×100ml)萃取。将有机层合并、用盐水洗涤并且在减压下浓缩,得到呈黄色固体状的粗1b型弹头。通过使用乙醚湿磨来纯化粗混合物,得到呈黄色固体状的1b型弹头(3.1g,91.17%)。1hnmr(400mhz,dmso-d6)δ13.78ppm(1h,s),8.12-8.09(1h,d,j=8.4),7.82-7.80(2h,m),3.51(3h,s)。ms(esi-ms):c10h7no5[mh]-的m/z计算值220.03,实验值220.07。类似于这种类型的额外弹头包括n-甲基靛红酸酐、1-甲基-6-硝基靛红酸酐和1-甲基-7-硝基靛红酸酐。这些弹头是可商购的。实例7:合成2型弹头流程:合成2型弹头7-甲氧基-2h-苯并[d][1,3]恶嗪-2,4(1h)-二酮(1).在室温下向2-氨基-4-甲氧基苯甲酸(20g,119.73mmol)于1,4-二恶烷(400ml)中的溶液中添加三光气(17.8g,59.86mmol)。在室温下搅拌所得反应混合物6小时。将反应混合物倾入去矿物质水(1l)中并且用乙酸乙酯(3×350ml)萃取。将有机层合并、用盐水洗涤并且在减压下浓缩,得到呈灰白色固体状的1(20.5g,88%)。1hnmr(400mhz,dmso-d6)δ11.66ppm(1h,宽峰),7.85-7.83ppm(1h,d,j=8.8hz),6.85-6.83ppm(1h,dd,j=2.4,6.4hz),6.59-6.58ppm(1h,d,j=2.4hz),3.86ppm(3h,s)。ms(esi-ms):c9h7no4[mh]-的m/z计算值192.04,实验值192.16。7-甲氧基-1-甲基-2h-苯并[d][1,3]恶嗪-2,4(1h)-二酮(2).在室温下向7-甲氧基-2h-苯并[d][1,3]恶嗪-2,4(1h)-二酮(1)(20.5g,106.2mmol)于n,n-二甲基甲酰胺(200ml)中的溶液中添加k2co3(14.65g,106.2mmol),并且搅拌所得反应混合物10分钟。在室温下向其中逐滴添加碘甲烷(18.08g,127.44mmol)。将反应混合物倾入去矿物质水(1l)中并且用乙酸乙酯(3×350ml)萃取。将有机层合并、用盐水洗涤并且在减压下浓缩,得到粗2。通过用己烷湿磨来纯化粗物质,得到呈灰白色固体状的2(17.9g,93.23%)。产物不经进一步纯化即用于下一步骤中。1hnmr(400mhz,dmso-d6)δ7.95-7.93ppm(1h,d,j=8.4hz),6.94-6.91ppm(1h,dd,j=2.4,6.4hz),6.86-6.85ppm(1h,d,j=2hz),3.94ppm(3h,s),3.46ppm(3h,s)。ms(esi-ms):c10h9no4[mh]+的m/z计算值208.05,实验值208.2。7-羟基-1-甲基-2h-苯并[d][1,3]恶嗪-2,4(1h)-二酮(3).在0℃下向7-甲氧基-1-甲基-2h-苯并[d][1,3]恶嗪-2,4(1h)-二酮(2)(10g,48.30mmol)于二氯甲烷(500ml)中的溶液中逐滴添加bbr3(于二氯甲烷中的1m溶液)(72.44ml,72.44mmol)。将所得反应混合物在0℃下搅拌1小时并且缓慢使其达到室温并且进一步搅拌24小时。用正己烷(500ml)稀释反应混合物,并且过滤所获得的残余物。将所收集的固体用正己烷(3×50ml)洗涤并且在减压下干燥。将固体进一步悬浮于水(1l)中并且用二氯甲烷(5×350ml)萃取。将有机层合并、用盐水洗涤并且在减压下浓缩,得到呈棕色固体状的3(7.9g,84.74%)。1hnmr(400mhz,meod)δ7.96-7.94ppm(1h,d,j=8.8hz),6.78-6.75ppm(1h,dd,j=2,6.4hz),6.69-6.69ppm(1h,d,j=2.4hz),3.52ppm(3h,s)。ms(esi-ms):c9h7no4[mh]-的m/z计算值192.04,实验值191.96。2-((1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-基)氧基)乙酸苯甲酯(4).在室温下向7-羟基-1-甲基-2h-苯并[d][1,3]恶嗪-2,4(1h)-二酮(3)(7.9g,40.93mmol)于丙酮(800ml)中的溶液中添加k2co3(14.12g,102.315mmol)并且搅拌反应混合物20分钟。在室温下向其中逐滴添加2-溴乙酸苯甲酯(11.251g,49.111mmol)并且进一步搅拌所得反应混合物5小时。过滤反应混合物,并且用丙酮(3×20ml)洗涤所收集的残余物。在减压下浓缩滤液,得到固体块。将固体块溶解于乙酸乙酯(1l)中并且用水(3×300ml)洗涤。将有机层合并、用盐水洗涤并且在减压下浓缩,得到粗4。通过在硅胶上进行柱色谱(20%etoac/正己烷)纯化粗混合物,得到呈黄色油状的纯4(0.39g,62.9%)。1hnmr(400mhz,dmso-d6)δ7.94-7.92ppm(1h,d,j=8.4hz),7.38-7.35ppm(5h,m),6.95-6.92ppm(1h,dd,j=2,6.8hz),6.87-6.87ppm(1h,d,j=2hz),5.23ppm(2h,s),5.14ppm(2h,s),3.40ppm(3h,s)。ms(esi-ms):c18h15no6[mh]+的m/z计算值342.09,实验值342.28。2-((1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-基)氧基)乙酸,弹头_2型.在室温下向10%pd/c(干基)(1.25g,5%w/v)于thf:etoac的1:1混合物(400ml)中的悬浮液中添加2-((1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-基)氧基)乙酸苯甲酯(4)的溶液(6.5g,19.057mmol)。在室温下将h2气体吹洗到反应混合物中3小时。通过硅藻土床过滤反应混合物,并且在减压下浓缩所收集的滤液,得到粗弹头_2型。通过用正己烷(3×20ml)湿磨来纯化粗混合物,得到呈灰白色固体状的弹头_2型(0.39g,62.9%)。1hnmr(400mhz,dmso-d6)δ13.25ppm(1h,brs),7.95-7.92ppm(1h,d,j=8.4hz),6.92-6.88ppm(2h,m),4.94ppm(2h,s),3.44ppm(3h,s)。ms(esi-ms):c11h9no6[mh]+的m/z计算值252.04,实验值252.47。实例8:ark-1(ark000007)的合成流程:ark-1的合成卡那霉素a游离碱,1.在250ml烧杯中,将单硫酸卡那霉素a(5.0g,8.582mmol)溶解于水(100ml)中并将所得水溶液通过ira-400-oh型离子交换树脂。使用去矿物质水洗脱游离碱并将收集的级分冻干,得到呈白色固体状的游离碱1(3.8g,91%),其不经进一步纯化即使用。ms(esi-ms):c18h36n4o11[mh]+的m/z计算值485.23,实验值485.26。1,3,6',3"-四-n-(叔丁氧基羰基)卡那霉素a,2.在室温下向经搅拌的于dmso(140ml)和水(40l)(180ml)中的卡那霉素a游离碱(1)(3.7g,7.641mmol)的溶液中添加boc酸酐(20g,91.692mmol)并将所得反应混合物在70℃下加热20小时。在冷却到室温之后,向所得反应混合物中添加nh4oh的水溶液(30ml),产生沉淀物。经由过滤收集沉淀物,用水(2×350ml)洗涤并在减压下干燥,得到呈白色固体状的纯净2(5.7g,84%)。1hnmr(400mhz,dmso-d6)δ6.92ppm(1h,s),6.62ppm(1h,s),6.53-6.51ppm(1h,d,j=6.8hz),6.38ppm(1h,s),5.40ppm(1h,宽峰s),5.27ppm(1h,宽峰s),4.71ppm(1h,宽峰s),4.22ppm(1h,宽峰s),3.80-3.25ppm(15h,宽峰m),3.07ppm(1h,宽峰s),1.82-1.75ppm(1h,宽峰s),1.37ppm(36h,宽峰s);ms(esi-ms):c38h68n4o19[mh]+的m/z计算值885.44,实验值907.7(m+na加合物)。6"-(2,4,6-三异丙基苯磺酰基)-1,3,6',3"-四-n-(叔丁氧基羰基)卡那霉素a,3.在室温下向经搅拌的于吡啶(35ml)中的1,3,6',3"-四-n-(叔丁氧基羰基)卡那霉素a(2)(2g,2.261mmol)的溶液中添加于吡啶(4ml)中的2,4,6-三异丙基苯磺酰氯(4.11g,13.567mmol)的溶液。将所得反应混合物在室温下搅拌20小时。在这之后,向反应混合物中添加甲醇(30ml)并进一步搅拌30分钟。随后将反应混合物倒入冷却的10%hcl溶液(400ml)中并用乙酸乙酯(4×200ml)萃取。组合有机层,用盐水洗涤,使用无水na2so4干燥并在减压下浓缩,得到呈黄色固体状的粗产物3。通过进行硅胶柱色谱(2%meoh/氯仿)纯化粗混合物,得到呈浅黄色固体状的纯净3(0.5g,73%)。ms(esi-ms):c53h90n4o21s[mh]+的m/z计算值1151.58,实验值908.6(m-tipbs片段+na加合物)。6"-叠氮基-1,3,6',3"-四-n-(叔丁氧基羰基)卡那霉素a,4.在室温下向35ml压力小瓶中馈入6"-(2,4,6-三异丙基苯磺酰基)-1,3,6',3"-四-n-(叔丁氧基羰基)卡那霉素a(3)(0.5g,0.434mmol)、nan3(0.565g,8.691mmol)、dmf(15ml)。将所得反应混合物在微波下在120℃下照射3小时。在冷却到室温之后,将反应混合物用冷水(150ml)淬灭并用乙酸乙酯(3×50ml)萃取。组合有机层,用盐水洗涤,使用无水na2so4干燥并在减压下浓缩,得到呈棕色油状的粗产物4。使用以下方法通过制备型hplc来纯化粗混合物,得到呈浅黄色固体状的纯净4(0.11g,27%)。1hnmr(400mhz,cd3od)δ5.11-5.02ppm(2h,t,j=9.6hz),4.37-4.35ppm(1h,d),3.73-3.36ppm(15h,m),3.23-3.18ppm(1h,t,j=9.2hz),2.07-2.04ppm(1h,d,j=13.2hz),1.47-1.45ppm(36h,brs)。ms(esi-ms):c38h67n7o18[mh]+的m/z计算值910.45,实验值932.67(m+na加合物)。制备型hplc的方法:(a)10mm碳酸氢铵/h2o(hplc级)和(b)mecn:ipa(90:10)(hplc级),使用x-bridgec18,250×19mm,5un,流动速率19.0ml/min且使用以下梯度:时间%a%b0.0160.040.017.0035.065.017.010.0100.021.000.0100.021.0160.040.022.0060.040.06"-叠氮基-卡那霉素a三氟乙酸盐,ark-1-tfa盐.将6"-叠氮基-1,3,6',3"-四-n-(叔丁氧基羰基)卡那霉素a(4)(0.11g,0.121mmol)溶解在dcm:tfa的1:1混合物(3.2ml)中并将所得溶液在室温下搅拌30分钟。在减压下浓缩反应混合物并使用乙醚研磨,得到呈浅黄色固体状的纯净ark-1-tfa盐(0.12g,102%)。1hnmr(400mhz,d2o)δ5.39-5.38ppm(1h,d,j=3.6hz),4.95-4.94ppm(1h,d,j=3.2hz),3.796-3.71ppm(5h,m),3.64-3.31ppm(11h,m),3.07-3.01ppm(1h,q,j=14.4,9.2hz),2.40-2.37ppm(1h,m),1.77-1.74ppm(1h,q,j=12.8hz),1.09-1.02ppm(1h,m).ms(esi-ms):c18h35n7o10+3tfa[mh]+的m/z计算值509.24,实验值510.4。hplc保留时间:7.103分钟。6"-叠氮基-卡那霉素a盐酸盐,ark-1-hcl盐(ark000007).将6"-叠氮基-卡那霉素a三氟乙酸盐,ark-1-tfa盐(0.12g,0.124mmol)溶解在水(40ml)中并将所得水溶液通过ira-400-oh型离子交换树脂。使用去矿物质水洗脱游离碱且将收集的级分冻干,得到呈游离碱形式的ark-1。将游离碱溶解在0.01nhcl(4ml)中并将所得溶液冻干,得到呈黄色固体状的纯净ark-1-hcl盐(0.06g,77%)。1hnmr(400mhz,d2o)δ5.41-5.40ppm(1h,d,j=2.4hz),4.96ppm(1h,brs),3.90-3.76ppm(5h,m),3.62-3.60ppm(2h,d,j=8.8hz),3.55-3.19ppm(10h,m,),3.07-3.01ppm(1h,m),2.41-2.38ppm(1h,d,j=12),1.82-1.73ppm(1h,q,j=12.8hz)。ms(esi-ms):c18h35n7o10.3hcl[mh]+的m/z计算值510.24,实验值510.2。hplc保留时间:14.897分钟。实例9:ark-7(ark0000013)的合成流程:ark-7的合成2,7,15-三硝基-9,10-二氢-9,10-[1,2]苯蒽,1a.在室温下向三蝶烯(10g,39.3mmol)中逐滴添加浓hno3(400ml)并将所得反应混合物在80℃下加热16小时。使所得棕色溶液冷却到室温,倒入冰冷水(3000ml)并搅拌30分钟。收集获得的沉淀物,用冷水洗涤,并随后在空气中干燥,得到1a和1b的粗混合物。通过进行硅胶快速柱色谱(20%etoac/己烷)来纯化粗混合物,得到呈白色固体状的纯产物1a(2.23g,14.10%)。1amp:>300℃1hnmr(400mhz,cdcl3)δ8.37-8.36ppm(3h,d,j=2hz),8.08-8.06ppm(3h,dd,j=8hz,j=2hz),7.66-7.64ppm(3h,d,j=8.4hz),5.87ppm(1h,s),5.84ppm(1h,s),13cnmr(400mhz,dmso-d6)150.24,145.91,145.76,126.10,122.60,119.93,52.18,51.48;ms(esi-ms):c20h21n3o6[mh]+的m/z计算值390.06,未观测到质量反应。1bmp:178-180℃1hnmr(400mhz,cdcl3)δ8.36-8.35ppm(3h,m),8.09-8.06ppm(3h,m),7.69-7.65ppm(3h,m),5.86ppm(1h,s),5.85ppm(1h,s)13cnmr150.93,150.57,145.72,145.33,144.92,125.97,122.54,119.93,55.33,51.98,51.74。9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三胺,2.向于thf(100ml)中的2,7,15-三硝基-9,10-二氢-9,10-[1,2]苯蒽(1a)(2.23g,5.73mmol)的溶液中添加雷尼镍(raneynickel)(1.0g)并将所得反应混合物冷却到0℃。在0℃下向所得混合物中添加肼水合物(4ml)。将反应混合物在60℃下搅拌1小时。使所得反应混合物冷却到室温并经由硅藻土过滤用thf洗脱。在减压下浓缩滤液,得到呈棕色固体状的粗产物2(1.5g,88.23%),其不经进一步纯化即使用。1hnmr(400mhz,cdcl3)δ7.09-7.07ppm(3h,d,j=7.6hz),6.75-6.75ppm(3h,d,j=2hz),6.29-6.27ppm(3h,dd,j=7.6hz,j=2hz),5.10ppm(1h,s),5.02ppm(1h,s),3.51-3.35ppm(6h,宽峰s)。ms(esi-ms):c20h17n3[mh]+的m/z计算值300.14,实验值300.4。2,7,15-三碘-9,10-二氢-9,10-[1,2]苯蒽,3.在100ml圆底烧瓶中,将9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三胺(2)(0.9g,3.01mmol)溶解在浓盐酸(7.5ml)和水(15ml)中,并将所得溶液冷却到0℃。向其中经10分钟逐滴添加于水(7.5ml)中的亚硝酸钠(0.72g,10.5mmol)的溶液,并将所得反应混合物在0℃下搅拌20分钟。在这之后,在0℃下向反应混合物中逐滴添加于水(10ml)中的碘化钾(3.74g,22.58mmol)的溶液并进一步搅拌5分钟。随后使反应混合物缓慢升温到室温并在80℃下加热2小时。在冷却到室温之后,用水(50ml)稀释反应混合物并用二氯甲烷萃取(3×25ml)。组合有机层,用饱和硫酸氢钠洗涤(3×30ml),使用无水na2so4干燥并在减压下浓缩,得到呈棕色半固体状的粗产物3。通过进行硅胶快速柱色谱(5%etoac/己烷)来纯化粗混合物,得到呈黄色固体状的纯净产物3(0.57g,30.0%)。1hnmr(400mhz,cdcl3)δ7.74-7.73ppm(3h,d,j=1.6hz),7.39-7.36ppm(3h,dd,j=7.6hz,j=1.6hz),7.66-7.64ppm(3h,d,j=7.6hz),5.31ppm(1h,s),5.26(1h,s)。9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三甲腈,4.向于dmf(5ml)中的2,7,15-三碘-9,10-二氢-9,10-[1,2]苯蒽(3)(0.55g,0.87mmol)的溶液中添加氰化锌(0.33g,2.79mmol),并将所得反应混合物用氮气脱气20分钟。向其中添加tetrakis(0.10g,0.1mmol)并将所得反应混合物在140℃下搅拌16小时。在冷却到室温之后,经由硅藻土过滤反应混合物,用冷水(20ml)淬灭,并用二氯甲烷萃取(3×30ml)。组合有机层,用盐水洗涤,使用无水na2so4干燥并在减压下浓缩,得到呈棕色半固体状的粗产物4。通过进行硅胶快速柱色谱来纯化粗混合物(25%etoac/己烷),得到呈浅黄色固体状的纯净产物4(0.2g,70.0%)。1hnmr(400mhz,cdcl3)δ7.74-7.74ppm(3h,d,j=1.2hz),7.39-7.36ppm(3h,dd,j=7.6hz,j=1.6hz),7.66-7.64ppm(3h,d,j=7.6hz),5.31ppm(1h,s),5.26(1h,s)。9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三甲酸,5.在室温下向于meoh(5ml)中的9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三甲腈(4)(0.40g,1.22mmol)添加15%naoh水溶液(5ml,18.24mmol),并将所得反应混合物在60℃下搅拌16小时。在冷却到室温之后,在减压下除去过量的meoh,并向所得混合物中倒入冰冷水(50ml)。使用1nhcl将这一水溶液的ph调节到约2,并经由过滤收集所获得的残余物,得到呈白色固体状的粗产物5(0.30g,65.3%),其不经进一步纯化即使用。1hnmr(400mhz,meod)δ8.12ppm(3h,d,j=1.2hz),7.79-7.77ppm(3h,dd,j=7.6hz,j=1.6hz),7.58-7.56ppm(3h,d,j=4hz),5.832ppm(2h,s);ms(esi-ms):c12h26o6[mh]-的m/z计算值385.07,实验值385.1。(3-((3-氨基丙基)(甲基)氨基)丙基)氨基甲酸叔丁基酯,2a.在0℃下向于thf(10ml)中的n1-(3-氨基丙基)-n1-甲基丙烷-1,3-二胺(5g,38.48mmol)的溶液中经20分钟的时间逐滴添加boc酸酐(1.50g,6.89mmol),并将所得反应混合物在室温下搅拌16小时。在减压下除去thf并向所得混合物中倒入水(50ml)。将水性混合物用乙酸乙酯萃取(3×30ml)。组合有机层,用水洗涤,使用无水na2so4干燥并在减压下浓缩,得到呈无色油状的纯净2a(1.3g,15.4%)。1hnmr(400mhz,d6-dmso)δ6.80-6.79ppm(1h,d,j=4hz),3.17(3h,宽峰s)2.94-2.89ppm(2h,dd,j=12.4,6hz),2.51ppm(2h,宽峰s),2.28-2.21ppm(4h,m),2.08-2.07(2h,d,j=4hz),1.50-1.44ppm(4h,m),1.37(9h,s);ms(esi-ms):c12h26n2o2[mh]+的m/z计算值246.21,未观测到质量反应。n2,n7,n15-三(3-((3-叔丁基-羰基氨基丙基)(甲基)氨基)丙基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三甲酰胺,6.向于dmf(3ml)中的(3-((3-氨基丙基)(甲基)氨基)丙基)氨基甲酸叔丁基酯(2a)(0.71g,2.91mmol)的溶液中添加9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三甲酸(0.35g,0.91mmol)、hatu(1.1g,2.91mmol)、dipea(1.0ml,5.82mmol),并将所得反应混合物在室温下搅拌2小时。向反应混合物中倒入水(50ml)并用二氯甲烷萃取(3×25ml)。组合有机层,用盐水洗涤,使用无水na2so4干燥并在减压下浓缩,得到呈棕色油状的粗产物6。使用以下方法通过制备型hplc来纯化粗混合物,得到呈浅黄色固体状的纯净产物6(0.2g,20.7%)。1hnmr(400mhz,d6-dmso)δ8.40-8.37(3h,t,j=5.2hz),7.93(3h,s)7.55-7.49ppm(6h,dd,j=16,7.6hz),6.78ppm(3h,宽峰s),5.87ppm(2h,宽峰s),3.23-3.21ppm(6h,m),2.93-2.90(6h,m),2.30-2.22(12h,m),1.61-1.58(6h,m),1.50-1.46(6h,m),1.31(27h,s)。ms(esi-ms):c59h89n9o9[mh]+的m/z计算值1068.68,实验值1068.9。制备型hplc的方法:(a)10mmnh4hco3/水(b)mecn:meoh:ipa(65:25:10),使用沃特世(waters)x-bridgec18,250mm×19mm,5.0μm,流动速率15.0ml/min且使用以下梯度:时间%a%b0.0175.025.023.0030.070.023.010.0100.024.000.0100.024.0175.025.025.0075.025.0n2,n7,n15-三(3-((3-氨基丙基)(甲基)氨基)丙基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三甲酰胺,ark-7.在室温下向于1,4-二恶烷(5ml)中的n2,n7,n15-三(3-((3-叔丁基-羰基氨基丙基)(甲基)氨基)丙基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三甲酰胺(6)(0.2g)的溶液中添加4mhcl/二恶烷(1ml),并将所得反应混合物搅拌2小时。在减压下浓缩混合物,得到呈浅黄色固体状的ark-7的纯净盐酸盐(0.072g,50.3%)。1hnmr(400mhz,d2o)δ7.70ppm(3h,s),7.42-7.40ppm(3h,d,j=7.6hz),7.34-7.32ppm(3h,d,j=8hz),5.73ppm(1h,s),5.71(1h,s),3.34-3.30ppm(6h,t),3.23-3.03ppm(12h,m),2.97-2.93ppm(6h,t),2.76ppm(9h,s),2.06-1.92ppm(12h,m),ms(esi-ms):c44h65n9o3[mh]+的m/z计算值768.52,实验值768.7。hplc保留时间:4.277分钟。实例10:ark-8(ark0000014)的合成ark-8的合成依照上文用于ark-7的方法来得到中间体5。随后将其与下文中间体2a偶联并如下文所描述地转化为ark-8。(7-氨基庚基)氨基甲酸叔丁基酯,2a.在0℃下向于thf(10ml)中的庚烷-1,7-二胺(5g,38.46mmol)的溶液中经20分钟的时间逐滴添加boc酸酐(1.68g,7.69mmol),并将所得反应混合物在室温下搅拌16小时。在减压下除去thf并向所得混合物中倒入水(50ml)。将水性混合物用乙酸乙酯萃取(3×25ml)。组合有机层,用水洗涤,使用无水na2so4干燥并在减压下浓缩,得到呈无色油状的纯净2a(1g,11.3%)。1hnmr(400mhz,cdcl3)δ6.80-6.77(1h,t,j=5.2hz),2.91-2.85(2h,dd,j=13.2,6.8hz)2.55-2.44ppm(2h,m),1.36ppm(11h,s),1.31ppm(4h,s),1.23(6h,s),ms(esi-ms):c12h26n2o2[mh]+的m/z计算值231.20,实验值231.5。n2,n7,n15-三(7-叔丁基羰基氨基庚基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三甲酰胺,6.向于dmf(3ml)中的(7-氨基庚基)氨基甲酸叔丁基酯(2a)(0.51g,2.24mmol)的溶液中添加9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三甲酸(0.27g,0.70mmol)、hatu(0.85,2.24mmol)、dipea(0.77ml,4.47mmol),并将所得反应混合物在室温下搅拌2小时。向反应混合物中倒入水(50ml)并用二氯甲烷萃取(3×25ml)。组合有机层,用盐水洗涤,使用无水na2so4干燥并在减压下浓缩,得到呈棕色半固体状的粗产物6。通过进行硅胶快速柱色谱(0.5%meoh/氯仿)来纯化粗混合物,得到呈浅黄色固体状的纯净产物6(0.65g,91.5%)。1hnmr(400mhz,dmso)δ8.34-8.32(3h,d,j=8.8hz),7.93(3h,s)7.53ppm(6h,s),6.75ppm(3h,宽峰s),5.87ppm(1h,s),5.76ppm(1h,s),3.20-3.14(6h,d,j=24hz),2.29(6h,s),1.37(27h,s),1.25-1.24(30h,m),ms(esi-ms):c59h86n6o9[mh]+的m/z计算值1023.65,实验值1045.5(m+23)。n2,n7,n15-三(7-氨基庚基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三甲酰胺,ark-8.在室温下向于1,4-二恶烷(5ml)中的n2,n7,n15-三(7-叔丁基羰基氨基庚基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三甲酰胺(6)(0.7g)的溶液中添加4mhcl/二恶烷(3ml),并将所得反应混合物搅拌2小时。在减压下浓缩混合物,得到呈黄色固体状的ark-8的粗盐酸盐。使用以下方法由制备型hplc来纯化粗混合物,得到呈白色固体状的纯净ark-8_hcl盐(0.2g,40.5%)。1hnmr(400mhz,d2o)δ7.62ppm(3h,宽峰s),7.13ppm(3h,宽峰s),7.01ppm(3h,宽峰s),5.53ppm(1h,s),5.2(1h,s),2.92ppm(6h,宽峰s),2.60ppm(6h,宽峰s),1.22ppm(6h,宽峰s),1.07ppm(6h,宽峰s),0.76ppm(6h,宽峰s),ms(esi-ms):c44h62n6o3[mh]+的m/z计算值724.0,实验值723.6。hplc保留时间:4.947分钟。制备型hplc的方法:(a)0.05%hcl/水(b)mecn:meoh:ipa(65:25:10)(hplcgr),使用xselect氟苯基色谱柱250×19mm,5.0μm,流动速率22.0ml/min且使用以下梯度:时间%a%b0.0193.07.015.0085.015.015.500.0100.018.500.0100.018.6093.07.020.0093.07.0实例11:ark-9(ark000015)、ark-10(ark000016)、ark-11(ark000017)以及ark-12(ark000018)的合成与上文ark-7类似地经由化合物2制备ark-9。随后如下文所描述地将化合物2与boc-l-lys(boc)-oh偶联并随后将其去保护以得到ark-9(类似地通过取代boc-d-lys(boc)-oh得到ark-10(ark000016))。以相似方式,通过与受保护的l或d-his氨基酸偶联得到ark-11(ark000017)和ark-12(ark000018)。((5s,5's,5”s)-((9,10-二氢-9,10-[1,2]苯蒽-2,7,15三基)三(氮二基))三(6-氧己烷-6,1,5-三基))六氨基甲酸六叔丁基酯,3.在室温下向于dmf(1ml)中的9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三胺(2)(0.1g,0.3344mmol)的溶液中添加boc-l-lys(boc)-oh(0.37g,1.07mmol)、hatu(0.406,1.07mmol)以及dipea(0.258g,2.006mmol)。在室温下搅拌反应混合物60分钟。向所得反应混合物中倒入冰冷水。通过过滤收集获得的固体沉淀物并在减压下干燥,得到呈白色固体状的粗产物3(0.38g,88.57%),其不经进一步纯化即使用。ms(esi-ms):c68h101n9o15[mh]+的m/z计算值1283.74,实验值1185.0(m-100)。(2s,2's,2”s)-n,n',n”-(9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(2,6-二氨基己酰胺),ark-9.将从先前步骤中获得的粗产物((5s,5's,5”s)-((9,10-二氢-9,10-[1,2]苯蒽-2,7,15三基)三(氮二基))三(6-氧己烷-6,1,5-三基))六氨基甲酸六叔丁基酯(3)(0.3g,0.234mmol)悬浮于4mhcl/二恶烷中并在室温下搅拌2小时。在减压下浓缩所得反应混合物,得到呈白色固体状的粗产物ark-9盐酸盐。使用下文所示方法通过制备型hplc来纯化粗产物,得到呈白色固体状的ark-9的纯净盐(0.19g,46.91%)。将ark-9的纯净盐溶解在去矿物质水(4ml)中,并通过ira-400-oh型离子交换树脂。使用去矿物质水洗脱游离碱且将收集的级分冻干,获得呈白色固体状的游离碱(0.15g)。将游离碱(0.05g)用1nhcl水溶液(3ml)处理并将材料冻干,生成呈白色固体状的ark-9的盐酸盐(0.05g,83.33%)。1hnmr(400mhz,d2o)δ7.56-7.55ppm(3h,d,j=1.6hz),7.41-7.39ppm(3h,d,j=8.0hz),7.01-6.99ppm(h,dd,j=8hz,j=1.6hz),5.62ppm(1h,s),5.59ppm(1h,s),4.01-3.98ppm(3h,t),2.88-2.84ppm(6h,t),1.90-1.86ppm(6h,m),1.61-1.57ppm(6h,3),1.40-1.36ppm(6h,m),ms(esi-ms):c22h27n5o2[mh]+的m/z计算值684.4,实验值684.7。hplc保留时间:5.092分钟。制备型hplc的方法:(a)0.1%tfa/水及(b)mecn:meoh:ipa(65:25:10)(hplc级),使用x选择氟苯基色谱柱(xselectfluorophenylcolumn)250×19mm,5.0μm,流动速率12.0ml/min,且具使用以下梯度:时间%a%b0.01100.00.05.00100.00.015.0090.010.015.0150.050.018.0050.050.018.010.00.019.000.00.0ark-10的合成(ark000016):((5r,5'r,5”r)-((9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(6-氧代己烷-6,1,5-三基))六氨基甲酸六叔丁基酯,3.在室温下向于dmf(5ml)中的9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三胺(2)(0.3g,1.00mmol)溶液中添加boc-d-lys(boc)-oh(1.1g,3.210mmol)、hatu(1.2g,3.210mmol)及dipea(0.774g,6.00mmol)。在室温下搅拌反应混合物60分钟。向所得反应混合物中倒入冰冷水。通过在减压下过滤和干燥收集所获得的固体沉淀以得到粗产物3。使用以下方法通过制备型hplc来纯化粗混合物,得到呈白色固体状的纯净3(0.25g,19.53%)。ms(esi-ms):c68h101n9o15[mh]+的m/z计算值1283.74,实验值1185.0(m-100;去保护一个boc基)。制备型hplc的方法:(a)10mm碳酸氢铵/水(hplc级)和(b)acn:meoh:ipa(65:25:10)(hplcgr),使用xbridge250mm×30mm×5μm,流动速率28.0ml/min,且使用以下梯度:时间%a%b0.0125.075.019.0021.079.019.010.0100.020.000.0100.020.0125.075.021.0025.075.0(2r,2'r,2”r)-n,n',n”-(9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(2,6-二氨基己酰胺),ark-10.将获自先前步骤的粗产物((5r,5'r,5”r)-((9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(6-氧代己烷-6,1,5-三基))六氨基甲酸六叔丁基酯(3)(0.25g,0.1947mmol)悬浮于4mhcl/二恶烷中且在室温下搅拌2小时。在减压下浓缩所得反应混合物,得到呈白色固体状的粗产物ark-10盐酸盐。使用下文所示方法通过制备型hplc来纯化粗产物,得到呈白色固体状的ark-10的纯净盐(0.14g,26.41%)。将ark-10的纯净盐溶解在去矿物质水(4ml)中,并通过ira-400-oh型离子交换树脂。使用去矿物质水洗脱游离碱且将收集的级分冻干,获得呈白色固体状的游离碱(0.07g)。用水溶液1nhcl(3ml)处理游离碱(0.07g)且冻干,生成呈浅棕色固体状的ark-10的盐酸盐(0.085g,92.39%)。1hnmr(400mhz,d2o)δ7.54-7.53ppm(3h,d,j=2hz),7.38-7.36ppm(3h,d,j=8.0hz),6.99-6.97ppm(3h,dd,j=8hz,j=2hz),5.60ppm(1h,s),5.56(1h,s),3.99-3.96ppm(3h,t),2.86-2.82ppm(6h,t),1.89-1.82ppm(6h,m),1.61-1.53ppm(6h,m),1.40-1.34ppm(6h,m)。ms(esi-ms):c22h27n5o2[mh]+的m/z计算值684.4,实验值684.6。hplc保留时间:6.393分钟。制备型hplc的方法:(a)0.1%tfa/水(hplc级)和(b)mecn:meoh:ipa(65:25:10)(hplcgr),使用xselectpfpc18,250×19mm,5um,流动速率15.0ml/min,且使用以下梯度:ark-11和ark-12的合成。((2s,2's,2”s)-((9,10-二氢-9,10-[1,2]-2,7,15-三基)三(氮二基))三(3-(1h-咪唑-4-基)-1-氧代丙烷-1,2-二基))三氨基甲酸三叔丁基酯.在室温下向经搅拌的于dmf(6ml)中的9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三胺(2)(0.3g,1.0mmol)的溶液中添加boc-l-组氨酸(0.82g,3.2mmol)、hatu(1.22g,3.2mmol)以及dipea(0.8g,6.2mmol)。在室温下搅拌所得反应混合物隔夜。向反应混合物中倒入冰冷水,且经由过滤收集所获得的残余物,在减压下干燥,得到呈浅棕色固体状的粗产物3(0.65g,65%),其不经纯化直接用于下一步骤。ms(esi-ms):c53h62n12o9[mh]+的m/z计算值1011.15,实验值1011.9。(2s,2's,2”s)-n,n',n”-(9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(2-氨基-3-(1h-咪唑-4-基)丙酰胺)盐酸盐,ark-11_hcl盐.在0℃下向经搅拌的于二氯甲烷(8ml)中的((2s,2's,2”s)-((9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(3-(1h-咪唑-4-基)-1-氧代丙烷-1,2-二基))三氨基甲酸三叔丁基酯(3)(0.65g,0.643mmol)的溶液中添加4nhcl/二恶烷(5ml)。在室温下搅拌所得反应混合物3小时。在减压下浓缩反应混合物以得到粗产物ark-11。使用以下方法通过制备型hplc来纯化粗混合物,得到呈无色粘性油状的纯净产物ark-11_tfa盐(0.32g,64.42%)。将ark-11_tfa盐溶解在甲醇(10ml)中。向其加入结合碳酸四烷基铵的聚合物并将所得混合物在室温下搅拌30分钟。经由硅藻土过滤混合物并在减压下浓缩所得滤液,得到ark-11_游离碱。游离碱溶解在0.01nhcl(10ml)中,并将所得溶液冻干,获得呈白色固体状的纯净ark-11_hcl盐(0.16g,61.06%)。1hnmr(400mhz,d2o)δ8.56ppm(3h,s),7.51ppm(3h,s),7.39-7.31ppm(6h,m),6.93-6.91ppm(3h,s),5.61-5.58ppm(2h,s),4.26ppm(3h,s),3.36-3.34ppm(6h,m),3.21ppm(2h,s);ms(esi-ms):c38h38n12o3[mh]+的m/z计算值710.8,实验值712.2。hplc保留时间:5.770分钟。制备型hplc的方法:(a)0.1%tfa/水(hplc级)和(b)10%ipa/乙腈(hplc级),使用沃特世x-bridgec18,250mm×30mm×5μm,流动速率35.0ml/min,且使用以下梯度:((2r,2'r,2”r)-((9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(3-(1h-咪唑-4-基)-1-氧代丙烷-1,2-二基))三氨基甲酸三叔丁基酯.在室温下向经搅拌的于dmf(6ml)中的9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三胺(2)(0.25g,0.84mmol)的溶液中添加boc-d-组氨酸(0.68g,2.67mmol)、hatu(1.01g,2.67mmol)、dipea(0.69g,5.35mmol)。将所得反应混合物在室温下搅拌隔夜。向反应混合物中倒入冰冷水,且经由过滤收集所获得的残余物,在减压下干燥,得到呈白色固体状的粗产物3(0.75g,88.9%),其不经纯化直接用于下一步骤。ms(esi-ms):c53h62n12o9[mh]+的m/z计算值1011.48,实验值1011.6。(2r,2'r,2”r)-n,n',n”-(9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(2-氨基-3-(1h-咪唑-4-基)丙酰胺)盐酸盐,ark-12_hcl盐.在0℃下向经搅拌的于二氯甲烷(8ml)中的((2s,2's,2”s)-((9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(3-(1h-咪唑-4-基)-1-氧代丙烷-1,2-二基))三氨基甲酸三叔丁基酯(3)(0.75g,0.742mmol)的溶液中添加4nhcl/二恶烷(5ml)。将所得反应混合物在室温下搅拌3小时。在减压下浓缩反应混合物以得到粗产物ark-12。使用以下方法通过制备型hplc来纯化粗混合物,得到呈白色固体状的纯净产物ark-12_tfa盐(0.70g,72.53%)。将ark-12的纯净盐溶解在去矿物质水(4ml)中,并通过ira-400-oh型离子交换树脂。使用去矿物质水洗脱游离碱且将收集的级分冻干,得到呈白色固体状的游离碱(0.06g)。将游离碱(0.06g)溶解在1nhcl水溶液(3ml)中并将材料冻干,生成呈白色固体状的ark-12的盐酸盐(0.07g,10.16%)。1hnmr(400mhz,d2o)δ8.54ppm(3h,s),7.50ppm(3h,s),7.37-7.35ppm(3h,d,j=8hz),7.28ppm(3h,s),6.90-6.88ppm(3h,dd,j=7.6hz),5.59ppm(1h,s),5.56ppm(1h,s),4.25-4.22ppm(3h,t,j=7.2hz),3.33-3.31ppm(6h,d,j=7.2hz)。ms(esi-ms):c38h38n12o3[mh]+的m/z计算值711.32,实验值684.6。hplc保留时间:6.347分钟。制备型hplc的方法:0.1%tfa/水(hplc级)和(b)10%ipa/乙腈(hplc级),使用沃特世x-bridgec18,250mm×30mm×5μm,流动速率35.0ml/min且使用以下梯度:实例12:ark-77和ark-77a(ark000033和ark000034)的合成流程:int-13的合成(2-(2-((2s,4s)-4-叠氮基-n-甲基-1-((2-硝基苯基)磺酰基)吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基甲酸叔丁基酯,10.在室温下向于n,n-二甲基甲酰胺(40ml)中的ark-20(2.0g,8.614mmol)的溶液中依序添加(2s,4s)-4-叠氮基-1-((2-硝基苯基)磺酰基)吡咯烷-2-羧酸(2.34g,6.89mmol)、hatu(2.62g,6.89mmol)以及n,n-二异丙基乙胺(3.33g,25.84mmol)。将所得反应混合物在室温下搅拌1小时。向反应混合物中倒入冰冷水并用乙酸乙酯萃取(3×100ml)。组合有机层,用盐水洗涤并在减压下浓缩,得到呈棕色半固体状的粗产物10(3.5g,91.6%)。粗混合物不经进一步纯化即用于下一步骤中。ms(esi-ms):c22h33n7o8s[mh]+的m/z计算值556.21,实验值573.43(m+18,水加合物)。(2s,4s)-4-叠氮基-n-甲基-n-(2-(2-(甲氨基)乙氧基)乙基)-1-((2-硝基苯基)磺酰基)吡咯烷-2-甲酰胺_tfa盐,11.在室温下向于二氯甲烷(30ml)中的(2-(2-((2s,4s)-4-叠氮基-n-甲基-1-((2-硝基苯基)磺酰基)吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基甲酸叔丁基酯(10)(3.5g,6.30mmol)的溶液中添加三氟乙酸(3.15ml,31.52mmol)。将所得反应混合物在室温下搅拌2小时。将反应混合物经由硅藻土床过滤并将如此收集的滤液在减压下浓缩,得到呈棕色油状的粗产物11(4.3g,定量产率),其不经进一步纯化即用于下一步骤中。ms(esi-ms):c17h25n7o6s.tfa[mh]+的m/z计算值456.16,实验值456.32。(((9-(3-((2-(2-((2s,4s)-4-叠氮基-n-甲基-1-((2-硝基苯基)磺酰基)吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,12.在室温下向于n,n-二甲基甲酰胺(30ml)中的(2s,4s)-4-叠氮基-n-甲基-n-(2-(2-(甲基氨基)乙氧基)乙基)-1-((2-硝基苯基)磺酰基)吡咯烷-2-甲酰胺_tfa盐(11)(1.25g,2.19mmol)的溶液中依序添加3-(2,7,15-三(8-((叔丁氧基羰基)氨基)辛酰胺基)-9,10-[1,2]苯蒽-9(10h)-基)丙酸(ark-18)(2.0g,1.83mmol)、hatu(0.833g,2.192mmol)以及n,n-二异丙基乙胺(0.942g,7.31mmol)。将所得反应混合物在室温下搅拌1小时。向反应混合物中倒入冰冷水并用乙酸乙酯萃取(3×100ml)。组合有机层,用盐水洗涤并在减压下浓缩以得到粗产物12。通过进行硅胶柱色谱(3.2%甲醇/氯仿)纯化粗混合物,得到呈深黄色固体状的12(2.3g,82.17%)。ms(esi-ms):c79h113n13o16s[mh]+的m/z计算值1532.81,实验值1433.19(m-100,脱去一个boc基)。(((9-(3-((2-(2-((2s,4s)-4-叠氮基-n-甲基吡咯烷-2-甲酰胺基)甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,13.在室温下向于乙腈(30ml)中的(((9-(3-((2-(2-((2s,4s)-4-叠氮基-n-甲基-1-((2-硝基苯基)磺酰基)吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(12)(2.2g,1.44mmol)的溶液中依序添加碳酸钾(0.99g,7.18mmol)和硫代苯酚(0.44ml,4.31mmol)。将所得反应混合物在80℃下搅拌2小时。将反应混合物经由硅藻土床过滤并将收集的滤液在减压下浓缩,得到呈黄色油状的粗产物13。将粗混合物进行反相色谱,得到呈浅黄色固体状的13(1.1g,56.88%)将黄色固体进一步进行制备型hplc(方法在下文中提及)纯化,接着冻干,得到呈白色非晶形粉末状的纯净13(0.41g,52.17%)。ms(esi-ms):c73h110n12o12[mh]+的m/z计算值1347.84,实验值1349.28。制备型hplc的方法:(a)10mmnh4hco3/水(hplc级)和(b)100%乙腈(hplc级)/水(hplc级),使用x-bridgec18,250mm×30mm×5μm,使用以下流动速率和梯度:时间流动速率%a%b0.0122.030.070.021.0022.028.072.021.0130.00.010027.0030.00.010027.0122.030.070.028.0022.030.070.0流程:ark-77的合成(((9-(3-((2-(2-((2s,4s)-4-叠氮基-n-甲基-1-(1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-羰基)吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,14.在室温下向于n,n-二甲基甲酰胺(8ml)中的(((9-(3-((2-(2-((2s,4s)-4-叠氮基-n-甲基吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(13)(0.2g,0.148mmol)的溶液中依序添加1-甲基-2,4-二氧代-2,4-二氢-1h-3,1-苯并恶嗪-7-羧酸(弹头_1b型)(0.039g,0.178mmol)和hatu(0.068g,0.178mmol)。将反应混合物搅拌5分钟。向其中逐滴添加n,n-二异丙基乙胺(0.038g,0.297mmol)并将所得反应混合物在室温下进一步搅拌30分钟。将反应混合物由乙酸乙酯(100ml)稀释并用冰冷水(3×30ml)洗涤。组合有机层,用盐水洗涤并在25℃下在减压下浓缩以得到粗产物14。将粗混合物通过制备型hplc(方法在下文中提及)来纯化,接着冻干,得到呈白色非晶形粉末状的14(0.12g,52.17%)ms(esi-ms):c83h115n13o16[mh]+的m/z计算值1550.86,实验值1452.42(m-100,脱去一个boc基)。制备型hplc的方法:(a)100%乙腈(hplc级)和(b)100%四氢呋喃(hplc级),使用sunfiresilica,150mm×19mm×5μm,流动速率19.0ml/min且使用以下梯度:时间%a%b0.0198.02.020.0098.02.0n,n',n”-(9-(3-((2-(2-((2s,4s)-4-叠氮基-n-甲基-1-(1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-羰基)吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(8-氨基辛酰胺),ark-77_hcl盐.在室温下向于1,4-二恶烷(3.0ml)中的(((9-(3-((2-(2-((2s,4s)-4-叠氮基-n-甲基-1-(1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-羰基)吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基(14)(0.079g,0.051mmol)的溶液中添加4mhcl/二恶烷溶液(1.5ml)并将所得反应混合物在氮气氛围下搅拌30分钟。在此期间,开始沉淀出固体残渣。将悬浮液进一步搅拌30分钟并最后使其在室温下静置。固体残渣开始在烧瓶底部沉积。将溶剂倾析并将残渣用乙腈(3×3ml)研磨。最后将固体在25℃下在减压下干燥,得到呈白色非晶形粉末状的纯净ark-77_hcl盐(0.054g,69.28%)。1hnmr(400mhz,dmso-d6)δ9.91ppm(3h,宽峰),8.09-8.03ppm(1h,m),7.90ppm(8h,宽峰),7.67ppm(3h,宽峰),7.37-7.33ppm(2h,m),7.29-7.27ppm(3h,m),7.23ppm(3h,m),5.38ppm(1h,s),5.01ppm(1h,m),4.86-4.79ppm(1h,m),4.31-4.23ppm(1h,m),4.09ppm(1h,m),3.79-3.64ppm(4h,m),3.48ppm(14h,m),3.44-3.40ppm(4h,m),3.18ppm(1h,s),3.08-3.01ppm(6h,m),2.77-2.66ppm(7h,m),2.25ppm(6h,宽峰s),1.53ppm(12h,宽峰s),1.27ppm(18h,宽峰s)。ms(esi-ms):c68h91n13o10[mh]+的m/z计算值1250.70,实验值1251.48。流程:ark-77a的合成(((9-(3-((2-(2-((2s,4s)-4-叠氮基-1-(2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-羰基)-n-甲基吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,14.在室温下向于n,n-二甲基甲酰胺(6ml)中的(((9-(3-((2-(2-((2s,4s)-4-叠氮基-n-甲基吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(13)(0.156g,0.116mmol)的溶液中依序添加2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-羧酸(弹头_1a型)(0.029g,0.139mmol)和hatu(0.053g,0.139mmol)。将反应混合物搅拌5分钟。向其中逐滴添加n,n-二异丙基乙胺(0.03g,0.232mmol)并将所得反应混合物在室温下进一步搅拌30分钟。将反应混合物由乙酸乙酯(100ml)稀释并用冰冷水(3×30ml)洗涤。组合有机层,用盐水洗涤并在25℃下在减压下浓缩以得到粗产物14。使用以下方法通过制备型hplc来纯化粗混合物,得到呈白色非晶形粉末状的纯净14(0.093g,52.17%)。制备型级分通过在25℃下在氮气氛围下减压来浓缩。ms(esi-ms):c82h113n13o16[mh]+的m/z计算值1536.84,实验值1437.41(m-100,脱去一个boc基)。制备型hplc的方法:(a)100%乙腈(hplc级)和(b)100%四氢呋喃(hplc级),使用sunfiresilica,150mm×19mm×5μm,使用以下流动速率和以下梯度:时间流动速率%a%b0.0117.0100.00.05.017.0100.00.019.0017.098.02.019.0119.0100.00.020.0019.0100.00.020.0117.0100.00.021.0017.0100.00.0n,n',n”-(9-(3-((2-(2-((2s,4s)-4-叠氮基-1-(2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-羰基)-n-甲基吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(8-氨基辛酰胺),ark-77a_hcl盐.在室温下向于1,4-二恶烷(干燥)(3ml)中的(((9-(3-((2-(2-((2s,4s)-4-叠氮基-1-(2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-羰基)-n-甲基吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(14)(0.06g,0.039mmol)中添加4mhcl/二恶烷(1.2ml),并将所得反应混合物在氮气氛围下搅拌30分钟。固体材料在烧瓶底部稳定,并将溶剂在惰性氛围下倾析,随后将固体材料用乙腈(hplc级)(3×3ml)研磨。残余固体通过在25℃下在氮气氛围下减压来浓缩,得到呈白色非晶形粉末状的纯净ark-77a_hcl盐(0.054g,69.28%)。1hnmr(400mhz,dmso-d6)δ12.04-11.95ppm(1h,d),9.91ppm(3h,宽峰),7.98-7.96ppm(1h,m),7.89ppm(7h,宽峰),7.71-7.67ppm(3h,宽峰),7.29-7.27ppm(4h,d),7.23ppm(3h,宽峰),5.38ppm(1h,s),5.03-5.01ppm(1h,m),4.86-4.79ppm(1h,m),4.30-4.23ppm(1h,m),4.07ppm(1h,m),3.76ppm(1h,m),3.35-3.44ppm(2h,m),3.17ppm(1h,s),3.08-3.04ppm(5h,m),2.99-2.84ppm(1h,m),2.79-2.68ppm(7h,m),2.25-2.23ppm(6h,t),1.53ppm(12h,宽峰),1.27ppm(18h,宽峰)。ms(esi-ms):c67h89n13o10[mh]+的m/z计算值1236.69,实验值1238.46。实例13:ark-78和ark-78a(ark000035和ark000037)的合成流程:int-13的合成(2-(2-(2-((2s,4s)-4-叠氮基-n-甲基-1-((2-硝基苯基)磺酰基)吡咯烷-2-甲酰胺基)乙氧基)乙氧基)乙基)(甲基)氨基甲酸叔丁基酯,10.在室温下向于n,n-二甲基甲酰胺(30ml)中的ark-21(2.4g,8.68mmol)的溶液中依序添加(2s,4s)-4-叠氮基-1-((2-硝基苯基)磺酰基)吡咯烷-2-羧酸(2.96g,8.68mmol)、hatu(3.96g,10.42mmol)和n,n-二异丙基乙胺(3.36g,26.05mmol)。将所得反应混合物在室温下搅拌1小时。向反应混合物中倒入冰冷水并用乙酸乙酯萃取(3×100ml)。组合有机层,用盐水洗涤并在减压下浓缩,得到呈黄色粘性液体状的粗产物10(4.0g,76.9%)。粗混合物不经进一步纯化即用于下一步骤中。ms(esi-ms):c24h37n7o9s[mh]+的m/z计算值600.18,实验值617.5(m+18)。(2s,4s)-4-叠氮基-n-甲基-n-(2-(2-(2-(甲基氨基)乙氧基)乙氧基)乙基)-1-((2硝基苯基)磺酰基)吡咯烷-2-甲酰胺_tfa盐,11.在室温下向于二氯甲烷(20ml)中的((2r,2'r,2”r)-((9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(3-(1h-咪唑-4-基)-1-氧丙烷-1,2-二基))三氨基甲酸三叔丁基酯(10)(4.0g,6.67mmol)的溶液中添加三氟乙酸(2.58ml,33.38mmol)。将所得反应混合物在室温下搅拌2小时。将反应混合物经由硅藻土床过滤并将如此收集的滤液在减压下浓缩,得到呈棕色油状的粗产物11(7.5g,定量产率),其不经进一步纯化即用于下一步骤中。ms(esi-ms):c19h29n7o7s[mh]+的m/z计算值500.18,实验值500.31。(((9-(1-((2s,4s)-4-叠氮基-1-((2-硝基苯基)磺酰基)吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,12.在室温下向于n,n-二甲基甲酰胺(40ml)中的(2s,4s)-4-叠氮基-n-甲基-n-(2-(2-(2-(甲基氨基)乙氧基)乙氧基)乙基)-1-((2-硝基苯基)磺酰基)吡咯烷-2-甲酰胺_tfa盐(11)(2.69g,4.38mmol)的溶液中依序添加3-(2,7,15-三(8-((叔丁氧基羰基)氨基)辛酰胺基)-9,10-[1,2]苯蒽-9(10h)-基)丙酸(ark-18)(4.0g,3.65mmol)、hatu(1.67g,4.38mmol)以及n,n-二异丙基乙胺(1.41g,10.96mmol)。将所得反应混合物在室温下搅拌1小时。向反应混合物中倒入冰冷水并用乙酸乙酯萃取(3×100ml)。组合有机层,用盐水洗涤并在减压下浓缩以得到粗产物12。通过进行硅胶柱色谱(4.3%甲醇/氯仿)纯化粗混合物,得到呈深黄色固体状的12(4.7g,81.6%)。ms(esi-ms):c81h117n13o17s[mh]+的m/z计算值1576.84,实验值1578.4。(((9-(1-((2s,4s)-4-叠氮基吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,13.在室温下向于乙腈(50ml)中的(((9-(1-((2s,4s)-4-叠氮基-1-((2-硝基苯基)磺酰基)吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(12)(4.7g,2.98mmol)的溶液中依序添加碳酸钾(2.06g,14.91mmol)和硫代苯酚(0.92ml,8.95mmol)。将所得反应混合物在80℃下搅拌2小时。将反应混合物经由硅藻土床过滤并将收集的滤液在减压下浓缩,得到呈黄色油状的粗产物13。将粗混合物进行反相色谱,得到呈浅黄色固体状的13(1.9g,45.8%)。将黄色固体进一步进行制备型hplc(方法在下文中提及)纯化,接着冻干,得到呈白色非晶形粉末状的纯净13(0.34g,8.2%)。ms(esi-ms):c53h62n12o9[mh]+的m/z计算值1391.86,实验值1392.3。制备型hplc的方法:(a)10mmnh4hco3/水(hplc级)和(b)100%乙腈(hplc级)/水,使用x-bridgec18,250mm×30mm×5μm,流动速率30.0ml/min且使用以下梯度:时间%a%b0.0132.068.025.0026.074.025.010.010026.000.010026.0132.068.027.0032.068.0流程:ark-78的合成(((9-(1-((2s,4s)-4-叠氮基-1-(1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-羰基)吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,14.在室温下向于n,n-二甲基甲酰胺(5ml)中的(((9-(1-((2s,4s)-4-叠氮基吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基三叔丁基酯(13)(0.14g,0.1mmol)的溶液中依序添加1-甲基-2,4-二氧代-2,4-二氢-1h-3,1-苯并恶嗪-7-羧酸(弹头_1b型)(0.027g,0.12mmol)和hatu(0.046g,0.12mmol)。将反应混合物搅拌5分钟。向其中逐滴添加n,n-二异丙基乙胺(0.026g,0.201mmol)并将所得反应混合物在室温下进一步搅拌30分钟。将反应混合物由乙酸乙酯(100ml)稀释并用冰冷水(3×30ml)洗涤。组合有机层,用盐水洗涤并在25℃下在减压下浓缩,得到呈浅黄色固体状的粗产物14(0.1g,62.5%),其不经进一步纯化即用于下一步骤中。ms(esi-ms):c85h119n13o17[mh]+的m/z计算值1594.88,实验值1496.61(m-100)。n,n',n”-(9-(1-((2s,4s)-4-叠氮基-1-(1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-羰基)吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(8-氨基辛酰胺),ark-78_hcl盐.在室温下向于1,4-二恶烷(3.0ml)中的(((9-(1-((2s,4s)-4-叠氮基-1-(1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-羰基)吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(14)(0.067g,0.042mmol)的溶液中添加4mhcl/二恶烷溶液(1.5ml)并将所得反应混合物在氮气氛围下搅拌30分钟。在此期间,开始沉淀出固体残渣。将悬浮液进一步搅拌30分钟并最后使其在室温下静置。固体残渣开始在烧瓶底部沉积。将溶剂倾析并将残渣用乙腈(3×3ml)研磨。最后将固体在25℃下在减压下干燥,得到呈白色非晶形粉末状的纯净ark-78_hcl盐(0.045g,76.3%)。1hnmr(400mhz,dmso-d6)δ9.91ppm(3h,宽峰s),8.11-7.97ppm(1h,m),7.89ppm(8h,宽峰s),7.66ppm(3h,宽峰s),7.37-7.34ppm(2h,宽峰s),7.29-7.22ppm(6h,m),5.39ppm(1h,s),4.97ppm(1h,m),4.82ppm(1h,m),4.28ppm(2h,m),4.03ppm(1h,m),3.74ppm(1h,m),3.64ppm(3h,宽峰s),3.57ppm(12h,宽峰s),3.50-3.47ppm(5h,m),3.15-3.03ppm(7h,m),2.90-2.85ppm(2h,d),2.75-2.72ppm(7h,m),2.25-2.23ppm(6h,宽峰s),1.54ppm(12h,宽峰s),1.27ppm(17h,宽峰s)。ms(esi-ms):c70h95n13o11[mh]+的m/z计算值1294.73,实验值1295.41。流程:ark-78a的合成(((9-(1-((2s,4s)-4-叠氮基-1-(2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-羰基)吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,14.在室温下向于n,n-二甲基甲酰胺(4ml)中的(((9-(1-((2s,4s)-4-叠氮基吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(13)(0.075g,0.05mmol)的溶液中依序添加2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-羧酸(弹头_1a型)(0.013g,0.065mmol)和hatu(0.024g,0.065mmol)。将反应混合物搅拌5分钟。向其中逐滴添加n,n-二异丙基乙胺(0.014g,0.108mmol)并将所得反应混合物在室温下进一步搅拌30分钟。将反应混合物由乙酸乙酯(100ml)稀释并用冰冷水(3×30ml)洗涤。组合有机层,用盐水洗涤并在25℃下在减压下浓缩以得到粗产物14。使用以下方法通过制备型hplc来纯化粗混合物,得到呈白色非晶形粉末状的纯净14(0.04g,52%)。制备型级分通过在25℃下在氮气氛围下减压来浓缩。ms(esi-ms):c84h117n13o17[mh]+的m/z计算值1580.88,实验值1481.75(m-100)。制备型hplc的方法:(a)100%乙腈(hplc级)和(b)100%四氢呋喃(hplc级),使用sunfiresilica,150mm×19mm×5μm,流动速率16.0ml/min且使用以下梯度:时间%a%b0.0198.02.020.0098.02.0n,n',n”-(9-(1-((2s,4s)(2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-羰基)吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(8-氨基辛酰胺),ark-78a_hcl盐.在室温下向于1,4-二恶烷(ar级)(2ml)中的(((9-(1-((2s,4s)-4-叠氮基-1-(2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-羰基)吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(14)(0.04g,0.025mmol)的溶液中添加4mhcl/二恶烷(1ml)并将所得反应混合物在氮气氛围下搅拌30分钟。固体材料在烧瓶底部稳定,并将溶剂在惰性氛围下倾析,将固体材料用乙腈(hplc级)(3×3ml)研磨。残余固体通过在25℃下在氮气氛围下减压来浓缩,得到呈白色非晶形粉末状的纯净ark-78a_hcl盐(0.032g,91.43%)。1hnmr(400mhz,dmso-d6)δ11.99-11.95ppm(1h,t),9.91-9.90ppm(3h,d),8.01-7.94ppm(1h,m),7.87ppm(8h,宽峰s),7.66ppm(3h,宽峰s),7.32-7.22ppm(7h,m),7.16-7.11ppm(1h,m),5.39ppm(1h,s),4.99-4.95ppm(1h,t),4.83-4.82ppm(1h,m),4.29-4.22ppm(1h,m),4.15-3.98ppm(1h,m),3.76-3.71ppm(1h,m),3.64-3.61ppm(4h,m),3.52ppm(2h,宽峰s),3.34-3.32ppm(2h,m),3.15ppm(2h,m),3.10-3.03ppm(7h,m),2.89-2.86ppm(1h,d),2.76-2.72ppm(7h,m),2.26-2.23ppm(6h,t),1.53ppm(12h,宽峰s),1.27ppm(17h,宽峰s)。ms(esi-ms):c69h93n13o11[mh]+的m/z计算值1280.71,实验值1281.50。实例14:ark-79和ark-79a(ark000036和ark000038)的合成int-13的合成(1-((2s,4s)-4-叠氮基-1-((2-硝基苯基)磺酰基)吡咯烷-2-基)-2-甲基-1-氧代-5,8,11-三氧杂-2-氮杂十三烷-13-基)(甲基)氨基甲酸叔丁基酯,10.在室温下向于n,n-二甲基甲酰胺(40ml)中的ark-22(3.1g,9.68mmol)的溶液中依序添加(2s,4s)-4-叠氮基-1-((2-硝基苯基)磺酰基)吡咯烷-2-羧酸(3.96g,11.62mmol)、hatu(4.414g,11.62mmol)以及n,n-二异丙基乙胺(2.5g,19.36mmol)。将所得反应混合物在室温下搅拌1小时。向反应混合物中倒入冰冷水并用乙酸乙酯萃取(3×100ml)。组合有机层,用盐水洗涤并在减压下浓缩,得到呈黄色固体状的粗产物10(4g,64.2%)。粗混合物不经进一步纯化即用于下一步骤中。ms(esi-ms):c26h41n7o10s[mh]+的m/z计算值644.26,实验值544.36(m+18)。(2s,4s)-4-叠氮基-n-甲基-1-((2-硝基苯基)磺酰基)-n-(5,8,11-三氧杂-2-氮杂十三烷-13-基)吡咯烷-2-甲酰胺_tfa盐,11.在室温下向于二氯甲烷(20ml)中的(1-((2s,4s)-4-叠氮基-1-((2-硝基苯基)磺酰基)吡咯烷-2-基)-2-甲基-1-氧代-5,8,11-三氧杂-2-氮杂十三烷-13-基)(甲基)氨基甲酸叔丁基酯(10)(3g,4.66mmol)的溶液中添加三氟乙酸(1.8ml,23.32mmol)。将所得反应混合物在室温下搅拌2小时。将反应混合物经由硅藻土床过滤并将如此收集的滤液在减压下浓缩,得到呈深黄色油状的粗产物11(3.1g,定量产率),其不经进一步纯化即使用。ms(esi-ms):c21h33n7o8s.tfa[mh]+的m/z计算值544.21,实验值544.47。(((9-(1-((2s,4s)-4-叠氮基-1-((2-硝基苯基)磺酰基)吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,12.在室温下向于n,n-二甲基甲酰胺(40ml)中的(2s,4s)-4-叠氮基-n-甲基-1-((2-硝基苯基)磺酰基)-n-(5,8,11-三氧杂-2-氮杂十三烷-13-基)吡咯烷-2-甲酰胺_tfa盐(11)(2.88g,4.38mmol)的溶液中依序添加3-(2,7,15-三(8-((叔丁氧基羰基)氨基)辛酰胺基)-9,10-[1,2]苯蒽-9(10h)-基)丙酸(ark-18)(4.0g,3.65mmol)、hatu(1.67g,4.38mmol)以及n,n-二异丙基乙胺(2.36g,18.27mmol)。将所得反应混合物在室温下搅拌1小时。向反应混合物中倒入冰冷水并用乙酸乙酯萃取(3×100ml)。组合有机层,用盐水洗涤并在减压下浓缩以得到粗产物12。通过进行硅胶柱色谱(5.4%甲醇/氯仿)纯化粗混合物,得到呈深黄色固体状的12(5.9g,99.7%)。ms(esi-ms):c83h121n13o18s[mh]+的m/z计算值1620.87,实验值1522.31(m-100;脱去一个boc基)。(((9-(1-((2s,4s)-4-叠氮基吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,13.在室温下向于乙腈(60ml)中的(((9-(1-((2s,4s)-4-叠氮基-1-((2-硝基苯基)磺酰基)吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(12)(5.9g,3.64mmol)的溶液中依序添加碳酸钾(2.51g,18.21mmol)和硫代苯酚(1.11ml,10.93mmol)。将所得反应混合物在80℃下搅拌2小时。将反应混合物经由硅藻土床过滤并将收集的滤液在减压下浓缩,得到呈黄色油状的粗产物13。将粗混合物进行反相色谱,得到呈浅黄色固体状的13(1.9g,36.3%)。将黄色固体进一步进行制备型hplc(方法在下文中提及)纯化,接着冻干,得到呈白色非晶形粉末状的纯净13(0.51g,9.8%)。ms(esi-ms):c77h118n12o14[mh]+的m/z计算值1435.89,实验值1437.41。制备型hplc的方法:(a)100%乙腈(hplc级)/水(hplc级)和(b)10mmnh4hco3/水(hplc级),使用gracedenilc18,250mm×25mm×5μm,流动速率22.0ml/min且使用以下梯度:时间%a%b0.0150.050.03.0025.075.025.0022.078.025.010.010026.000.010026.0150.050.027.0050.050.0流程:ark-79的合成(((9-(1-((2s,4s)-4-叠氮基-1-(1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-羰基)吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,14.在室温下向于n,n-二甲基甲酰胺(4ml)中的(((9-(1-((2s,4s)-4-叠氮基吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(13)(0.1g,0.07mmol)的溶液中依序添加1-甲基-2,4-二氧代-2,4-二氢-1h-3,1-苯并恶嗪-7-羧酸(弹头_1b型)(0.039g,0.18mmol)和hatu(0.018g,0.084mmol)。将反应混合物搅拌5分钟。向其中逐滴添加n,n-二异丙基乙胺(0.018g,0.14mmol)并将所得反应混合物在室温下进一步搅拌30分钟。将反应混合物由乙酸乙酯(100ml)稀释并用冰冷水(3×30ml)洗涤。组合有机层,用盐水洗涤并在25℃下在减压下浓缩以得到粗产物14。将粗混合物通过制备型hplc(方法在下文中提及)来纯化,接着冻干,得到呈白色非晶形粉末状的14(0.053g,46.5%)。ms(esi-ms):c87h123n13o18[mh]+的m/z计算值1638.91,实验值1540.40(m-100)。制备型hplc的方法:(a)100%乙腈(hplc级)和(b)100%四氢呋喃(hplc级),使用sunfiresilica,250mm×19mm×5μm,流动速率15.0ml/min且使用以下梯度:时间%a%b0.0195.05.020.0095.05.0n,n',n”-(9-(1-((2s,4s)-4-叠氮基-1-(1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-羰基)吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(8-氨基辛酰胺),ark-79_hcl盐.在室温下向于1,4-二恶烷(3.0ml)中的(((9-(1-((2s,4s)-4-叠氮基-1-(1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-羰基)吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(14)(0.035g,0.021mmol)的溶液中添加4mhcl/二恶烷溶液(1ml)并将所得反应混合物在氮气氛围下搅拌30分钟。在此期间,开始沉淀出固体残渣。将悬浮液进一步搅拌30分钟并最后使其在室温下静置。固体残渣开始在烧瓶底部沉积。将溶剂倾析并将残渣用乙腈(3×3ml)研磨。最后将固体在25℃下在减压下干燥得到呈白色非晶形粉末状的纯净ark-79_hcl盐(0.025g,80.6%)。1hnmr(400mhz,dmso-d6)δ9.89ppm(3h,宽峰s),8.10-8.08ppm(1h,m),7.89ppm(9h,宽峰s),7.66ppm(3h,宽峰s),7.38-7.37ppm(1h,d),7.33-7.22ppm(6h,m),5.38ppm(1h,s),4.95-4.90ppm(1h,m),4.25ppm(1h,m),4.06ppm(1h,m),3.75ppm(1h,m),3.63-3.57ppm(10h,d),3.38-3.33ppm(5h,m),3.10-3.04ppm(7h,m),2.88-2.84ppm(1h,d),2.74-2.72ppm(7h,宽峰s),2.25-2.23ppm(6h,t),1.60-1.53ppm(12h,d),1.27ppm(18h,宽峰s)。ms(esi-ms):c72h99n13o12[mh]+的m/z计算值1338.75,实验值1339.55。流程:ark-79a的合成(((9-(1-((2s,4s)-4-叠氮基-1-(2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-羰基)吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,14.在室温下向于n,n-二甲基甲酰胺(8ml)中的(((9-(1-((2s,4s)-4-叠氮基吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(13)(0.2g,0.139mmol)的溶液中依序添加2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-羧酸(弹头_1a型)(0.035g,0.167mmol)和hatu(0.064g,0.167mmol)。将反应混合物搅拌5分钟。向其中逐滴添加n,n-二异丙基乙胺(0.036g,0.279mmol)并将所得反应混合物在室温下进一步搅拌30分钟。将反应混合物由乙酸乙酯(100ml)稀释并用冰冷水(3×30ml)洗涤。组合有机层,用盐水洗涤并在25℃下在减压下浓缩以得到粗产物14。使用以下方法通过制备型hplc来纯化粗混合物,得到呈灰白色非晶形粉末状的纯净14(0.04g,17.7%)。将制备型级分通过在25℃下在氮气氛围下减压来浓缩。ms(esi-ms):c86h121n13o18[mh]+的m/z计算值1624.89,实验值1525.76(m-100;脱去一个boc基)。制备型hplc的方法:(a)100%乙腈(hplc级)和(b)100%四氢呋喃(hplc级),使用sunfiresilica,150mm×19mm×5μm,流动速率18.0ml/min,且使用以下梯度:98%a和2%持续20分钟。n,n',n”-(9-(1-((2s,4s)-4-叠氮基-1-(2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-羰基)吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(8-氨基辛酰胺),ark-79a_hcl盐.在室温下向于1,4-二恶烷(干燥)(3ml)中的(((9-(1-((2s,4s)-4-叠氮基-1-(2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-羰基)吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(14)(0.04g,0.024mmol)中添加4mhcl/二恶烷(1.2ml),并将所得反应混合物在氮气氛围下搅拌30分钟。固体材料在rbf的底部稳定,并将溶剂在惰性氛围下倾析,将固体材料用乙腈(hplc级)(3×3ml)研磨。残余固体通过在25℃下在氮气氛围下减压来浓缩,得到呈灰白色非晶形粉末状的纯净ark-79a_hcl盐(0.033g,94.28%)。1hnmr(400mhz,dmso-d6)δ11.97-11.95ppm(1h,d),9.90ppm(3h,宽峰s),8.02-7.98ppm(1h,m),7.88ppm(8h,宽峰s),7.66ppm(3h,宽峰s),7.32-7.22ppm(7h,m),7.16-7.08ppm(1h,m),5.39ppm(1h,s),4.96-4.91ppm(1h,m),4.80ppm(1h,m),4.28-4.20ppm(1h,m),4.05ppm(1h,m),3.75-3.73ppm(1h,m),3.64ppm(3h,宽峰s),3.57ppm(11h,宽峰s),3.54ppm(2h,m),3.39-3.38ppm(2h,m),3.34-3.32ppm(3h,d),3.16ppm(2h,宽峰s),3.08-3.02ppm(8h,m),2.87-2.83ppm(1h,d),2.76-2.68ppm(7h,m),2.27-2.23ppm(6h,t),1.60-1.53ppm(12h,宽峰s),1.27ppm(18h,宽峰s)。ms(esi-ms):c71h97n13o12[mh]+的m/z计算值1324.74,实验值1325.50。实例15:ark-80、ark-89、ark-125(ark000024、ark000027以及ark000030)的合流程:int-13的合成(2-(2-((2s,4s)-4-叠氮基-n-甲基-1-((2-硝基苯基)磺酰基)吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基甲酸叔丁基酯,10.在室温下向于n,n-二甲基甲酰胺(20ml)中的ark-20(1.0g,4.307mmol)的溶液中依序添加(2s,4s)-4-叠氮基-1-((2-硝基苯基)磺酰基)吡咯烷-2-羧酸(1.17g,3.44mmol)、hatu(1.96g,5.17mmol)以及n,n-二异丙基乙胺(1.67g,12.92mmol)。将所得反应混合物在室温下搅拌1小时。向反应混合物中倒入冰冷水并用乙酸乙酯萃取(3×100ml)。组合有机层,用盐水洗涤并在减压下浓缩,得到呈棕色半固体状的粗产物10(2.52g,定量产率)。粗混合物不经进一步纯化即用于下一步骤中。ms(esi-ms):c22h33n7o8s[mh]+的m/z计算值556.21,实验值573.43(m+18)。(2s,4s)-4-叠氮基-n-甲基-n-(2-(2-(甲基氨基)乙氧基)乙基)-1-((2-硝基苯基)磺酰基)吡咯烷-2-甲酰胺_tfa盐,11.在室温下向于二氯甲烷(15ml)中的(2-(2-((2s,4s)-4-叠氮基-n-甲基-1-((2-硝基苯基)磺酰基)吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基甲酸三叔丁基酯(10)(2.5g,4.50mmol)的溶液中添加三氟乙酸(1.72ml,22.51mmol)。将所得反应混合物在室温下搅拌2小时。将反应混合物经由硅藻土床过滤并将如此收集的滤液在减压下浓缩,得到呈棕色油状的粗产物11(4.12g,定量产率),其不经进一步纯化即使用。ms(esi-ms):c17h25n7o6s.tfa[mh]+的m/z计算值456.16,实验值456.32。(((9-(3-((2-(2-((2s,4s)-4-叠氮基-n-甲基-1-((2-硝基苯基)磺酰基)吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,12.在室温下向于n,n-二甲基甲酰胺(30ml)中的(2s,4s)-4-叠氮基-n-甲基-n-(2-(2-(甲基氨基)乙氧基)乙基)-1-((2-硝基苯基)磺酰基)吡咯烷-2-甲酰胺_tfa盐(11)(1.75g,3.07mmol)的溶液中依序添加3-(2,7,15-三(8-((叔丁氧基羰基)氨基)辛酰胺基)-9,10-[1,2]苯蒽-9(10h)-基)丙酸(ark-18)(2.8g,2.56mmol)、hatu(1.17g,3.07mmol)以及n,n-二异丙基乙胺(0.66g,5.12mmol)。将所得反应混合物在室温下搅拌1小时。向反应混合物中倒入冰冷水并用乙酸乙酯萃取(3×100ml)。组合有机层,用盐水洗涤并在减压下浓缩以得到粗产物12。通过进行硅胶柱色谱(1.5%甲醇/氯仿)纯化粗混合物,得到呈深黄色固体状的12(1.48g,37.8%)。ms(esi-ms):c79h113n13o16s[mh]+的m/z计算值1532.81,实验值1433.19(m-100;脱去一个boc基)。(((9-(3-((2-(2-((2s,4s)-4-叠氮基-n-甲基吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,13.在室温下向于乙腈(15ml)中的(((9-(3-((2-(2-((2s,4s)-4-叠氮基-n-甲基-1-((2-硝基苯基)磺酰基)吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(12)(1.48g,0.97mmol)的溶液中依序添加碳酸钾(0.67g,4.83mmol)和硫苯酚(0.3ml,2.89mmol)。将所得反应混合物在80℃下搅拌2小时。将反应混合物经由硅藻土床过滤并将收集的滤液在减压下浓缩,得到呈黄色油状的粗产物13。将粗混合物进行反相色谱,得到呈浅黄色固体状的13(0.76g,58.4%)。ms(esi-ms):c73h110n12o12[mh]+的m/z计算值1347.84,实验值1349.28。流程:ark-80的合成2-((1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-基)氧基)乙酸全氟苯基酯,int-a.在0℃下在氮气氛围下向于四氢呋喃(1ml)中的弹头-2(0.04g,0.17mmol)的溶液中添加n-(3-二甲氨基丙基)-n′-乙基碳化二亚胺盐酸盐(0.035g,0.17mmol)。将反应混合物在0℃下搅拌10分钟。在0℃下在氮气氛围下向其中逐滴添加五氟苯酚(0.03g,0.17mmol)/四氢呋喃(0.5ml)的溶液。将所得反应混合物在0℃下进一步搅拌1小时。反应混合物不经处理和分离直接用于下一步骤中。ms(esi-ms):c17h8f5no6[mh]+的m/z计算值418.03,化合物不显示质量反应。注意:中间体-a不分离,即反应质量由此转移到下一步骤反应质量。(((9-(3-((2-(2-((2s,4s)-4-叠氮基-n-甲基-1-(2-((1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-基)氧基)乙酰基)吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,14.向于四氢呋喃(4ml)中的(((9-(3-((2-(2-((2s,4s)-4-叠氮基-n-甲基吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(13)(0.27g,0.17mmol)的溶液中添加[(1-甲基-2,4-二氧代-1,4-二氢-2h-3,1-苯并恶嗪-7-基)氧基]乙酸五氟苯基酯(弹头_2型)(0.071g,0.17mmol)并将所得反应混合物在室温下进一步搅拌1小时。在减压下浓缩反应混合物,得到呈黄色固体状的粗产物14(0.38g,定量产率),其不经进一步纯化即用于下一步骤中。ms(esi-ms):c84h117n13o17[mh]+m/z计算值1580.87,实验值1482.29(m-100;脱去一个boc基)。n,n',n”-(9-(3-((2-(2-((2s,4s)-4-叠氮基-n-甲基-1-(2-((1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-基)氧基)乙酰基)吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(8-氨基辛酰胺),ark-80_hcl盐.在室温下向于四氢呋喃(5.0ml)中的(((9-(3-((2-(2-((2s,4s)-4-叠氮基-n-甲基-1-(2-((1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-基)氧基)乙酰基)吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(14)(0.38g,0.025mmol)的溶液中添加4mhcl/二恶烷溶液(2ml)并将所得反应混合物在氮气氛围下搅拌4小时。在减压下浓缩反应混合物,得到呈黄色固体状的粗产物ark-80_hcl盐。使用以下方法通过制备型hplc来纯化粗混合物,得到呈白色非晶形粉末状的纯净ark-80_hcl盐(0.012g,3.6%)。1hnmr(400mhz,dmso-d6)δ9.93-9.91ppm(3h,宽峰s),7.92-7.85ppm(10h,宽峰s),7.65ppm(4h,宽峰s),7.40ppm(2h,宽峰s),7.27-7.15ppm(8h,m),6.87-6.71ppm(3h,m),6.54ppm(1h,s),5.36ppm(1h,s),5.10-5.02ppm(3h,m),4.83ppm(2h,m),4.66-4.56ppm(2h,m),4.39-4.28ppm(2h,m),4.06-4.01ppm(2h,m),3.58-3.55ppm(4h,m),3.47-3.41ppm(7h,m),3.13-2.94ppm(9h,m),2.71-2.66ppm(8h,m),2.22ppm(7h,宽峰s),1.52-1.50ppm(12h,d),1.26ppm(18h,s)。ms(esi-ms):c69h93n13o11[mh]+的m/z计算值1280.71,实验值1281.43。制备型hplc的方法:(a)0.05%hcl/水(hplc级)和(b)100%乙腈(hplc级),使用x-bridge,250mm×19mm×5μm,流动速率19.0ml/min,且使用以下梯度:流程:ark-89的合成(((9-(3-((2-(2-((2s,4s)-4-叠氮基-1-(3-(4-(氟磺酰基)苯基)丙酰基)-n-甲基吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,14.在室温下向于n,n-二甲基甲酰胺(6ml)中的(((9-(3-((2-(2-((2s,4s)-4-叠氮基-n-甲基吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(13)(0.31g,0.23mmol)的溶液中依序添加3-(4-(氟磺酰基)苯基)丙酸(0.043g,0.18mmol)和hatu(0.070g,0.18mmol)。将反应混合物搅拌5分钟。向其中逐滴添加n,n-二异丙基乙胺(0.036g,0.276mmol)并将所得反应混合物在室温下进一步搅拌1小时。将反应混合物由乙酸乙酯(100ml)稀释并用冰冷水(3×30ml)洗涤。组合有机层,用盐水洗涤并在25℃下在减压下浓缩,得到呈深黄色固体状的粗产物14(0.45g,定量产率),其不经进一步纯化即用于下一步骤中。ms(esi-ms):c82h117fn12o15s[mh]+的m/z计算值1561.85,实验值1463.45(m-100,脱去一个boc基)。n,n'n"-(9-(3-((2-(2-((2s,4s)-4-叠氮基-1-(3-(4-(氟磺酰基)苯基)丙酰基)-n-甲基吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氨基辛酰胺),ark-89_hcl盐.在室温下向于1,4-二恶烷(5.0ml)中的(((9-(3-((2-(2-((2s,4s)-4-叠氮基-1-(3-(4-(氟磺酰基)苯基)丙酰基)-n-甲基吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(14)(0.45g,0.028mmol)的溶液中添加4mhcl/二恶烷(2ml)。将所得反应混合物搅拌4小时。在减压下浓缩混合物,得到呈黄色固体状的粗产物ark-89_hcl盐。使用以下方法通过制备型hplc来纯化粗混合物,得到呈黄色固体状的纯净ark-89_hcl盐(0.053g,12.8%)。1hnmr(400mhz,dmso-d6)δ9.95ppm(3h,宽峰s),8.03-7.95ppm(10h,m),7.67-7.62ppm(5h,m),7.28-7.21ppm(6h,m),5.38ppm(1h,s),4.77ppm(0.5h,m),4.59-4.49ppm(1h,m),4.31-4.21ppm(1h,m),4.02-3.96ppm(2h,m),3.62-3.44ppm(6h,m),3.22-3.03ppm(8h,m),2.98-2.88ppm(4h,m),2.74-2.60ppm(10h,m),2.24-2.23ppm(7h,t),1.53-1.52ppm(12h,d),1.26ppm(18h,s)。ms(esi-ms):c67h93fn12o9s[mh]+的m/z计算值1261.70,实验值1262.31。制备型hplc的方法:(a)0.05%hcl/水(hplc级)和(b)100%乙腈(hplc级),使用x-selectfp,250mm×19mm×5μm,使用以下梯度:时间%a%b0.0195.05.026.0066.034.026.010.010028.000.010028.0195.05.029.0095.05.0流程:ark-125的合成(((9-(3-((2-(2-((2s,4s)-4-叠氮基-1-(4-(氟磺酰基)苯甲酰基)-n-甲基吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,14.在室温下向于n,n-二甲基甲酰胺(10ml)中的(((9-(3-((2-(2-((2s,4s)-4-叠氮基-n-甲基吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(13)(0.30g,0.22mmol)的溶液中依序添加4-氟磺酰基苯甲酸(0.054g,0.27mmol)和hatu(0.101g,0.27mmol)。将反应混合物搅拌5分钟。向其中逐滴添加n,n-二异丙基乙胺(0.079g,0.45mmol)并将所得反应混合物在室温下进一步搅拌1小时。将反应混合物由乙酸乙酯(100ml)稀释并用冰冷水(3×30ml)洗涤。组合有机层,用盐水洗涤并在25℃下在减压下浓缩,得到呈黄色半固体状的粗产物14(0.388g,定量产率),其不经进一步纯化即用于下一步骤中。ms(esi-ms):c80h113fn12o15s[mh]+的m/z计算值1532.81,实验值1434.35(m-100,脱去一个boc基)。n,n',n"-(9-(3-((2-(2-((2s,4s)-4-叠氮基-1-(4-(氟磺酰基)苯甲酰基)-n-甲基吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氨基辛酰胺),ark-125_hcl盐.在室温下向于1,4-二恶烷(5.0ml)中的(((9-(3-((2-(2-((2s,4s)-4-叠氮基-1-(4-(氟磺酰基)苯甲酰基)-n-甲基吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(14)(0.38g,0.0025mmol)的溶液中添加4mhcl/二恶烷(2ml)并将所得反应混合物搅拌4小时。在减压下浓缩混合物,得到呈黄色固体状的粗产物ark-125_hcl盐。使用以下方法通过制备型hplc来纯化粗混合物,得到呈黄色固体状的纯净ark-125_hcl盐(0.110g,33.0%)。1hnmr(400mhz,dmso-d6)δ9.96-9.93ppm(3h,宽峰s),8.24-8.21ppm(2h,m),7.97ppm(8h,宽峰s),7.87-7.82ppm(2h,m),7.71-7.68ppm(3h,m),7.32-7.19ppm(6h,m),5.38ppm(1h,s),5.05-5.01ppm(1h,m),4.87-4.80ppm(1h,m),4.30-4.20ppm(1h,m),3.89ppm(18h,宽峰s),3.70-3.55ppm(5h,m),3.48-3.38ppm(3h,m),3.18ppm(1h,s),3.08-3.04ppm(6h,m),2.79-2.68ppm(7h,m),2.25ppm(6h,宽峰s),1.54-1.52ppm(12h,d),1.26ppm(18h,s)。ms(esi-ms):c65h89fn12o9s[mh]+的m/z计算值1233.65,实验值1234.34。制备型hplc的方法:(a)0.05%hcl/水(hplc级)和(b)100%乙腈(hplc级),使用x-selectfp,250mm×19mm×5μm,流动速率19.0ml/min且使用以下梯度:时间%a%b0.0190.010.03.0085.015.022.0080.020.022.010.010023.000.010023.0190.010.024.0090.010.0实例16:ark-81、ark-90以及ark-126(ark000025、ark000028以及ark000031)的合成流程:13的合成(2-(2-(2-((2s,4s)-4-叠氮基-n-甲基-1-((2-硝基苯基)磺酰基)吡咯烷-2-甲酰胺基)乙氧基)乙氧基)乙基)(甲基)氨基甲酸叔丁基酯,10.在室温下向于n,n-二甲基甲酰胺(6ml)中的ark-21(0.9g,3.04mmol)的溶液中依序添加(2s,4s)-4-叠氮基-1-((2-硝基苯基)磺酰基)吡咯烷-2-羧酸(1.33g,3.91mmol)、hatu(1.4g,3.91mmol)以及n,n-二异丙基乙胺(0.85g,6.52mmol)。将所得反应混合物在室温下搅拌1小时。向反应混合物中倒入冰冷水并用乙酸乙酯萃取(3×100ml)。组合有机层,用盐水洗涤并在减压下浓缩,得到呈棕色半固体状的粗产物10(1.5g,78.9%),其不经进一步纯化即用于下一步骤中。ms(esi-ms):c24h37n7o9s[mh]+的m/z计算值600.18,实验值617.5(m+18)。(2s,4s)-4-叠氮基-n-甲基-n-(2-(2-(2-(甲基氨基)乙氧基)乙氧基)乙基)-1-((2硝基苯基)磺酰基)吡咯烷-2-甲酰胺_tfa盐,11.在室温下向于二氯甲烷(10ml)中的((2r,2'r,2”r)-((9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(3-(1h-咪唑-4-基)-1-氧丙烷-1,2-二基))三氨基甲酸三叔丁基酯(10)(1.5g,2.5mmol)的溶液中添加三氟乙酸(0.96ml,12.52mmol)。将所得反应混合物在室温下搅拌2小时。将反应混合物经由硅藻土床过滤并将如此收集的滤液在减压下浓缩,得到呈棕色油状的粗产物11(1.4g,91.50%),其不经进一步纯化即使用。ms(esi-ms):c19h29n7o7s[mh]+的m/z计算值500.18,实验值500.31。(((9-(1-((2s,4s)-4-叠氮基-1-((2-硝基苯基)磺酰基)吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,12.在室温下向于n,n-二甲基甲酰胺(4ml)中的(2s,4s)-4-叠氮基-n-甲基-n-(2-(2-(2-(甲基氨基)乙氧基)乙氧基)乙基)-1-((2-硝基苯基)磺酰基)吡咯烷-2-甲酰胺_tfa盐(11)(0.56g,0.91mmol)的溶液中依序添加3-(2,7,15-三(8-((叔丁氧基羰基)氨基)辛酰胺基)-9,10-[1,2]苯蒽-9(10h)-基)丙酸(ark-18)(0.5g,0.46mmol)、hatu(1.44g,0.55mmol)以及n,n-二异丙基乙胺(0.12g,0.91mmol)。将所得反应混合物在室温下搅拌1小时。向反应混合物中倒入冰冷水并用乙酸乙酯萃取(3×100ml)。组合有机层,用盐水洗涤并在减压下浓缩以得到粗产物12。通过进行硅胶柱色谱(1.5%甲醇/氯仿)纯化粗混合物,得到呈棕色固体状的12(0.6g,84.5%)。ms(esi-ms):c81h117n13o17s[mh]+的m/z计算值1576.84,实验值1578.4。(((9-(1-((2s,4s)-4-叠氮基吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,13.在室温下向于乙腈(10ml)中的(((9-(1-((2s,4s)-4-叠氮基-1-((2-硝基苯基)磺酰基)吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(12)(0.6g,0.38mmol)的溶液中依序添加碳酸钾(0.26g,1.90mmol)和硫代苯酚(0.12ml,1.14mmol)。将所得反应混合物在80℃下搅拌2小时。将反应混合物经由硅藻土床过滤并将收集的滤液在减压下浓缩,得到呈黄色油状的粗产物13。将粗混合物进行反相色谱,得到呈浅黄色固体状的13(0.4g,84.9%)。ms(esi-ms):c53h62n12o9[mh]+的m/z计算值1391.86,实验值1392.3。流程:ark-81的合成2-((1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-基)氧基)乙酸全氟苯基酯,int-a.在0℃下在氮气氛围下向于四氢呋喃(1ml)中的弹头-2(0.048g,0.19mmol)的溶液中添加n-(3-二甲氨基丙基)-n′-乙基碳化二亚胺盐酸盐(0.037g,0.19mmol)。将反应混合物在0℃下搅拌10分钟。在0℃下在氮气氛围下向其中逐滴添加五氟苯酚(0.036g,0.19mmol)/四氢呋喃(0.5ml)的溶液。将所得反应混合物在0℃下进一步搅拌1小时。反应混合物不经处理和分离直接用于下一步骤中。ms(esi-ms):c17h8f5no6[mh]+的m/z计算值418.03,化合物不显示质量反应。注意:中间体-a不分离,即反应质量由此转移到下一步骤反应质量。(((9-(1-((2s,4s)-4-叠氮基-1-(2-((1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-基)氧基)乙酰基)吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,14.在室温下向于四氢呋喃(4ml)中的(((9-(3-((2-(2-((2s,4s)-4-叠氮基-n-甲基吡咯烷-2-甲酰胺基)乙氧基)乙基)(甲基)氨基)-3-氧代丙基)-9,10-二氢-9,10[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸酯(13)(0.27g,0.19mmol)的溶液中添加[(1-甲基-2,4-二氧代-1,4-二氢-2h-3,1-苯并恶嗪-7-基)氧基]乙酸五氟苯基酯(弹头_2型_int_a)(0.081g,0.19mmol)的溶液并将所得反应混合物在室温下搅拌1小时。将反应混合物在减压下浓缩,得到呈棕色固体状的粗产物14(0.3g,80.21%),其不经进一步纯化即用于下一步骤中。ms(esi-ms):c86h121n13o18[mh]+的m/z计算值1623.89,实验值1525.46(m-100,脱去一个boc基)。n,n',n”-(9-(1-((2s,4s)-4-叠氮基-1-(2-((1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-基)氧基)乙酰基)吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(8-氨基辛酰胺),ark-81_hcl盐.在室温下向于四氢呋喃(5.0ml)中的(((9-(1-((2s,4s)-4-叠氮基-1-(2-((1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-基)氧基)乙酰基)吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(14)(0.3g,0.0018mmol)的溶液中添加4mhcl/二恶烷溶液(2ml)并将所得反应混合物在氮气氛围下搅拌4小时。在减压下浓缩反应混合物,得到呈黄色固体状的粗产物ark-81_hcl盐。使用以下方法通过制备型hplc来纯化粗混合物,得到呈黄色固体状的纯净ark-81_hcl盐(0.034g,12.8%)。1hnmr(400mhz,dmso-d6)δ9.94ppm(3h,brs),7.79-7.86ppm(8h,m),7.66ppm(2h,s),7.43ppm(1h,s),7.31-7.18ppm(7h,m),6.88-6.82ppm(1h,m),6.78-6.76ppm(1h,m),5.38ppm(1h,s),5.11-5.02ppm(1h,m),4.80ppm(1h,brs),4.36-4.31ppm(1h,m),4.03-4.01ppm(1h,m),3.62-3.42ppm(15h,m),3.37-3.26ppm(4h,m),3.16ppm(1h,s),3.05-2.99ppm(5h,m),2.89ppm(1h,s),2.81-2.71ppm(7h,m),2.24ppm(6h,s),1.53-1.52ppm(12h,d),1.26ppm(18h,s)。ms(esi-ms):c71h97n13o12[mh]+的m/z计算值1323.74,实验值1325.4。制备型hplc的方法:(a)0.05%hcl/水(hplc级)和(b)100%乙腈(hplc级),使用x-selectc18,250mm×19mm×5μm,流动速率19.0ml/min且使用以下梯度:流程:ark-90的合成(((9-(1-((2s,4s)-4-叠氮基-1-(3-(4-(氟磺酰基)苯基)丙酰基)吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,14.在室温下向于n,n-二甲基甲酰胺(4ml)中的(((9-(1-((2s,4s)-4-叠氮基吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(13)(0.4g,0.29mmol)的溶液中依序添加3-(4-(氟磺酰基)苯基)丙酸(0.07g,0.29mmol)和hatu(0.13g,0.35mmol)。将反应混合物搅拌5分钟。向其中逐滴添加n,n-二异丙基乙胺(0.08g,0.56mmol)并将所得反应混合物在室温下进一步搅拌1小时。将反应混合物由乙酸乙酯(100ml)稀释并用冰冷水(3×30ml)洗涤。组合有机层,用盐水洗涤并在25℃下在减压下浓缩,得到呈棕色固体状的粗产物14(0.4g,87%),其不经进一步纯化即用于下一步骤中。ms(esi-ms):c84h121fn12o16s[mh]+的m/z计算值1605.88,实验值1506.5(m-100,脱去一个boc基)。n,n',n"-(9-(1-((2s,4s)-4-叠氮基-1-(3-(4-(氟磺酰基)苯基)丙酰基)吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氨基辛酰胺),ark-90_hcl盐.在室温下向于1,4-二恶烷(5.0ml)中的(((9-(1-((2s,4s)-4-叠氮基-1-(3-(4-氟磺酰基)苯基)丙酰基)吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(14)(0.4g,0.0025mmol)的溶液中添加4mhcl/二恶烷(2ml)。将所得反应混合物搅拌4小时。在减压下浓缩混合物,得到呈黄色固体状的粗产物ark-90_hcl盐。使用以下方法通过制备型hplc来纯化粗混合物,得到呈黄色固体状的纯净ark-90_hcl盐(0.035g,7.11%)。1hnmr(400mhz,dmso)δ9.89ppm(3h,宽峰s),8.03-8.00ppm(2h,t),7.66-7.56ppm(5h,m),7.29-7.20ppm(6h,m),5.33(1h,s),3.62-3.52ppm(6h,m)3.49-3.44ppm(3h,m),3.44-3.02ppm(6h,m),3.05-2.99ppm(8h,m),2.93ppm(3h,宽峰s),2.76-2.70ppm(10h,m),2.23(6h,s),1.519(14h,s),1.52(21h,s)。ms(esi-ms):c68h95fn12o10s[mh]+的m/z计算值1304.72,实验值1306.3。hplc保留时间:10.894分钟。制备型hplc的方法:0.05%hcl/水(hplc级)和(b)100%乙腈(hplc级),使用沃特世x-bridgec18,250mm×30mm×5μm,流动速率35.0ml/min且使用以下梯度:时间%a%b0.0085.015.05.0080.020.025.0060.040.025.010.0100.026.000.0100.026.0185.015.027.0085.015.0流程:ark-126的合成(((9-(1-((2s,4s)-4-叠氮基-1-(3-(4-(氟磺酰基)苯甲酰基)吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,14.在室温下向于n,n-二甲基甲酰胺(4ml)中的(((9-(1-((2s,4s)-4-叠氮基吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(13)(0.1g,0.072mmol)的溶液中依序添加4-氟磺酰基苯甲酸酸(0.018g,0.09mmol)和hatu(0.033g,0.09mmol)。将反应混合物搅拌5分钟。向其中逐滴添加n,n-二异丙基乙胺(0.018g,0.14mmol)并将所得反应混合物在室温下进一步搅拌1小时。将反应混合物由乙酸乙酯(100ml)稀释并用冰冷水(3×30ml)洗涤。组合有机层,用盐水洗涤并在25℃下在减压下浓缩,得到呈黄色半固体状的粗产物14(0.12g,定量产率),其不经进一步纯化即用于下一步骤中。ms(esi-ms):c82h117fn12o16s[mh]+的m/z计算值1577.84,实验值1478.46(m-100,脱去一个boc基)。n,n',n"-(9-(1-((2s,4s)-4-叠氮基-1-(3-(4-(氟磺酰基)苯甲酰基)吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氨基辛酰胺),ark-126_hcl盐.在室温下向于1,4-二恶烷(5.0ml)中的(((9-(1-((2s,4s)-4-叠氮基-1-(3-(4-(氟磺酰基)苯甲酰基)吡咯烷-2-基)-2,11-二甲基-1,12-二氧代-5,8-二氧杂-2,11-二氮杂十四烷-14-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(14)(0.12g,0.0007mmol)的溶液中添加4mhcl/二恶烷(2ml)并将所得反应混合物搅拌4小时。在减压下浓缩混合物,得到呈黄色固体状的粗产物ark-126_hcl盐。使用以下方法通过制备型hplc来纯化粗混合物,得到呈黄色固体状的纯净ark-126_hcl盐(0.03g,28.57%)。1hnmr(400mhz,dmso)δ9.93-9.91ppm(3h,宽峰s),8.26-8.13ppm(2h,m),7.87ppm(9h,宽峰s),7.78-7.76ppm(1h,d),7.67ppm(3h,宽峰s),7.29-7.22ppm(6h,m),5.39ppm(1h,s),5.010-4.969ppm(0.5h,t),4.86-4.82ppm(0.5h,m),4.72-4.60ppm(1h,m),4.44-4.36ppm(1h,m),4.30-4.21ppm(1h,m),4.14-4.00ppm(1h,m),3.64-3.61ppm(20h,m)3.48-3.37ppm(6h,m),3.19-3.11ppm(3h,m),3.07-3.03ppm(5h,m),2.89-2.84ppm(2h,宽峰s),2.76-2.68ppm(7h,m),2.26-2.23ppm(6h,t),1.53ppm(12h,s),1.27ppm(18h,s)。ms(esi-ms):c67h93fn12o10s[mh]+的m/z计算值1277.68,实验值1278.35。制备型hplc的方法:(a)0.05%hcl/水(hplc级)和(b)100%乙腈(hplc级),使用sufirec18,150mm×19mm×5μm,流动速率19.0ml/min且使用以下梯度:时间%a%b0.0195.05.015.0070.030.015.010.0100.018.000.0100.018.0195.05.019.0095.05.0实例17:ark-82、ark-91以及ark-127(ark000026、ark000029以及ark000032)的合成流程:13的合成(1-((2s,4s)-4-叠氮基-1-((2-硝基苯基)磺酰基)吡咯烷-2-基)-2-甲基-1-氧代-5,8,11-三氧杂-2-氮杂十三烷-13-基)(甲基)氨基甲酸叔丁基酯,10.在室温下向于n,n-二甲基甲酰胺(10ml)中的ark-22(0.41g,1.281mmol)的溶液中依序添加(2s,4s)-4-叠氮基-1-((2-硝基苯基)磺酰基)吡咯烷-2-羧酸(0.52g,1.54mmol)、hatu(0.584g,1.54mmol)以及n,n-二异丙基乙胺(0.33g,2.56mmol)。将所得反应混合物在室温下搅拌1小时。向反应混合物中倒入冰冷水并用乙酸乙酯萃取(3×100ml)。组合有机层,用盐水洗涤并在减压下浓缩,得到呈棕色半固体状的粗产物10(0.8g,97.2%),其不经进一步纯化即用于下一步骤中。ms(esi-ms):c26h41n7o10s[mh]+的m/z计算值644.26,实验值544.36(m-100)。(2s,4s)-4-叠氮基-n-甲基-1-((2-硝基苯基)磺酰基)-n-(5,8,11-三氧杂-2-氮杂十三烷-13-基)吡咯烷-2-甲酰胺_tfa盐,11.在室温下向于二氯甲烷(10ml)中的(1-((2s,4s)-4-叠氮基-1-((2-硝基苯基)磺酰基)吡咯烷-2-基)-2-甲基-1-氧代-5,8,11-三氧杂-2-氮杂十三烷-13-基)(甲基)氨基甲酸叔丁基酯(10)(0.8g,1.24mmol)的溶液中添加三氟乙酸(0.48ml,6.21mmol)。将所得反应混合物在室温下搅拌2小时。将反应混合物经由硅藻土床过滤并将如此收集的滤液在减压下浓缩,得到呈棕色油状的粗产物11(1.05g,定量产率),其不经进一步纯化即使用。ms(esi-ms):c21h33n7o8s.tfa[mh]+的m/z计算值544.21,实验值544.47。(((9-(1-((2s,4s)-4-叠氮基-1-((2-硝基苯基)磺酰基)吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,12.在室温下向于n,n-二甲基甲酰胺(4ml)中的(2s,4s)-4-叠氮基-n-甲基-1-((2-硝基苯基)磺酰基)-n-(5,8,11-三氧杂-2-氮杂十三烷-13-基)吡咯烷-2-甲酰胺_tfa盐(11)(0.65g,0.98mmol)的溶液中依序添加3-(2,7,15-三(8-((叔丁氧基羰基)氨基)辛酰胺基)-9,10-[1,2]苯蒽-9(10h)-基)丙酸(ark-18)(0.9g,0.822mmol)、hatu(0.375g,0.98mmol)以及n,n-二异丙基乙胺(0.21g,1.64mmol)。将所得反应混合物在室温下搅拌1小时。向反应混合物中倒入冰冷水并用乙酸乙酯萃取(3×100ml)。组合有机层,用盐水洗涤并在减压下浓缩以得到粗产物12。通过进行硅胶柱色谱纯化(1.5%甲醇/氯仿)粗混合物,得到呈棕色固体状的12(1.72g,定量产率),其不经进一步纯化即用于下一步骤中。ms(esi-ms):c83h121n13o18s[mh]+的m/z计算值1620.87,实验值1522.31(m-100)。(((9-(1-((2s,4s)-4-叠氮基吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,13.在室温下向于乙腈(60ml)中的(((9-(1-((2s,4s)-4-叠氮基-1-((2-硝基苯基)磺酰基)吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(12)(0.7g,0.43mmol)的溶液中依序添加碳酸钾(0.29g,2.16mmol)和硫代苯酚(0.13ml,1.296mmol)。将所得反应混合物在80℃下搅拌2小时。将反应混合物经由硅藻土床过滤并将收集的滤液在减压下浓缩,得到呈黄色油状的粗产物13。将粗混合物进行反相色谱,得到呈浅黄色固体状的13(0.39g,62.9%)。通过用正戊烷研磨来纯化粗产物(以去除未反应的硫代苯酚),得到呈黄色固体状的13(0.39g,62.9%)。ms(esi-ms):c77h118n12o14[mh]+的m/z计算值1435.89,实验值1437.41。流程:ark-82的合成2-((1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-基)氧基)乙酸全氟苯基酯,int-a.在0℃下在氮气氛围下向于四氢呋喃(1ml)中的弹头-2(0.055g,0.21mmol)的溶液中添加n-(3-二甲氨基丙基)-n′-乙基碳化二亚胺盐酸盐(0.047g,0.21mmol)。将反应混合物在0℃下搅拌10分钟。在0℃下在氮气氛围下向其中逐滴添加五氟苯酚(0.04g,0.21mmol)/四氢呋喃(0.5ml)的溶液。将所得反应混合物在0℃下进一步搅拌1小时。反应混合物不经处理和分离直接用于下一步骤中。ms(esi-ms):c17h8f5no6[mh]+的m/z计算值418.03,化合物不显示质量反应。注意:中间体-a不分离,即反应质量由此转移到下一步骤反应质量。(((9-(1-((2s,4s)-4-叠氮基-1-(2-((1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-基)氧基)乙酰基)吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,14.在室温下向于四氢呋喃(4ml)中的(((9-(1-((2s,4s)-4-叠氮基吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(13)(0.3g,0.21mmol)的溶液中添加[(1-甲基-2,4-二氧代-1,4-二氢-2h-3,1-苯并恶嗪-7-基)氧基]乙酸五氟苯基酯(弹头_2型)(0.087g,0.21mmol)的溶液并将所得反应混合物搅拌1小时。将反应混合物在减压下浓缩,得到呈棕色固体状的粗产物14(0.54g,定量产率),其不经进一步纯化即用于下一步骤中。ms(esi-ms):m/zcalcdc88h125n13o19[mh]+1668.92,实验值1570.41(m-100,脱去一个boc基)。n,n',n”-(9-(1-((2s,4s)-4-叠氮基-1-(2-((1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-基)氧基)乙酰基)吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(8-氨基辛酰胺),ark-82_hcl盐.在室温下向于四氢呋喃(5.0ml)中的(((9-(1-((2s,4s)-4-叠氮基-1-(2-((1-甲基-2,4-二氧代-1,4-二氢-2h-苯并[d][1,3]恶嗪-7-基)氧基)乙酰基)吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(14)(0.54g,0.0032mmol)的溶液中添加4mhcl/二恶烷溶液(2ml)并将所得反应混合物在氮气氛围下搅拌4小时。在减压下浓缩反应混合物,得到呈黄色固体状的粗产物ark-82_hcl盐。使用以下方法通过制备型hplc来纯化粗混合物,得到呈黄色固体状的纯净ark-81_hcl盐(0.049g,10.2%)。1hnmr(400mhz,dmso-d6)δ9.95ppm(3h,brs),7.99ppm(8h,宽峰s),7.90-7.88ppm(2h,d),7.66ppm(3h,宽峰s),7.46ppm(2h,宽峰s),7.33ppm(2h,宽峰s),7.28-7.25ppm(5h,m),7.23-7.21ppm(2h,d),6.89-6.85ppm(1h,m),6.78-6.76ppm(1h,m),6.55ppm(2h,宽峰s),5.38ppm(1h,s),5.12-5.00ppm(2h,m),4.77ppm(1h,m),4.37-4.34ppm(3h,m),4.06-4.05ppm(1h,m),3.82ppm(1h,m),3.63-3.43ppm(15h,m),3.09-3.01ppm(7h,m),2.96-2.94ppm(1h,d),2.82-2.80ppm(1h,d),2.76-2.64ppm(7h,m),2.24ppm(7h,宽峰s),1.54-1.52ppm(12h,d),1.26ppm(18h,s)。ms(esi-ms):c73h101n13o13[mh]+的m/z计算值1368.76,实验值1370.25。制备型hplc的方法:(a)0.05%hcl/水(hplc级)和(b)100%乙腈(hplc级),使用kinetexbiphenyl,250mm×21.2mm×5μm,流动速率20.0ml/min且使用以下梯度:时间%a%b0.0195.05.03.0077.023.024.0072.028.024.010.010025.000.010025.0195.05.026.0095.05.0流程:ark-91的合成(((9-(1-((2s,4s)-4-叠氮基-1-(3-(4-(氟磺酰基)苯基)丙酰基)吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,14.在室温下向于n,n-二甲基甲酰胺(6ml)中的(((9-(1-((2s,4s)-4-叠氮基吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(13)(0.30g,0.21mmol)的溶液中依序添加3-(4-(氟磺酰基)苯基)丙酸(00.058g,0.25mmol)和hatu(0.095g,0.25mmol)。将反应混合物搅拌5分钟。向其中逐滴添加n,n-二异丙基乙胺(0.054g,0.42mmol)并将所得反应混合物在室温下进一步搅拌1小时。将反应混合物由乙酸乙酯(100ml)稀释并用冰冷水(3×30ml)洗涤。组合有机层,用盐水洗涤并在25℃下在减压下浓缩,得到呈棕色固体状的粗产物14(0.55g,定量产率),其不经进一步纯化即用于下一步骤中。ms(esi-ms):c86h125fn12o17s[mh]+的m/z计算值1649.89,实验值1551.29(m-100,脱去一个boc基)。n,n',n”-(9-(1-((2s,4s)-4-叠氮基-1-(3-(4-(氟磺酰基)苯基)丙酰基)吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氨基辛酰胺),ark-91_hcl盐.在室温下向于1,4-二恶烷(9.0ml)中的(((9-(1-((2s,4s)-4-叠氮基-1-(3-(4-(氟磺酰基)苯基)丙酰基)吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(14)(0.55g,0.0033mmol)溶液中添加4mhcl/二恶烷(4ml)。将所得反应混合物搅拌4小时。在减压下浓缩混合物,得到呈黄色固体状的粗产物ark-91_hcl盐。使用以下方法通过制备型hplc来纯化粗混合物,得到呈黄色固体状的纯净ark-91_hcl盐(0.09g,18.5%)。1hnmr(400mhz,dmso-d6)δ9.94ppm(3h,宽峰s),8.04-8.00ppm(2h,m),7.96ppm(6h,宽峰s),7.66ppm(4h,宽峰s),7.62-7.52ppm(1h,m),7.31-7.18ppm(6h,宽峰s),5.38ppm(1h,s),4.71-4.66ppm(1h,m),4.25ppm(9h,m),3.40-3.99ppm(1h,m),3.63-3.49ppm(9h,m),3.44-3.35ppm(5h,m),3.31-3.24ppm(2h,m),3.16-3.15ppm(2h,m),3.09-3.00ppm(6h,m),2.95-2.91ppm(3h,m),2.77-2.69ppm(7h,m),2.26-2.23ppm(6h,t),1.54-1.52ppm(12h,d),1.26ppm(18h,宽峰s)。ms(esi-ms):c71h101fn12o11s[mh]+的m/z计算值1349.74,实验值1350.38。制备型hplc的方法:(a)0.05%hcl/水(hplc级)和(b)100%乙腈(hplc级),使用x-selectc18,250mm×30mm,5μm,流动速率23.0ml/min且使用以下梯度:时间%a%b0.0185.015.05.0080.020.025.0060.040.025.010.010026.000.010026.0185.015.027.0085.015.0流程:ark-127的合成(((9-(1-((2s,4s)-4-叠氮基-1-(4-(氟磺酰基)苯甲酰基)吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯,14.在室温下向于n,n-二甲基甲酰胺(2ml)中的(((9-(1-((2s,4s)-4-叠氮基吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(13)(0.05g,0.03mmol)的溶液中依序添加4-氟磺酰基苯甲酸(0.09g,0.04mmol)和hatu(0.016g,0.04mmol)。将反应混合物搅拌5分钟。向其中逐滴添加n,n-二异丙基乙胺(0.09g,0.14mmol)并将所得反应混合物在室温下进一步搅拌1小时。将反应混合物由乙酸乙酯(100ml)稀释并用冰冷水(3×30ml)洗涤。组合有机层,用盐水洗涤并在25℃下在减压下浓缩,得到呈黄色半固体状的粗产物14(0.075g,定量产率),其不经进一步纯化即用于下一步骤中。ms(esi-ms):c84h121fn12o17s[mh]+的m/z计算值1621.87,实验值1523.47(m-100,脱去一个boc基)。4-((2s,4s)-4-叠氮基-2-(甲基(12-甲基-13-氧代-15-(2,7,15-三(8-氨基辛酰胺基)-9,10-[1,2]苯蒽-9(10h)-基)-3,6,9-三氧杂-12-氮杂十五烷基)氨基甲酰基)吡咯烷-1-羰基)苯磺酰氟,ark-127_hcl盐.在室温下向于1,4-二恶烷(3.0ml)中的(((9-(1-((2s,4s)-4-叠氮基-1-(4-(氟磺酰基)苯甲酰基)吡咯烷-2-基)-2,14-二甲基-1,15-二氧代-5,8,11-三氧杂-2,14-二氮杂十七烷-17-基)-9,10-二氢-9,10-[1,2]苯蒽-2,7,15-三基)三(氮二基))三(8-氧代辛烷-8,1-二基))三氨基甲酸三叔丁基酯(14)(0.075g,0.0005mmol)的溶液中添加4mhcl/二恶烷(1ml)并将所得反应混合物搅拌4小时。在减压下浓缩混合物,得到呈黄色固体状的粗产物ark-127_hcl盐。使用以下方法通过制备型hplc来纯化粗混合物,得到呈黄色固体状的纯净ark-127_hcl盐(0.014g,21.2%)。1hnmr(400mhz,dmso-d6)δ9.89ppm(3h,宽峰s),8.26-8.22ppm(1h,m),8.16ppm(1h,m),7.89-7.85ppm(9h,m),7.75ppm(1h,m),7.69-7.66ppm(3h,m),7.29-7.22ppm(5h,m),5.38ppm(1h,s),4.99-4.87ppm(2h,m),4.39-4.38ppm(1h,m),4.28-4.16ppm(1h,m),4.05-4.02ppm(1h,m),3.81-3.74ppm(1h,m),3.64-3.52ppm(9h,m),3.38-3.28ppm(7h,m),3.17-2.99ppm(8h,m),2.76-2.65ppm(8h,m),2.34-2.23ppm(5h,t),1.54ppm(11h,宽峰s),1.27ppm(18h,宽峰s)。ms(esi-ms):c69h97fn12o11s[mh]+的m/z计算值1321.71,实验值1322.42。制备型hplc的方法:(a)0.05%hcl/水(hplc级)和(b)100%乙腈(hplc级),使用sunfirec18,250mm×19mm×5μm,流动速率20.0ml/min且使用以下梯度:时间%a%b0.0186.014.019.0070.030.019.01100.00.020.00100.00.020.0186.014.021.0086.014.0实例18:cpnq类似物和其它喹啉类配体的制备基于cpnq和其它喹啉骨架的示范性小分子配体根据图97-105中所示的合成流程制备。所制备的化合物的分析数据显示在下表6中。表6;cpnq类似物和喹啉类配体的分析数据实例19:示范性化合物数据其制备在上文中描述的化合物的其它数据以及其它示范性化合物的结构提供在下表7中。表7:示范性化合物结构和数据实例20:所制备的rna序列以下rna序列经设计和制备用于测试化合物结合(包括检验所预期结合模式,或当其为未知时,鉴别结合模式)且验证本发明的方法。表8:所制备的rna序列实例21:荧光猝灭结合分析这一分析将用于测试rna三向接合(如38nt构筑体)的化合物结合。这是利用fam作为荧光标签且iowablack作为猝灭剂的荧光猝灭分析。标签分别连接在3'端和5'端。在化合物结合时稳定形成3wj将导致fam荧光的猝灭,因为极为接近iowablack标签。分析读数:fam(485-520nm)荧光强度。核酸接合是普遍的结构基元,其出现在dna和rna中。其代表生物过程中重要的结构且有时暂态的结构,如复制和重组,然而也出现在三联体重复序列扩展中,其与多种神经退化性疾病相关。核酸接合普遍存在在病毒基因组中,且是核糖开关中的重要结构基元。三向接合是存在于许多纳米结构、软质材料、多发色团组件以及适体类传感器中的关键建构嵌段。在适体类传感器的情况中,dna三向接合充当重要结构基元。这一分析可以充当工具包的一部分,用于通过在具有易于观察的读数的受控系统的环境下测试与3wj的结合来探寻rna结合小分子。本文中所公开的pearl-seq或其它方法随后可用于进一步筛选化合物。使用的分析样品缓冲液:10mmcacokph7.2,30mmnacl。缓冲液在无dna酶/rna酶的蒸馏水(吉毕科生命技术(gibcolifetechnologies))中制备。化合物制备以干燥粉末形式提供的工具化合物制备成于100%d6-dmso中的50mm储备溶液。将于d6-dmso中的50mm浓度的储备溶液储存在室温下。硬件样品盘:greiner目录号784076,黑色,384(稀释盘:greiner货号781101,ps-微量盘,384孔,透明)。荧光强度装置:envision1040285分析方案分析缓冲液制备每天新鲜(10ml):1ml100mmcacokph7.2和0.3ml1mnacl,其用无dna酶/rna酶蒸馏水填加到10mlrna制备(rna样品均质化)在分析缓冲液中1:10稀释rna(最终10μm)。将稀释后的rna加热到90℃持续5分钟(密封的埃彭道夫管(eppendorftube))。将rna探针缓慢冷却到室温。化合物制备将化合物在dmso中稀释到800μm(分析:8μm)。样品制备将71.2-78.4μl分析缓冲液移液到greiner货号781101,ps-微量盘,384(各孔均需要)。添加0.8-8μlrna-溶液(100mm)。添加0.8μl化合物-溶液(800mm)。用多通道移液管轻缓地混合。样品中的最终浓度:1-10μmrna、8μm化合物、1%dmso热偏移测量(lightcycler480)将25μl样品溶液移液到greiner目录号784076,黑色,384当样品转移完成时在其上加盖盖子。用lightcycler480测量96盘(通道:485/520nm)。读数使用软件perkinelmerenvisionmanager。结果首先进行在cacok或napo4缓冲液中在各种rna浓度下的预期荧光信号的校正。在含盐缓冲液中的实验展现不同荧光猝灭表现。针对cacok缓冲液的校正实验显示于图106中。针对napo4缓冲液获得相似结果(结果未图示)。首先,在荧光猝灭分析中测试两种化合物(亦即ark000007和ark000008)以评估对荧光信号的浓度依赖型影响。在>5μm的浓度下,相对于3wj_0.0.0_5ib_3fam构筑体,仅ark000007显示出猝灭影响增加(图107)。其余的缓冲液和样品条件未显示出化合物对荧光信号的显著影响。针对化合物ark0000013和ark0000014重复荧光猝灭实验以测量与以下各者的结合:a)rna3wj_1.0.0_5ib_3fam(具有一个未配对核苷酸的顺式3wj)b)split3wj.1_up_5ib+split3wj.1_down_3fam(1:1混合的反式3wj)c)split3wj.2_up_5ib+split3wj.2_down_3fam(1:1混合的反式3wj)序列的可能结构在图108中示出,且实验结果显示于图109中。在荧光猝灭分析中,两种化合物皆在两种浓度点下测试以评估对研究中所采用的rna构筑体的影响。ark000013(图中与cpd13相关的曲线)显示出对所使用的全部三种rna构筑体的显著浓度依赖型影响(对顺式3wj影响最小且对反式3wj影响相等)。数据表明ark000013与3wj构筑体具有特异性相互作用。显示出ark000014(cpd14)对rna构筑体的影响较小(显示出split3wj_2的影响较大)。化合物看上去与rna目标物种相互作用。实例22:热偏移结合分析目的:测试化合物对rna三向接合(例如38nt的构筑体)的结合。热偏移分析基于已确立的荧光猝灭分析,利用fam作为荧光标签且作为iowablack猝灭剂。标签分别连接在3'端和5'端。在化合物结合时稳定形成3wj将导致fam荧光的猝灭,因为极为接近iowablack标签。热展开引起荧光发射增加。分析读数:fam(465-510nm)热偏移。这一分析可以充当工具包的一部分,用于通过在具有易于观察的读数的受控系统的环境下测试与3wj的结合来探寻rna结合小分子。本文中所公开的pearl-seq或其它方法随后可用于进一步筛选化合物。使用的分析样品缓冲液:10mmcacokph7.2,30mmnacl。缓冲液在无dna酶/rna酶的蒸馏水(吉毕科生命技术)中制备。化合物制备作为干燥粉末提供的工具化合物制备成于100%d6-dmso中的50mm储备溶液。将于d6-dmso中的50mm浓度的储备溶液储存在室温下。硬件样品盘:罗氏(roche),lightcycler480多孔盘96,白色,货号04729692001。(稀释盘:greiner货号781101,ps-微量盘,384孔,透明)。热偏移装置:罗氏,lightcycler480。分析方案分析缓冲液制备每天新鲜(10ml):1ml100mmcacokph7.2和0.3ml1mnacl,其用无dna酶/rna酶蒸馏水填加到10ml。rna制备(rna样品均质化)在分析缓冲液中1:10稀释rna(最终10μm)。将稀释后的rna加热到90℃持续5分钟(密封的埃彭道夫管)。将rna探针缓慢冷却到室温。化合物制备将化合物在dmso中稀释到800μm(分析:8μm)。样品制备将78.4μl分析缓冲液移液到greiner货号781101,ps-微量盘,384(各孔均需要)。添加0.8μlrna-溶液(100mm)。添加0.8μl化合物-溶液(800mm)。用多通道移液管轻缓混合。样品中的最终浓度:1μmrna、8μm化合物、1%dmso热偏移测量(lightcycler480)移液20μl样品溶液到罗氏的lightcycler480多孔盘96,白色,货号04729692001中。当样品转移完成时,用透明密封顶盖(货号04729692001的一部分将盘密封)。用桌上型装置将盘离心以短暂离心样品。用lightcycler480测量96盘(通道:480/510nm;温度:41-91℃)。用熔解曲线基因分型(meltingcurvegenotyping)模式分析测量数据。软件lightcycler480lcs4801.5.1.62lightcycler热偏移分析设置:采集模式:连续;升温速率:0.1℃/秒;采集:6/℃所有样品的熔解曲线基因分型曲线用原始和归一化数据拟合。结果熔解曲线分析显示熔解温度(tm)为约51℃。测试rna浓度的范围并确定分析窗口(0.5-1μm的浓度范围产生最佳结果)。缓冲液的选项也影响tm。在热偏移分析中在不同缓冲液条件下测试rna构筑体(尤其在盐存在下)。盐浓度增加显示出熔解温度增加的趋势。然而,如已经在荧光猝灭分析中发现,这一观测结果强烈依赖于缓冲液条件。使用在1μmrna浓度下具有30mm盐的cacok评估化合物对3wj稳定性的影响。在热偏移分析中在不同缓冲液条件下测试rna构筑体(尤其在盐存在下)。正如预期的,盐浓度的增加显示出熔解温度增加的趋势。然而,如已经在荧光猝灭分析中发现,这一观测结果强烈依赖于缓冲液条件。rna构筑体在高盐浓度存在下折叠且熔解温度为61℃而非在较低盐浓度下时的51℃。使用这些条件来筛选测试化合物。在热偏移分析中用3wj_0.0.0_5ib_3famrna构筑体测试化合物ark000007和ark000008(图110)。数据分析显示ark000007使熔解温度偏移约5℃的显著影响(即61.2℃到65.6℃)。相比之下,对于ark000008仅观测到极小影响。这些数据表明,ark000007的存在增加3wj的稳定性。还在热偏移分析中针对三种rna3wj构筑体测试化合物ark0000013和ark0000014:a)rna3wj_1.0.0_5ib_3fam(具有一个未配对核苷酸的顺式3wj);b)split3wj.1_up_5ib+split3wj.1_down_3fam(1:1混合的反式3wj);以及c)split3wj.2_up_5ib+split3wj.2_down_3fam(1:1混合的反式3wj)。当用rna3wj_1.0.0_5ib_3fam测试化合物时数据分析显示出在熔解曲线中ark000013具有显著影响,化合物的存在显著降低荧光信号(图111)。在ark000013存在下归一化数据不显示适当熔融曲线,且数据分析软件的算法不能够确定有意义的熔点。对于ark000014观测到较弱影响,熔解温度偏移为约3℃(即65.6℃到68.4℃)。数据表明,ark000013的存在增加在结合时3wj折叠的稳定性,而ark000014显示出不大显著的影响。这些结果与荧光猝灭分析一致。在上文b)rnasplit3wj.1_up_5ib+split3wj.1_down_3fam的存在下,数据分析显示出ark000013的显著影响,熔解温度偏移为约21℃(即37.5℃到58.2℃)(图112)。对于ark000014仅观测到微小影响,熔解温度偏移仅为约1℃(即37.5℃到38.8℃)。数据表明,ark000013的存在增加在结合时3wj折叠的稳定性,而ark000014显示出不大显著的影响。由2个rna分子以反式形成的3wj相比于顺式折叠3wj显示出显著较低的稳定性(在不存在和存在化合物的情况下)。尤其在不存在化合物时,具有较大隆起的茎-环结构可能是最多的构造。在上文c)rnasplit3wj.2_up_5ib+split3wj.2_down_3fam的存在下,数据分析显示出ark000013的显著影响,熔解温度偏移为约13℃(即44.0℃到56.9℃)(图113)。对于ark000014仅观测到微小影响,熔解温度偏移仅为约1℃(即44.0℃到44.7℃)。数据表明,ark000013的存在增加在结合时3wj折叠的稳定性,而ark000014显示出不大显著的影响。所研究的反式3wj似乎展现比顺式3wj低的稳定性,然而,split_23wj具有比split_1更稳定的构造(在不存在化合物的情况下)。在化合物存在下,反式3wjsplit_1和split_2的熔解温度相似,表明在化合物存在下形成3wj折叠。用多种rna构筑体测试ark0000013和ark0000014。结果如下显示在表9和10中。还在热偏移分析中相对于不同rna:配体比率(即1:1、1:3)下的顺式折叠rna3wj测试化合物ark000039。对于构筑体3wj_0.0.0_5ib_3fam,原始数据显示出在熔解曲线中ark000039无显著影响(在等摩尔浓度或3×摩尔过量下皆不)。另外,归一化数据显示,化合物ark000039无显著影响。看上去ark000039不显著影响3wj折叠的稳定性,因此未观测到ark000039结合的迹象。用序列rna3wj_3.0.0_5ib_3fam和rna3wj_1.0.0_5ib_3fam测试时也发现同样影响极小。表9:ark0000013热偏移数据3wj构筑体熔解温度[℃]-化合物熔解温度[℃]+化合物温度偏移[℃]rna3wj_0.0.0_5ib_3fam61.284.124.2rna3wj_1.0.0_5ib_3fam65.687.021.4rna3wj_1.1.0_5ib_3fam63.385.522.2rna3wj_1.1.1_5ib_3fam62.282.920.7rna3wj_2.0.0_5ib_3fam62.284.322.1rna3wj_2.1.0_5ib_3fam41.945.73.8rna3wj_3.0.0_5ib_3fam62.083.721.7split3wj_137.858.220.4split3wj_244.756.912.2表示10:ark0000014热偏移数据表11:用rna序列3wj_0.0.0_5ib_fam测试的其它化合物的热偏移数据值得注意的是,携带配体、系链、弹头以及点击基团的钩连和点击化合物(pearl-seq),如ark000031和ark000032,显示较大热偏移值+24.1℃和+15.0℃,表明与rna目标序列结合强。实例23:配体观测nmr结合分析目的:测试化合物对rna三向接合(3wj)的直接结合。这一配体观测nmr分析用于测试化合物对rna目标,例如38nt合成rna3wj和如下文所描述的其它的直接结合。配体观测分析用于单个化合物的命中验证研究。已确立实验最终用于进行基团表位作图,在下文中描述。分析试剂和硬件样品缓冲液:10mm二甲胂酸盐,ph7.1;0.68g[mw:137.99g/mol];用密理博h2o(milliporeh2o)填加到500ml。化合物制备化合物原料:以干燥粉末形式提供的工具化合物制备成于100%d6-dmso中的50mm储备溶液。以干燥粉末形式提供的测试化合物制备成于100%d6-dmso中的50mm储备溶液。将于d6-dmso中的50mm浓度的储备溶液储存在4℃下。硬件样品管:nmr试管;norell,款号st500-7,用于nmr样品测量nmr波谱仪:brukeravance600波谱仪,在600.0mhz下运行,用于1h。5-mmz-梯度txi冷冻探针。分析程序rna制备(rna样品均质化)将干燥rna颗粒溶解在样品缓冲液10mm二甲胂酸盐(ph7.1)中。将200μm(原料浓度)的rna等分试样在95℃下变性3分钟且在冰上迅速冷却3分钟。样品制备将23μld6-dmso移液到1.5ml埃彭道夫管以确保在样品中存在5%d6-dmso作为锁定剂。添加2μl各片段(50mm储备溶液)。添加450μl分析缓冲液。添加25μl均质化的rna3wj的rna储备溶液(200μm储备溶液)。涡动样品以确保适当混合,并置于nmr波谱仪中以开始样品的测量。样品中的最终浓度:200μm各化合物和10μmrna目标分子。nmr测量将样品置于磁体中并将温度调整到288k。匹配并调节波谱仪频率在600mhz。匀场磁场以围绕样品均匀化磁场。确定质子90°脉冲且调整水共振频率以确保最大水抑制。将所确定的值传递到nmr实验,针对对应的样品记录nmr实验。实验的工序包括使用用于水抑制的watergate序列,即waterlogsy(wlogsy)的质子1d实验,和1d饱和传递差(saturationtransferdifference,std)实验以对化合物与rna的直接结合进行测试。详细1dwatergate实验:针对各1dwatergate谱图在f1(1h)中经128次扫描获得总共8192个复合点(实验时间4分钟)。谱宽设置为16.66ppm。详细wlogsy实验:wlogsy谱图,在f1(1h)中经256次扫描获得总共1024个复合点(实验时间25分钟)。用于1h的载波频率设置在水共振(约4.7ppm)。在导向维度上谱宽设置为16.66ppm(1h)。详细std实验:std谱图,在f1(1h)中经1024次扫描获得总共1024个复合点(实验时间65分钟)。用于1h的载波频率设置在水共振(约4.7ppm)。在导向维度上谱宽设置为16.66ppm(1h)。对于共振中实验,在-2500hz的饱和频率下饱和度设置为2.0秒。对于离共振实验,饱和频率设置为10200hz。读数软件:topspintm版:2.1(10月24日,2007)测量模式:1d使用python脚本在分析设置、筛选以及去卷积处理中处理所有记录的谱图。针对化合物的直接结合信号分析谱图。报告所识别的单个化合物命中。cag重复rna的配体观测nmr结合分析根据上文程序,针对结合对各种工具和测试化合物进行分析。在第一系列实验中,针对与17cag或41cag的结合对化合物进行测试(样品为以rna计3μm)。化合物hp-ac008001-a08、hp-ac008002-a06、hp-ac008002-d10以及大部分的41小分子片段初步筛选在对rna目标物种17cag和41cag的结合信号方面未显示出显著差异。然而,几种化合物在两种rna目标物种存在下其信号显示出显著改变。在nmr结合分析中也测试ark0000013。测试样品:10μmrna3wj_0.0.0_5ib_3fam+/-200ark000013。所记录的ark000013的1h1dwatergate和waterlogsy谱图用作参考(注意:观测到的芳香族信号在7.4ppm与7.9ppm之间,并且由于中心三蝶烯骨架的对称性,全部9个质子磁等价)。在rna存在下,因ark000013共振而出现的负性信号明显减少。数据表明ark000013与作为目标物种的3wjrna的结合。std实验显示出较小信号,其足以定性地确定结合。表位作图在多种化合物上进行表位作图。作为第一实例,在50μm的浓度下分析化合物cpnq。获得缩放到谱图的芳香族区的1h1dwatergate谱图。对此实例和以下实例的1h共振的初步分配是基于化学位移分布、偶联模式以及nmr谱图的模拟(www.nmrdb.org)。cpnq的结构、指定质子共振、nmr谱图以及表位作图结果显示在图114中。由于信号重叠,哌嗪环系统的单独分配是不可能的。条件:10mmtrisph8.0,5mmdtt,5%dmso-d6;t=288.1k。使用上文所描述的std实验条件在41cag和17cag序列存在下进行表位作图实验。在cpnq的情况下,数据表明,对于两种rna构筑体,存在氯苯基部分的质子比硝基喹啉更紧密邻近rna的趋势。针对化合物hp-ac008002-e01在相似条件下进行相同实验(参见图115)。根据初步分配将按比例调整的std效应绘制到分子上。数据表明,对于两种rna构筑体,吡啶环的质子比苯环更紧密邻近rna。由于所述区域中的缓冲信号重叠而不可能观察到脂肪族ch2基团。针对化合物hp-ac008001-e02在相似条件下进行相同实验(参见图116)。根据初步分配将按比例调整的std效应绘制到分子上。数据表明,对于两种rna构筑体,最接近杂环的芳香族质子更紧密邻近rna质子。由于所述区域中的直接饱和伪影/缓冲信号重叠,无法通过std评估脂肪族质子共振(通过waterlogsy来表位作图)。针对化合物hp-at005003-c03在相似条件下进行相同实验(参见图117)。根据初步分配将按比例调整的std效应绘制到分子上。由于信号重叠,ch2基团的单独分配是不可能的。数据表明,对于两种rna构筑体,呋喃部分的质子比苯基更紧密邻近rna质子。nmr竞争实验还进行竞争实验。测试样品:2.5μm41cagrna(476nt)与以下组合:100μmhp-ac008002-e01(a);+/-200-400μmhp-ac008001-e02(b);以及+/-200-400μmhp-at005003-c03(c)。所记录的hp-ac008002-e01的1h1dwatergate和waterlogsy谱图用作参考。在竞争对手(即hp-at005003-c03或hp-ac008001-e02)存在下,即使在化合物比竞争对手1:4的比率下,仍观测到hp-ac008002-e01的waterlogsy信号。在所采用的化合物混合物中,实验未显示竞争性行为的任何迹象。数据表明,化合物不竞争相同单个结合位点。在另一实验中,测试样品2.5μm41cagrna(476nt)在以下各者存在下使用:100μmhp-ac008001-e02(b)或100μmhp-at005003-c03(c);+/-200-400μmhp-ac008002-e01(a)。所记录的单个化合物的1h1dwatergate和waterlogsy谱图用作参考。在竞争对手(即hp-ac008002-e01(a))存在下,即使在化合物比竞争对手1:4的比率下,仍观测到hp-ac008001-e02(b)或hp-at005003-c03(c)的waterlogsy信号。在所采用的化合物混合物中,实验未显示竞争性行为的任何迹象。数据表明,化合物不竞争相同单个结合位点。在另一实验中,测试样品2.5μm41cagrna(476nt)在以下各者存在下使用:100μmhp-ac008001-e02(b)+/-200-400μmhp-at005003-c03(c)。所记录的单个化合物hp-ac008001-e02的1h1dwatergate和waterlogsy谱图用作参考。在竞争对手存在下(即hp-at005003-c03(c)),即使在化合物比竞争对手1:4的比率下,仍观测到hp-ac008001-e02(b)的waterlogsy信号。在所采用的化合物混合物中,实验未显示竞争性行为的任何迹象。数据表明,化合物不竞争相同单个结合位点。实例24:cag重复rna的配体观测nmr结合分析目的:测试化合物对httmrna(具有41cag重复序列474nt的构筑体)和下文所描述的其它的直接结合。配体观测nmr分析用于测试片段与rna目标(例如具有41cag重复序列474nt的构筑体)的直接结合。鉴别单个化合物命中用于通过正交分析(例如表面等离子体共振(surfaceplasmonresonance,spr))来进一步表征。使用配体观测分析用于初步筛选和去卷积到单个片段命中。已确立的实验最终用于基团表位作图。在特定基因的蛋白编码部分中的cag重复序列扩展分类为i类重复序列扩展疾病。目前,已知九种神经病症是由典型地在原本应不相关的蛋白的编码区中cag重复序列数目增加引起。在蛋白合成期间,扩展后的cag重复序列转译成一系列无间杂谷氨酰胺残基,形成所谓的多谷氨酰胺束(“polyq”)。这一分析测试化合物与httmrna的直接结合且可经调适用于其它重复rna。以集区测试化合物(即,在初步筛选中在各样品中集区大小为12片段,且在去卷积期间用较小集区大小,且最终采用单个化合物测量)。分析试剂和硬件样品缓冲液:10mmtris-hcl,ph8.0,0.78g[mw:157.56g/mol];75mmkcl,2.79g[mw:74.55g/mol];3mmmgcl2,0.14g[mw:95.21g/mol];用密理博h2o填加到500ml。化合物制备化合物原料:以100%d6-dmso中的100mm浓度提供片段文库储备溶液。作为干燥粉末提供的工具化合物制备成于100%d6-dmso中的100mm储备溶液。将于d6-dmso中的100mm浓度的储备溶液储存在4℃下。硬件样品管:nmr试管;norell,款号st500-7,用于nmr样品测量。nmr波谱仪:brukeravance600波谱仪,在600.0mhz下运行,用于1h。5-mmz-梯度txi冷冻探针。分析程序rna制备(rna样品均质化)将干燥rna颗粒溶解在样品缓冲液10mmtris-hclph8.0、75mmkcl、3mmmgcl2中。将13.9μm(原料浓度)的rna等分试样在95℃下变性3分钟,并在冰上迅速冷却3分钟且在37℃下再折叠30分钟。样品制备将13-24μld6-dmso移液到1.5ml埃彭道夫管中以确保在样品中存在5%d6-dmso作为锁定剂(取决于所制备的样品的集区大小)。添加1μl各个片段(100mm储备溶液)。添加367μl分析缓冲液。添加108μl的httmrna的均质化rna储备溶液(13.9μm储备溶液)。涡动样品以确保适当混合并置于nmr波谱仪中以开始样品的测量。样品中的最终浓度:200μm各片段和3μmrna目标分子。nmr测量将样品置于磁体中并将温度调整到288k。匹配并调节波谱仪频率在600mhz。匀场磁场以围绕样品均匀化磁场。确定质子90°脉冲且调整水共振频率以确保最大水抑制。将所确定的值传递到nmr实验,针对对应的样品记录nmr实验。实验的工序包括使用用于水抑制的watergate序列,即waterlogsy(wlogsy)的质子1d实验,和1d饱和传递差(std)实验以对化合物与rna的直接结合进行测试。详细1dwatergate实验:针对各1dwatergate谱图在f1(1h)中经128次扫描获得总共8192个复合点(实验时间4分钟)。谱宽设置为16.66ppm。详细wlogsy实验:wlogsy谱图,在f1(1h)中经256次扫描获得总共1024个复合点(实验时间25分钟)。用于1h的载波频率设置在水共振(约4.7ppm)。在导向维度上谱宽设置为16.66ppm(1h)。详细std实验:std谱图,在f1(1h)中经1024次扫描获得总共1024个复合点(实验时间65分钟)。用于1h的载波频率设置在水共振(约4.7ppm)。在导向维度上谱宽设置为16.66ppm(1h)。对于共振中实验,在-2500hz的饱和频率下饱和度设置为2.0秒。对于离共振实验,饱和频率设置为10200hz。读数软件:topspintm版:2.1(10月24日,2007)测量模式:1d使用python脚本在分析设置、筛选以及去卷积处理中处理所有记录的谱图。针对化合物的直接结合信号分析谱图。报告所鉴别的单个化合物命中。实例25:使用t4rna连接酶1腺苷酸化衔接子制备伊鲁米那小rna-seq文库目的:在用shape试剂或pearl-seq化合物处理后实现较短合成rna的深度测序。本文中描述的文库制备方案描述了一种通过将衔接子连接到两端来由较小合成rna生成下一代测序文库的方法。需要连接以允许从连接的衔接子合成cdna,因此测序整个目标rna。所述技术代表shape测序过程中的一个步骤。shape测序旨在通过在用构象选择性shape试剂处理后测定突变频率分析rna二级结构。这一实例的目标名称:目标rna寡核苷酸“rna3wj_0.0.0_nolab”,序列rgrgrcrarcrarararurgrcrararcrarcrurgrcrarururarcrcrarurgrcrgrgrururgrurgrcrc。生理作用:能够形成三向接合二级结构的合成rna寡核苷酸。分析原理:1)3'-衔接子与目标rna的连接;2)目标rna的5'端的磷酸化;3)从连接的衔接子合成第1股和第2股cdna;4)带条码的伊鲁米那引物通过pcr的并入和扩增。分析读数:琼脂糖凝胶电泳,桑格测序(sanger-sequencing)。分析试剂和硬件-t4rna连接酶2,截短kq(neb#m0373s)-50%peg8000(以neb#m0373s供应)-rnaseout(英杰)-t4rna连接酶1(ssrna连接酶)(neb#m0204s)-10mmatp(以neb#m0204s供应)-superscriptiii逆转录酶(英杰)-热启动挠曲(hotstartflex)dna聚合酶(nebm0535)-微洗脱胶凝萃取(minelutegelextraction)套组(凯杰)-quant-ithsdna分析套组(英杰)-0.2m二甲胂酸寡核苷酸目标rna寡核苷酸“rna3wj_0.0.0_nolab”(idt定制合成)5'rgrgrcrarcrarararurgrcrararcrarcrurgrcrarururarcrcrarurgrcrgrgrururgrurgrcrc3'3'衔接子dna寡核苷酸“通用mirna克隆连接子”(nebs1315s)5'rappctgtaggcaccatcaat-nh23'5'衔接子rna寡核苷酸5'rgrururcrargrargrururcrurarcrargrurcrcrgrarcrgrarurc3'逆转录引物:(nnnnnn表明8碱基“唯一分子标识符”标签)第1股合成引物(p7rt-抗ucl)5'gtgactggagttcagacgtgtgctcttccgatctnnnnnnnnattgatggtgcctacag3'第2股合成引物(p5第2股)5'tctttccctacacgacgctcttccgatctnnnnnnnngttcagagttctacagtccgacgatc3'文库pcr扩增引物:所有引物含有文库去卷积所需要的特定8nt索引序列标签(index)几种正向pcr引物5'aatgatacggcgaccaccgagatctacac(index)tctttccctacacgacgctcttccgatct3'几种逆向pcr引物5'caagcagaagacggcatacgagat(index)gtgactggagttcagacgtgtgctcttccgatct3'qpcr/测序引物:quantiqpcr1_fw5'gatacggcgaccaccgag3'quantiqpcr1_rv5'gcagaagacggcatacgagat3'分析程序制备使用无rna酶水溶解目标rna到100μm。移液3等分试样180μl和额外小体积等分试样(5μl)。储存:-80℃。用于连接,将冻干的通用mirna克隆连接子(universalmirnacloninglinker,ucl)再悬浮在无rna酶水中达到100μm原料浓度。1μlucl的浓度为100pmol(100μm)。用无rna酶水将衔接子浓度调节到10pmol/μl(10μm)(1:10稀释)。rna折叠用缓冲液1以1:10稀释溶解后的目标rna,得到10μm溶液用于连接。在90℃下培育5分钟,缓慢冷却到室温并在冰上储存。3'衔接子连接在65℃下将3'衔接子(ucl)变性30秒,立即在冰上冷却。在不存在atp下使用t4rna连接酶2进行连接。使用以下设置连接反应:1μlrna10μm4μl3'衔接子“通用mirna克隆连接子”40μm2μl10x无atp的t4rna连接酶缓冲液1x4μlpeg800010%(w/v)0.5μlrna酶抑制剂20u0.5μlt4rna连接酶2,截短的100u8.5μl无rna酶h2oad20μl1μlrna10μm2μl3'衔接子“通用mirna克隆连接子”20μm2μl10x无atp的t4rna连接酶缓冲液1x4μlpeg800010%(w/v)0.5μlrna酶抑制剂20u0.5μlt4rna连接酶2,截短的100u10.5μl无rna酶h2oad20μl2μlrna20μm2μl3'衔接子“通用mirna克隆连接子”20μm2μl10x无atp的t4rna连接酶缓冲液1x4μlpeg800010%(w/v)0.5μlrna酶抑制剂20u0.5μlt4rna连接酶2,截短的100u9.5μl无rna酶h2oad20μl4μlrna40μm2μl3'衔接子“通用mirna克隆连接子”20μm2μl10x无atp的t4rna连接酶缓冲液1x4μlpeg800010%(w/v)0.5μlrna酶抑制剂20u0.5μlt4rna连接酶2,截短的100u7.5μl无rna酶h2oad20μl将反应在25℃下培育4小时或18℃下隔夜。注意:连接反应必须在不存在atp下进行。热灭活:65℃20分钟。5'衔接子连接将5'衔接子rna寡核苷酸(10μm,在无rna酶水中)在65℃下变性30秒,立即在冰上冷却。添加20μl3'衔接子-rna混合物到:4bzw.2μl5'衔接子rna寡核苷酸20μm1μl10xt4rna连接酶缓冲液1x3μl10mmatp0.6mm2μlpeg800010%(w/v)0.5μlrna酶抑制剂20u1μlt4rna连接酶110uad30μl将反应在25℃下培育4小时或18℃下隔夜。热灭活:65℃持续15分钟。注意:小rna的3'端已经连接到在3'端具有胺基的3'衔接子且不会再参与连接反应;这样其5'端可以在atp存在下连接到rna寡核苷酸。逆转录(第1股cdna合成)在使用前混合并短暂离心各个组分。在0.2-mlpcr管中组合以下各者:衔接子连接的目标rna15μlp7rt-抗ucl引物2μm2μl10mmdntp混合物2μldepc-处理的水,到20μl1μl在65℃下培育5分钟,随后置于冰上至少1分钟。制备以下cdna合成混合物,按指定顺序添加各个组分。10xrt缓冲液4μl25mmmgcl28μl0.1mdtt4μlrnaseout(40u/μl)2μlsuperscriptiiirt(200u/μl)2μl向各rna/引物混合物中添加20μlcdna合成混合物,轻缓地混合,并通过短暂离心收集。培育:在50℃下50分钟。在85℃下终止反应,保持5分钟。在冰上冷却。通过短暂离心收集反应物。cdna合成反应可在-20℃下储存或立即用于pcr。第2股cdna合成制备以下pcr混合物:将样品置于pcr分析仪中并执行以下循环程序:变性:95℃,3分钟粘接:65℃10秒,以0.1℃/秒从65℃到55℃降低伸长:72℃3分钟冷却到4℃∞在-20℃下储存直到pcr富集。pcr富集制备以下pcr混合物:组分量最终浓度5xphusionhf缓冲液5μl1x10mmdntps0.5μl200μm10μm正向引物(编入索引的)1.25μl0.5μm10μm逆向引物(编入索引的)1.25μl0.5μmrt产物(cdna)10μlphusion热启动挠曲dna聚合酶0.25μl1单位/50微升无核酸酶水ad25μl6.75μl将样品置于pcr分析仪中并执行以下循环程序:启动:变性98℃,30秒15个循环:1.变性98℃,10秒2.粘接72℃,20秒*3.伸长72℃,15秒最终延伸72℃,3分钟保持4-10℃*为确定一组给定的引物的最佳粘接温度,强烈建议使用nebtm计算器。其余的rt产物可在-20℃下储存。读数在2%琼脂糖胶凝上使用适当分子量标记物分离pcr产物。注意:准确连接且扩增的文库大小为233个碱基。切割带子凝胶-使用凯杰微洗脱套组纯化产物。用纯化片段来定向桑格测序(在一种选择的提供者(providerofchoice)下),使用“quantiqpcr1_fw”或“quantiqpcr1_rv”引物。涉及的步骤和序列显示在图118中。实例26:用于生成伊鲁米那小rna-seq文库的替代程序发展了用于生成所需的rna文库的替代程序,其包括进一步连接5'衔接子到目标rna的步骤。替代方法的主要步骤为:1)3'-衔接子与目标rna的连接;2)目标rna的5'端的磷酸化;3)5'-衔接子与目标rna的连接;4)从连接的衔接子合成第1股和第2股cdna;5)带条码的伊鲁米那引物通过pcr的并入和扩增。为实行这一附加步骤,在试剂中包括t4多核苷酸激酶(neb)。附加磷酸化步骤如下进行:使用t4多核苷酸激酶进行磷酸化对于非放射性磷酸化,使用最多300pmol的5′末端20μl3'衔接子-rna混合物200/400/800pmol4μl10xt4rna连接酶缓冲液1x(1mmdtt)4μl10mmatp1mm3,6μldtt0,1m9mm1μlt4多核苷酸激酶10u7,4μl无rna酶h2oad40μl在37℃下培育30分钟。为获得最佳活性,需要新鲜缓冲液(由于氧化而损失dtt会降低活性)。另外,在后续5'衔接子连接步骤期间,使用40μl经磷酸化的3'衔接子-rna混合物而非20μl。文库的两种制备方法中所涉及的步骤和序列显示在图118和119中。实例27:dna编码的文库(dna-encodedlibraries,del)的制备和固定在下文所描述的选择缓冲液中培育2小时后,成功地合成并再折叠序列htt41cag和htt17cag。其由天然page证实(结果未图示)。天然page:在95℃下变性3分钟,在冰上迅速冷却3分钟,并在37℃下再折叠30分钟(10mmtris-hcl,ph8.0、75mmkcl以及3mmmgcl2)。约50%的rna目标固定在中性抗生物素蛋白树脂上。在以下改良后,rna目标在选择条件下稳定:在凝胶电泳后施加染色剂。在固定期间降低ssdna和rna酶抑制剂的浓度也有所帮助。选择条件del特性:del组1=610del文库,总计55.21亿种化合物;del组2=205del文库,总计7亿种化合物(各组单独地筛选)选择回合:3-4选择模式:目标固定捕获树脂:中性抗生物素蛋白树脂目标量:100pmol固定缓冲液组合:nmr缓冲液、0.1%吐温-20、0.03mg/mlssdna、2mm氧钒基核苷复合物。选择缓冲液组合:50mmtris-hcl(ph8)、75mmkcl、3mm或10mmmgcl2、0.1%吐温-20、0.3mg/mlssdna、20mm氧钒基核苷复合物。体积、温度以及时间:100μl、室温、1小时洗涤条件缓冲液组合:50mmtris-hcl(ph8)、75mmkcl、3mm或10mmmgcl2。数目和体积:2×200ul温度和时间:室温,快速洗脱条件:洗脱模式:热洗脱缓冲液组合:50mmtris-hcl(ph8)、75mmkcl、3mm或10mmmgcl2。体积、温度以及时间:80μl;80℃;15分钟。通过在室温下在选择缓冲液中培育2小时来确认rna复合物的稳定性。再折叠rna成功地固定在树脂上。样品rna输入(ng)rna流通(ng)树脂上rna(ng)总固定%htt17cag2000802.51197.560%htt41cag500138.5361.572%结论:在固定期间在降低ssdna和rna酶抑制剂的浓度之后:50%再折叠htt17cag吸附在中性抗生物素蛋白树脂上;在与del化合物一起培育之后,从中性抗生物素蛋白树脂中回收再折叠htt17cag;目标现在已准备好用于亲和力选择。实例28:表面等离子体共振实验图121和122展示利用表面等离子体共振(spr)筛选配体和钩连构筑体以及点击构筑体用于结合所关注的目标rna的可能方法。spr尤其适用于实时监测生物分子相互作用。通常,将目标物种和不相关对照固定到传感器芯片上,随后使分析物(化合物/片段)在表面上流过。化合物与目标物种的结合引起spr信号增加(缔结阶段)。使用缓冲液洗去结合的化合物引起spr信号降低(解离阶段)。在不同化合物浓度下进行所记录的传感图的拟合以得到适当的相互作用模型。所述方法允许选取动力学参数(ka,kd→kd)。要求/限制包括ka/kd值在合理范围中;并且目标大小不得过大(<100kda)。它是筛选片段和命中特性分析或验证命中的极佳方法。可使用bc4000用于初步筛选(至多4,000数据点(datapts)/周)。biacoret200适用于命中特征分析和验证。在pearl-seq情况中,spr允许监测“钩”与dna/rna适体的结合。目标物种固定到传感器芯片上,分析物(即钩)在表面上流过(缔结阶段),dna/rna适体在表面上流过(平台阶段),竞争化合物在表面上洗去(解离阶段),由此产生结合数据。其要求/限制为,同样地,ka/kd值必须在合理范围内并适合于其对应的目的。此外,目标大小必须<100kda。另外,步骤1和步骤2需要就位(先测试)以实现设置。也需要具有适合亲和力的竞争对手。出于鉴别与捕获rna(3wj)结合的相互作用伙伴(rna/dna)的目的,涵盖以下步骤:使用生物素标记的捕获rna(bio3wj)来折叠成二级结构;允许弹头三蝶烯配体的结合;通过共价连接将相互作用rna/dna's钓到弹头;经由结合bio3wj与抗生蛋白链菌素珠粒沉淀复合物;洗涤并洗脱;以及由洗脱物和测序生成文库。将需要用于平稳生成细胞溶解物或rna制品的方案。一种示范性方案将涉及以下步骤:制备rt-qpcr即用细胞溶解物:将mdck-伦敦(mdck-london)细胞在24孔盘中使用pbs(1毫升/孔)洗涤一次。通过将细胞单层暴露于200毫升/孔的细胞裂解(cell-lysis,cl)缓冲液中来制备细胞溶解物。cl缓冲液的最终调配物由10mmtris-hclph7.4、0.25%igepalca-630以及150mmnacl组成。cl缓冲液由适当储备溶液新鲜制备。所有试剂均是分子生物学级,且稀释液使用经depc处理的水(351-068-721;品质生物有限公司(qualitybiological,inc.))制成。对于某些实验,cl缓冲液还包括mgcl2(m1028;西格玛(sigma)或rnasinplusrna酶抑制剂(n2615;普洛麦格(promega))。将细胞暴露适当时间(通常对于cl缓冲液而言5分钟)。在不扰乱细胞单层残余物的前提下小心地收集所得溶解物,并且立即分析或冷冻储存。参见,例如沙兹克(shatzkes)等人“适用于下游逆转录定量pcr的细胞溶解物的一种简单便宜的制备方法(asimple,inexpensivemethodforpreparingcelllysatessuitablefordownstreamreversetranscriptionquantitativepcr)”,科学报告(scientificreports)4,文章编号:4659(2014)。简单溶解缓冲液:使用igepalca-630和150mmnacl;产生粗细胞溶解物,其仍含有所有物质(无polya-富集或蛋白去除)。不同的可能的方案:小rna(smallrna)工作流:衔接子连接,cdna合成,文库(小团簇);或总rna工作流:随机引导的w/woribozero,标准文库制备(正常团簇)。尽管我们已经描述多个本发明实施例,但显而易知,可以改变我们的基础实例以提供利用本发明化合物、方法和过程的其它实施例。因此,应了解,本发明范围应该由所附权利要求书而不是所举例表示的特定实施例来界定。当前第1页12当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1