一种高度可拉伸防水的形状记忆聚合物纤维膜及其制备方法和应用与流程

文档序号:20838875发布日期:2020-05-22 17:14阅读:155来源:国知局
一种高度可拉伸防水的形状记忆聚合物纤维膜及其制备方法和应用与流程

本发明属于功能化纳米纤维制备领域,具体地,涉及一种高度可拉伸防水的形状记忆聚合物纤维膜及其制备方法和应用。



背景技术:

传统的高分子膜不具备高度可拉性能、形状记忆性能和防水性能,或者在经过了一定拉伸之后其防水性能大大下降。形状记忆高分子材料是一类能够对外界条件产生响应的智能材料,它们可以“记忆”一个设定的形状(原始形状),然后被塑造成各种需要的形状(临时形状),形状记忆高分子材料具有赋形容易、柔软、形变量大、响应条件可调、触发方式多样、可印刷、质量轻、成本低等诸多优点,在生物医疗、航空航天、智能纺织、传感器以及自修复等领域具有广阔的应用前景。

静电纺丝方法是一种特殊的纤维制造工艺,在强电压场中将导电高分子流体雾化成具有纳米结构的细流,在较长的喷射路线中固化成为纳米纤维。该方法对环境要求较低,操作方便,所得材料有较大的比表面积和孔隙率,是新能源领域制备基础材料的有效方法。

盐酸多巴胺在碱性水溶液中极易发生自聚合反应,其氨基和羟基基团具有活性,是一种良好的改性表面处理材料。在用多巴胺表面处理过的膜纸、纺布上进行其他物质的枝接,效果会比没有表面处理过,直接将物质涂抹在纺布上的更加耐磨耐蹭。

疏水是固体表面的一种特殊现象,防水表面在现实生活中具有非常广阔的应用前景,如防水的衣物,自清洁玻璃,低阻力流体输送等等方面。有机含氟材料以其优异的化学稳定性和低的表面能受到各国研究者的关注,氟树脂是双疏性物质,既不亲水也不亲油,是具有双疏特性的防腐材料。迄今为止,只有含氟材料具有极低的表面自由能。极低的表面自由能是含氟材料的一个重要特征,含氟材料的表面自由能一般在6~30mj/m2范围。有机物表面润湿性能由固体表面原子及原子团的性质和堆积所决定,而与内部原子、分子的性质和排列无关。因此,构建一定粗糙度的表面,并应用含氟整理剂处理表面,成为固体表面拒水拒油处理的重要方法。



技术实现要素:

为了解决传统的高分子膜不具备高度可拉性能、形状记忆性能和防水性能,或者在经过了一定拉伸之后其防水性能显著下降这一问题。本发明首要目的在于提供一种高度可拉伸防水的形状记忆聚合物纤维膜。

本发明的另一目的在于提供上述高度可拉伸防水的形状记忆聚合物纤维膜的制备方法。

本发明的另一目的在于提供上述高度可拉伸防水的形状记忆聚合物纤维膜的应用。

本发明的目的通过下述技术方案来实现:

一种高度可拉伸防水的形状记忆聚合物纤维膜,所述纤维膜是先通过静电纺丝法将高分子聚合物溶于有机溶剂a中形成的高分子溶液得到纳米纤维膜;将含氟单体与含氧单体混合,在70~80℃下水浴共聚反应得含氟高分子;将盐酸多巴胺溶于弱碱性溶液中,将纳米纤维膜置于多巴胺溶液中搅拌对其表面进行处理,洗净表面后烘干;将上述含氟高分子溶于有机溶剂b中,然后喷涂于经表面处理的纳米纤维膜上烘干制得;所述纤维膜依次包括形状记忆高分子电纺层、多巴胺表面处理层和疏水高分子涂层。

优选地,所述形状记忆高分子电纺层的厚度为0.05~0.1cm,所述多巴胺表面处理层的厚度在0.01~0.05mm;所述疏水高分子涂层的厚度在1~3μm。

优选地,所述静电纺丝法的条件为:电压为15~25kv,高分子溶液挤出速度为1~2ml/h,滚筒为转速50~100r/min,纺丝距离为10~18cm。

优选地,所述有机溶剂a为n,n-二甲基甲酰胺、二甲基乙酰胺、丙酮或四氢呋喃中的任意一种;所述高分子聚合物为聚氨酯或聚己内酯;所述有机溶剂b为四氢呋喃或三氟甲苯。

优选地,所述高分子溶液的质量浓度为10~20wt.%;所述含氟高分子的质量和有机溶剂b的体积比为(15~20)mg:1ml。

优选地,所述含氟单体为甲基丙烯酸三氟乙酯、甲基丙烯酸六氟丁酯、十七氟癸丙烯酸盐中的任意一种;所述含氧单体为甲基丙烯酸缩水甘油酯或3-(异丁烯酰氧)丙基三甲氧基硅烷。

优选地,所述含氟单体与含氧单体的体积比为(7~12):3。

优选地,所述弱碱性溶液的ph=8~9,所述弱碱性溶液为nahco3溶液或氨水,所述多巴胺的浓度为2~3mg/ml。

所述的高度可拉伸防水的形状记忆聚合物纤维膜的制备方法,包括以下具体步骤:

s1.将高分子聚合物溶于有机溶剂a中形成高分子溶液,通过静电纺丝法将其纺织得到纳米纤维膜;

s2.将含氟单体与含氧单体混合,在70~80℃下共聚反应得含氟高分子;

s3.将盐酸多巴胺溶于弱碱性溶液中得到多巴胺溶液,将纳米纤维膜置于多巴胺溶液中搅拌对其表面进行处理,洗净表面后烘干;

s4.将含氟高分子溶于有机溶剂b中,将其喷涂于经表面处理的纳米纤维膜上,在70~80℃下烘干,制得高度可拉伸防水的形状记忆聚合物纤维膜。

所述的高度可拉伸防水的形状记忆聚合物纤维膜在医疗或纺织领域中的应用。

与现有技术相比,本发明具有以下有益效果:

1.本发明将形状记忆高分子材料、多巴胺表面处理、含氟防水材料与静电纺丝技术结合起来,使其具有在较高的可拉伸率下防水性能仍然保持不变的特点;该聚合物纤维膜具有微纳米粗糙的多孔结构,能够同时实现大范围条件下的形状记忆效果。

2.本发明将形状记忆聚合物纤维膜用多巴胺进行表面处理,使其表面粗糙度增加,再经过可交联的含氟高分子表面枝接改性,在最大拉伸100~150%的同时防水性能不变,接触角保持在120o以上,降低幅度低于10o。

3.本发明的高分子聚合物为具有一个具有独立转变温度的高分子;设计和合成了一种新的可交联的含氟聚合物高分子,为高度可拉伸防水的形状记忆聚合物纤维膜上的含氟防水材料涂层。

附图说明

图1为实施例1的高度可拉伸防水的形状记忆聚合物纤维膜的形状记忆功能示意图。

图2为实施例1的高度可拉伸防水的形状记忆聚合物纤维膜中疏水高分子的反应方程式。

图3为实施例1的高度可拉伸防水的形状记忆聚合物纤维膜的制备流程图。

图4为实施例1的高度可拉伸防水的形状记忆聚合物纤维膜的应力-应变图。

图5为实施例1的高度可拉伸防水的形状记忆聚合物纤维膜在无预拉伸状态下不同含氟高分子含量的纤维膜上测得的接触角。

图6为实施例1的高度可拉伸防水的形状记忆聚合物纤维膜在拉伸至原长的100%状态下不同含氟高分子含量的纤维膜上测得的接触角。

具体实施方式

下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。

实施例1

1.电纺丝溶液的制备:称取20g的不定型形状记忆聚氨酯(smpu)溶解于100g的n,n-二甲基甲酰胺中,形状记忆聚氨酯与n,n-二甲基甲酰胺质量比为0.2:1混合,将其放入磁力搅拌器中,设定温度为60℃,搅拌速度为20r/s,搅拌4h得到含量为20wt%的静电纺丝前驱体液。

2.设置静电纺丝仪纺丝电压20.5kv,推注速度1.5ml/h,接收速度100r/min,接收距离18cm,循环速度400mm/s,循环行程100mm,温度30℃。将前驱体液注入5ml的注射器内,取用两根针管,将锡箔纸缠绕在接收装置上并固定,开启静电纺丝仪,得到纳米纤维膜。

3.含氟高分子的制备:将体积比为4;1的1h,1h,2h,2h-十七氟癸丙烯酸盐与甲基丙烯酸缩水甘油酯混合,以偶氮二异丁腈为引发剂,以四氢呋喃为溶剂,在80℃下恒温水浴4h,用正己烷和乙醇洗涤产物后高温烘干,得到含氟高分子,反应式如图2所示。

4.多巴胺预处理:将步骤2中制得的纳米纤维膜裁成4cm×10cm大小,在蒸馏水中加入nahco3配置ph=8.5的溶液,将盐酸多巴胺溶解于溶液中,多巴胺含量为2.5mg/ml,将纳米纤维膜置于多巴胺溶液中浸泡搅拌24h,在70℃下烘4h,用水洗净表面残留的多巴胺后,再在70℃下烘2h。

5.含氟聚合物纳米纤维膜的制备:将含氟高分子溶于四氢呋喃中,其含氟高分子含量为20mg/ml,用喷枪喷涂于表面处理过的纳米纤维膜上,在70℃下烘4-5h,制得高度可拉伸防水的形状记忆聚合物纤维膜。所述纤维膜包括形状记忆高分子电纺层(厚度为0.05~0.1cm)、多巴胺表面处理层(厚度为0.01~0.05mm)和疏水高分子涂层(厚度为1~3μm)。

图1为实施例1的高度可拉伸防水的形状记忆聚合物纤维膜的形状记忆功能示意图。从图1中可知,该纤维膜在预拉伸状态下,接受热刺激后会回复成原来长度。图2为实施例1的高度可拉伸防水的形状记忆聚合物纤维膜中疏水高分子的反应方程式。从图2中可知,1h,1h,2h,2h-十七氟癸丙烯酸盐与甲基丙烯酸缩水甘油酯的双键打开聚合成实验所需要的含氟高分子;图3为实施例1的高度可拉伸防水的形状记忆聚合物纤维膜的制备流程图。从图3中可知,该纳米纤维膜是通过静电纺丝法将高分子溶液得到纳米纤维;将含氟单体与含氧反应物混合反应得含氟高分子;将盐酸多巴胺溶于弱碱性溶液中,将纳米纤维置于多巴胺溶液中搅拌对其表面进行处理,洗净表面后烘干;将含氟高分子溶于四氢呋喃中,然后喷涂于经表面处理的纳米纤维上烘干制得。

图4为实施例1的高度可拉伸防水的形状记忆聚合物纤维膜的应力-应变图。将经过多巴胺处理后的纳米纤维膜切成三块6.5cm×4cm大小,分别取6.5ml、13ml、19.5ml的含量为20mg/ml的含氟聚合物溶液,用喷枪喷在电纺膜上,即三块纳米纤维膜上的含氟聚合物含量分别为5mg/cm2、10mg/cm2、15mg/cm2。再将三块纳米纤维膜切成5mm×20mm尺寸,使用万能试验机进行断裂伸长测试。从图4中可知,该纤维膜应变范围在250~350%。

图5为实施例1的高度可拉伸防水的形状记忆聚合物纤维膜在无预拉伸状态下不同含氟高分子含量的纤维膜上测得的接触角。用接触角测量仪测量水滴在含氟聚合物含量分别为5mg/cm2、10mg/cm2、15mg/cm2的高度可拉伸防水的形状记忆聚合物纤维膜表面的接触角以及观察水滴形状,从图5中可知,该高度可拉伸防水的形状记忆聚合物纤维膜表面的接触角皆大于130°,表示其具有良好的防水性能。将含氟聚合物含量分别为5mg/cm2、10mg/cm2、15mg/cm2的高度可拉伸防水的形状记忆聚合物纤维膜在拉伸到原长度的100%后,用接触角测量仪测量接触角及观察水滴形状,图6为实施例1的高度可拉伸防水的形状记忆聚合物纤维膜在拉伸至原长的100%状态下不同含氟高分子含量的纤维膜上测得的接触角。从图6中可知,该高度可拉伸防水的形状记忆聚合物纤维膜在拉伸到原长度的100%后,接触角变化不超过10°,说明其防水性能基本保持不变。

实施例2

1.电纺丝溶液的制备:称取20g的不定型形状记忆聚氨酯(smpu)溶解于100g的n,n-二甲基甲酰胺中,形状记忆聚氨酯与n,n-二甲基甲酰胺质量比为0.2:1混合,将其放入磁力搅拌器中,设定温度为60℃℃,搅拌速度为20r/s,搅拌4h得到含量为wt20%的静电纺丝前驱体液。

2.设置静电纺丝仪纺丝电压20.5kv,推注速度1.5ml/h,接收速度100r/min,接收距离18cm,循环速度400mm/s,循环行程100mm,温度30℃。将前驱体液注入5ml的注射器内,取用两根针管,将锡箔纸缠绕在接收装置上并固定,开启静电纺丝仪。得到纳米纤维膜。

3.含氟高分子的制备:将1h,1h,2h,2h-十七氟癸丙烯酸盐和3-(异丁烯酰氧)丙基三甲氧基硅烷以7:3体积比混合,以偶氮二异丁腈为引发剂,以三氟甲苯为溶剂,在90℃下恒温水浴4h,用甲醇洗涤产物后在70℃烘干,得到含氟高分子。

4.多巴胺预处理:将步骤2中制得的纳米纤维膜裁成4cm×10cm大小,在蒸馏水中加入适量nahco3配置ph=8.5的溶液,将盐酸多巴胺溶解于溶液中,多巴胺含量为2.5mg/ml,将纳米纤维膜置于多巴胺溶液中浸泡搅拌24h,在70℃下烘4h,用水洗净表面残留的的多巴胺后,再在70℃下烘2h。

5.含氟聚合物纳米纤维膜的制备:将含氟高分子溶于三氟甲苯中,其含氟高分子含量为20mg/ml,用喷枪喷涂于表面处理过的静电纺丝膜上,在70℃下烘4h,制得高度可拉伸防水的形状记忆聚合物纤维膜。所述纤维膜包括形状记忆高分子电纺层(厚度为0.05~0.10cm)、多巴胺表面处理层(厚度为0.01~0.05mm)和疏水高分子涂层(厚度为1~3μm)。

实施例3

1.电纺丝溶液的制备:称取20g的聚羟基脂肪酸酯(pha)溶解于100g的n,n-二甲基甲酰胺中,形状记忆聚合物与n,n-二甲基甲酰胺以0.2:1的质量比混合,将其放入磁力搅拌器中,设定温度为60℃,搅拌速度为20r/s,搅拌4h得到含量为20wt%的静电纺丝前驱体液。

2.设置静电纺丝仪纺丝电压20.5kv,推注速度1.5ml/h,接收速度100r/min,接收距离18cm,循环速度400mm/s,循环行程100mm,温度30℃。将前驱体液注入5ml的注射器内,取用两根针管,将锡箔纸缠绕在接收装置上并固定,开启静电纺丝仪。得到纳米纤维膜。

3.含氟高分子的制备:将1h,1h,2h,2h-十七氟癸丙烯酸盐与甲基丙烯酸缩水甘油酯以4;1的体积比混合,以偶氮二异丁腈为引发剂,以四氢呋喃为溶剂,在70℃下恒温水浴4h,用正己烷和乙醇洗涤产物后高温烘干,得含氟高分子,反应式如图2所示。.

4.多巴胺预处理:将步骤2中制得的纳米纤维膜裁成4cm×10cm大小,在蒸馏水中加入适量nahco3配置ph=8.5的溶液,将盐酸多巴胺溶解于溶液中,多巴胺含量为2.5mg/ml,将纳米纤维膜置于多巴胺溶液中浸泡搅拌24h,在70℃下烘4h,用水洗净表面残留的多巴胺后,再在70℃下烘2h。

5.含氟聚合物纳米纤维膜的制备:将含氟高分子溶于四氢呋喃中,其含氟高分子含量为20mg/ml,用喷枪喷涂于表面处理过的纳米纤维膜上,在70℃下烘4h,制得高度可拉伸防水的形状记忆聚合物纤维膜。所述纤维膜包括形状记忆高分子电纺层(厚度为0.05~0.1cm)、多巴胺表面处理层(厚度为0.01~0.05mm)和疏水高分子涂层(厚度为1~3μm)。

实施例4

1.电纺丝溶液的制备:称取20g的聚羟基脂肪酸酯(pha)溶解于100g的n,n-二甲基甲酰胺中,形状记忆聚合物与n,n-二甲基甲酰胺质量比为0.2:1混合,将其放入磁力搅拌器中,设定温度为60℃,搅拌速度为2r/s,搅拌4h得到含量为20wt%的静电纺丝前驱体液。

2.设置静电纺丝仪纺丝电压20.5kv,推注速度1.5ml/h,接收速度100r/min,接收距离18cm,循环速度400mm/s,循环行程100mm,温度30℃。将前驱体液注入5ml的注射器内,取用两根针管,将锡箔纸缠绕在接收装置上并固定,开启静电纺丝仪,得到纳米纤维膜。

3.含氟高分子的制备:将1h,1h,2h,2h-十七氟癸丙烯酸盐和3-(异丁烯酰氧)丙基三甲氧基硅烷以7:3体积比混合,以偶氮二异丁腈为引发剂,以三氟甲苯为溶剂,在90℃下恒温水浴4h,用甲醇洗涤产物后在70℃烘干,得到含氟高分子。

4.多巴胺预处理:将步骤2中制得的纳米纤维膜裁成4cm×10cm大小,在蒸馏水中加入适量nahco3配置ph=8.5的溶液,将盐酸多巴胺溶解于溶液中,多巴胺含量为2.5mg/ml,将纳米纤维膜置于多巴胺溶液中浸泡搅拌24h,在70℃下烘4h,用水洗净表面残留的的多巴胺后,再在70℃下烘2h。

5.含氟聚合物纳米纤维膜的制备:将含氟高分子溶于三氟甲苯中,其含氟高分子含量为20mg/ml,用喷枪喷涂于表面处理过的静电纺丝膜上,在70℃下烘4h,制得高度可拉伸防水的形状记忆聚合物纤维膜。所述纤维膜包括形状记忆高分子电纺层(厚度为0.05~0.10cm)、多巴胺表面处理层(厚度为0.01~0.05mm)和疏水高分子涂层(厚度为1~3μm)。

实施例5

1.电纺丝溶液的制备:称取20g的不定型形状记忆聚氨酯(smpu)溶解于100g的四氢呋喃中,形状记忆聚氨酯与四氢呋喃以质量比为0.2:1混合,将其放入磁力搅拌器中,设定温度为60℃,搅拌速度为20r/s,搅拌4h得到含量为20wt%的静电纺丝前驱体液。

2.设置静电纺丝仪纺丝电压20.5kv,推注速度1.5ml/h,接收速度100r/min,接收距离18cm,循环速度400mm/s,循环行程100mm,温度30℃。将前驱体液注入5ml的注射器内,取用两根针管,将锡箔纸缠绕在接收装置上并固定,开启静电纺丝仪,得到纳米纤维膜。

3.含氟高分子的制备:将1h,1h,2h,2h-十七氟癸丙烯酸盐与甲基丙烯酸缩水甘油酯以4;1的体积比混合,以偶氮二异丁腈为引发剂,以四氢呋喃为溶剂,在70℃下恒温水浴4h,用正己烷和乙醇洗涤产物后高温烘干,得到含氟高分子,反应式如图2所示。.

4.多巴胺预处理:将步骤2中制得的纳米纤维膜裁成4cm×10cm大小,在蒸馏水中加入适量nahco3配置ph=8.5的溶液,将盐酸多巴胺溶解于溶液中,多巴胺含量为2.5mg/ml,将纳米纤维膜置于多巴胺溶液中浸泡搅拌24h,在70℃下烘4h,用水洗净表面残留的多巴胺后,再在70℃下烘2h。

5.含氟聚合物纳米纤维膜的制备:将含氟高分子溶于四氢呋喃中,其含氟高分子含量为20mg/ml,用喷枪喷涂于表面处理过的纳米纤维膜上,在70℃下烘4h,制得高度可拉伸防水的形状记忆聚合物纤维膜。所述纤维膜包括形状记忆高分子电纺层(厚度为0.05~0.10cm)、多巴胺表面处理层(厚度为0.01~0.05mm)和疏水高分子涂层(厚度为1~3μm)。

实施例6

1.电纺丝溶液的制备:称取20g的不定型形状记忆聚氨酯(smpu)溶解于100g的四氢呋喃中,形状记忆聚氨酯与四氢呋喃以质量比为0.2:1混合,将其放入磁力搅拌器中,设定温度为60℃,搅拌速度为20r/s,搅拌4h得到含量为20wt%的静电纺丝前驱体液。

2.设置静电纺丝仪纺丝电压20.5kv,推注速度1.5ml/h,接收速度100r/min,接收距离18cm,循环速度400mm/s,循环行程100mm,温度30℃。将前驱体液注入5ml的注射器内,取用两根针管,将锡箔纸缠绕在接收装置上并固定,开启静电纺丝仪,得到纳米纤维膜。

3.含氟高分子的制备:将1h,1h,2h,2h-十七氟癸丙烯酸盐和3-(异丁烯酰氧)丙基三甲氧基硅烷以7:3体积比混合,以偶氮二异丁腈为引发剂,以三氟甲苯为溶剂,在90℃下恒温水浴4h,用甲醇洗涤产物后在70℃烘干,得到含氟高分子。

4.多巴胺预处理:将步骤2中制得的纳米纤维膜裁成4cm×10cm大小,在蒸馏水中加入适量nahco3配置ph=8.5的溶液,将盐酸多巴胺溶解于溶液中,多巴胺含量为2.5mg/ml,将纳米纤维膜置于多巴胺溶液中浸泡搅拌24h,在70℃下烘4h,用水洗净表面残留的的多巴胺后,再在70℃下烘2h。

5.含氟聚合物纳米纤维膜的制备:将含氟高分子溶于三氟甲苯中,其含氟高分子含量为20mg/ml,用喷枪喷涂于表面处理过的静电纺丝膜上,在70℃下烘4h,制得高度可拉伸防水的形状记忆聚合物纤维膜。所述纤维膜包括形状记忆高分子电纺层(厚度为0.05~0.10cm)、多巴胺表面处理层(厚度为0.01~0.05mm)和疏水高分子涂层(厚度为1~3μm)。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1