一种具有缓释功能的交联载药聚乙烯醇/海藻酸钠复合纳米纤维膜的制备的制作方法

文档序号:18230613发布日期:2019-07-20 01:16阅读:463来源:国知局
一种具有缓释功能的交联载药聚乙烯醇/海藻酸钠复合纳米纤维膜的制备的制作方法

本发明涉及药物缓释纳米纤维及其制备领域,特别涉及一种药物缓释功能的电纺纤维的制备方法。



背景技术:

静电纺丝作为一种制备微纳米级纤维的有效方法,近些年来,得到人们的广泛关注。因为在不同的聚合物和加工条件下,它可以生产直径在几微米到几十纳米的聚合物纳米纤维。在静电纺丝中,高分子溶液被以一定的体积速度挤压出给液器,被挤出的高分子液滴在高压电场的作用下,被不断的拉伸扭曲,最后成丝,并落在接收器上。

采用静电纺丝工艺制成的纳米纤维表现出几个有趣的特征,包括高表面积,高质量体积比和高孔隙率,为表面官能团化开辟了广泛的可能性。这些优点使得电纺聚合物纳米纤维成为各种应用的良好候选物,例如组织工程支架和药物递送系统。

传统药物剂型在药物释放过程中,很难做到延缓和控制药物释放,会出现药物药效不够持久、稳定性差,药物的毒性难以控制等问题。而通过静电纺丝合成的复合纳米纤维药物释放系统能够克服传统制剂存在的缺陷,从而达到提高生物利用度、减少药物用量、增加药物疗效的要求。

聚乙烯醇是一种对人体无毒的合成聚合物,具有良好的生物亲和力,本身可以通过静电纺丝在水溶液中轻松形成纤维膜,但是其电纺出来的纳米纤维及易溶于水。海藻酸钠是一种可生物降解的天然聚合物材料,在生物医学领域具有潜在的应用,如新的医用敷料,组织工程,组织再生和给药系统。

叶黄素是一种脂溶性分子,对人体健康有很多有益作用,如改善视力,防止皮肤受紫外线引起的损伤,降低动脉粥样硬化,癌症和心血管疾病的风险。因为叶黄素具有八个共轭双键结构,对氧、热和光高度敏感,所以在叶黄素产品的制造和储存过程中其生物活性会降级。将叶黄素负载到纳米纤维里,不仅可以做到药物的缓慢释放,而且可以提高其抗氧化性。

本发明以聚乙烯醇为主体,具有生物相容性的海藻酸钠加入后达到较好的共混效果,并且对载药的聚乙烯醇/海藻酸钠纳米纤维进行交联,解决了复合纳米纤维膜快速溶于水的问题从而达到缓慢释放叶黄素的效果。



技术实现要素:

本发明提供的是一种具有药物缓释功能的载药聚乙烯醇/海藻酸纳米纤维的制备方法。本发明载药体系制备方法简单廉价,安全高效并且生物相容性好,稳定性高,毒性低。

本发明所采用技术方案是:

一种用于药物缓释的载药复合纳米纤维膜及其制备方法,其具体步骤如下:

(1)将聚乙烯醇和海藻酸钠按质量比为8:3的比例混合后,溶于水溶剂中,在800-1000r/min的转速下搅拌搅拌5h,至溶液完全均匀;

(2)将叶黄素加入dmf溶液中,在100-300r/min转速下搅拌1h;

(3)将步骤(1)溶液静止消泡后,将步骤(2)加入至将步骤(1)溶液中,在800-1000r/min的转速下搅拌搅拌8h,搅拌均匀后静置30min;

(4)将步骤(3)的纺丝原液装入注射器内,高压电源正极连接注射器针尖,针头的内径为0.19mm,负极连接铝箔纸,室温条件下,电场为18kv,接收距离为20cm,以0.3ml/h的流速进行纺丝,得到负载叶黄素的聚乙烯醇/海藻酸钠复合纳米纤维膜;

(5)将步骤(4)静电纺丝得到的纳米纤维真空干燥12h后,将纤维置于交联剂中分别交联1h、6h、12h。

进一步地,按质量比,步骤(3)所述叶黄素在纺丝原液中的质量分数为1-4wt%。。

进一步地,步骤(4)所述载药的聚乙烯醇/海藻酸钠复合纳米纤维膜的纤维直径为140-260nm。

进一步地,步骤(5)所述的交联剂为饱和硼酸溶液和戊二醛溶液的混合溶液。

进一步地,步骤(5)所述的真空干燥箱为室温干燥。

有益效果是:

通过静电纺丝制备的具有叶黄素缓释功能的聚乙烯醇/海藻酸钠复合纳米纤维膜具有良好的生物相容性和一定的溶胀度,保证了叶黄素释放的延缓和控制;叶黄素释放时展现出了良好的缓释效果,叶黄素累积释放率较高,且对于不同交联时间,累计释放率不同。相对于单一组分的纳米纤维载体,聚乙烯醇/海藻酸钠复合纳米纤维能够较好地将二者优良的性能相结合,作为一种新型的复合纳米纤维药物载体。

附图说明

图1为本发明实施例1空白的聚乙烯醇/海藻酸钠复合纳米纤维膜的sem图。

图2为本发明实施例1具有药物缓释功能的聚乙烯醇/海藻酸钠复合纳米纤维膜的荧光显微镜图。

图3为本发明实施例1具有药物缓释功能的聚乙烯醇/海藻酸钠复合纳米纤维膜交联前后溶于水示意图。

图4为本发明实施例1具有药物缓释功能的聚乙烯醇/海藻酸钠复合纳米纤维膜的叶黄素释放曲线。

具体实施方式

下面结合附图和实施例对本发明作进一步说明。

实施例1

分别称取1.39g聚乙烯醇和0.124g海藻酸钠,将二者混合后溶于水,在1000r/min转速下磁力搅拌5h得到混合溶液;然后称取60.56mg叶黄素溶于dmf中,得到混合溶液;将两种溶液混合,在1000r/min转速下磁力搅拌8h,静止30min后得到均匀透明的纺丝原液。将纺丝原液装入10ml注射器内,高压电源正极连接注射器针尖,针头的内径为0.19mm,负极连接铝箔纸。在室温条件下,电场控制为18kv,接收距离为20cm,以0.3ml/h的推速进行静电纺丝,得到载药的聚乙烯醇/海藻酸钠复合纳米纤维膜。将电纺后的纤维膜置于真空干燥箱中室温干燥12h后取出。将干燥后的具有药物缓释功能的聚乙烯醇/海藻酸钠复合纳米纤维切成一定大小的小块,称重后放入交联剂中进行交联1h,交联结束后至于真空干燥箱中干燥。

以磷酸盐缓冲液为模拟体液,测试叶黄素在缓冲液中的吸光度,以样品浓度为横坐标,吸收光度值为纵坐标绘制曲线,得到叶黄素在磷酸缓冲液中的标准曲线,回归方程为:a=39.07764c-0.02435(r2=0.99917)。将交联后的纤维在37℃培养条件下置于磷酸缓冲液中,每隔一段时间取出4ml溶液,同时补加等温释放液4ml,测定吸光度值a后根据线形回归方程计算释放t时刻叶黄素的累计释放量,进而得到具有叶黄素缓释功能的聚乙烯醇/海藻酸钠复合纳米纤维的药物累计释放率。

图1为本发明实施例1载药的聚乙烯醇/海藻酸钠复合纳米纤维膜的sem图,可以看出,纤维的形貌、直径大小较为接近,直径为140-260nm,纤维没有出现珠、蛛丝、液滴状现象,分布均匀,连续性较好。

图2为本发明实施例1载药的聚乙烯醇/海藻酸钠复合纳米纤维膜的荧光显微镜图,可以看出,叶黄素分布在纤维上。

图3为本发明实施例1载药的聚乙烯醇/海藻酸钠复合纳米纤维膜交联前后溶于水的时间对比图。图片左侧试管为未交联的载药聚乙烯醇/海藻酸钠复合纳米纤维膜,图片右侧为交联后的载药聚乙烯醇/海藻酸钠复合纳米纤维膜。由图中可看出,未交联前的纤维比较快溶于水,这是由于聚乙烯醇和海藻酸钠都在水中快速溶解,导致叶黄素在水中快速释放,因此不能对药物做到的缓释效果。而交联后的纤维溶于水的速度比较缓慢,因此可以用作研究。

图4为本发明实施例1所得具有药物缓释功能的聚乙烯醇/海藻酸钠复合纳米纤维膜的在体外模拟人体药物释放情况图。由图中可以看出,随着叶黄素释放时间的延长,叶黄素累积释放率逐渐升高,释放1h以后出现了明显的缓释现象;释放6h时,药物累计释放率为99%,初始阶段存在明显的叶黄素的突释现象,这是主要由于载药纤维表面有很多叶黄素的药物颗粒,这些药物颗粒很容易从纤维中释放出来。随着释放时间的延长,纤维表面的叶黄素越来越多的从纤维上释放出来,纤维表面的叶黄素越来越少,纤维中的药物的释放除了表面的叶黄素外,纤维内部的叶黄素也慢慢扩散到纤维表面,因此释放速率越来越少,释放曲线斜率逐渐减少。随着时间的延长纤维表面的叶黄素更加少,纤维内部的叶黄素也基本上扩散到纤维表面并从纤维中释放出来,纤维中剩余的叶黄素基本被纤维中的大分子完全包裹住,无法进一步释放,因此载药纤维的体外药物释放率基本无变化。

实施例2

分别称取1.39g聚乙烯醇和0.124g海藻酸钠,将二者混合后溶于水,在1000r/min转速下磁力搅拌5h得到混合溶液;然后称取60.56mg叶黄素溶于dmf中,得到混合溶液;将两种溶液混合,在1000r/min转速下磁力搅拌8h,静止30min后得到均匀透明的纺丝原液。将纺丝原液装入10ml注射器内,高压电源正极连接注射器针尖,针头的内径为0.19mm,负极连接铝箔纸。在室温条件下,电场控制为18kv,接收距离为20cm,以0.3ml/h的推速进行静电纺丝,得到载药的聚乙烯醇/海藻酸钠复合纳米纤维膜。将电纺后的纤维膜置于真空干燥箱中室温干燥12h后取出。将干燥后的具有药物缓释功能的聚乙烯醇/海藻酸钠复合纳米纤维切成一定大小的小块,称重后放入交联剂中进行交联6h,交联结束后至于真空干燥箱中干燥。

以磷酸盐缓冲液为模拟体液,测试叶黄素在缓冲液中的吸光度,以样品浓度为横坐标,吸收光度值为纵坐标绘制曲线,得到叶黄素在磷酸缓冲液中的标准曲线,回归方程为:a=39.07764c-0.02435(r2=0.99917)。将交联后的纤维在37℃培养条件下置于磷酸缓冲液中,每隔一段时间取出4ml溶液,同时补加等温释放液4ml,测定吸光度值a后根据线形回归方程计算释放t时刻叶黄素的累计释放量,进而得到具有叶黄素缓释功能的聚乙烯醇/海藻酸钠复合纳米纤维的药物累计释放率。

本实施例方法和实施例1基本相同,所得载药的聚乙烯醇/海藻酸钠复合纳米纤维直径为140-260nm,释放4h时,叶黄素累计释放率为84%。

实施例3

分别称取1.39g聚乙烯醇和0.124g海藻酸钠,将二者混合后溶于水,在1000r/min转速下磁力搅拌5h得到混合溶液;然后称取60.56mg叶黄素溶于dmf中,得到混合溶液;将两种溶液混合,在1000r/min转速下磁力搅拌8h,静止30min后得到均匀透明的纺丝原液。将纺丝原液装入10ml注射器内,高压电源正极连接注射器针尖,针头大小为27g,负极连接铝箔纸。在室温条件下,电场控制为18kv,接收距离为20cm,以0.3ml/h的推速进行静电纺丝,得到载药的聚乙烯醇/海藻酸钠复合纳米纤维膜。将电纺后的纤维膜置于真空干燥箱中室温干燥12h后取出。将干燥后的具有药物缓释功能的聚乙烯醇/海藻酸钠复合纳米纤维切成一定大小的小块,称重后放入交联剂中进行交联12h,交联结束后至于真空干燥箱中干燥。

以磷酸盐缓冲液为模拟体液,测试叶黄素在缓冲液中的吸光度,以样品浓度为横坐标,吸收光度值为纵坐标绘制曲线,得到叶黄素在磷酸缓冲液中的标准曲线,回归方程为:a=39.07764c-0.02435(r2=0.99917)。将交联后的纤维在37℃培养条件下置于磷酸缓冲液中,每隔一段时间取出4ml溶液,同时补加等温释放液4ml,测定吸光度值a后根据线形回归方程计算释放t时刻叶黄素的累计释放量,进而得到具有叶黄素缓释功能的聚乙烯醇/海藻酸钠复合纳米纤维的药物累计释放率。

本实施例方法和实施例1基本相同,所得载药的聚乙烯醇/海藻酸钠复合纳米纤维直径为140-260nm,释放4h时,叶黄素累计释放率为42%。

以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1