使用喷雾干燥法制备实心陶瓷颗粒的方法

文档序号:1836789阅读:1098来源:国知局
专利名称:使用喷雾干燥法制备实心陶瓷颗粒的方法
背景技术
喷雾干燥包括将陶瓷流体进料雾化为微滴喷雾,该微滴在与热空气接触时被干燥为独立的粉末颗粒。主要用于被称为白色陶瓷产业的瓷砖和餐具产业的喷雾干燥已被用在许多工业应用中,包括电子陶瓷(半导体、电容器)和结构陶瓷(磨损部件、切削工具、生物医学部件)。
石油和天然气从具有多孔并且可渗透的地层的井中产出。地层的多孔性允许地层储存石油和天然气,并且地层的渗透性允许石油或天然气流体通过地层。地层的渗透性对于使石油和天然气流动至可以将其从井中抽出的位置是必不可少的。有时容纳天然气或石油的地层的渗透性不足以对石油和天然气进行经济的开采。在其它情况下,在井的操作过程中,地层的渗透性下降至进一步开采变得不经济这样的范围。在这种情况下,需要断开地层并在开放条件下通过支撑材料或支撑剂支撑断层。这种断裂通常通过液压完成,并且支撑材料或支撑剂是一种微粒材料,如沙子、玻璃珠或陶瓷颗粒,它们通过流体而运送到断层处。
本文中所描述的是一种使用喷雾干燥法制备基本上为圆球形的实心(solid)陶瓷颗粒的方法。当其烧结时,实心陶瓷颗粒适于用作支撑材料。
附图简述

图1是使用本文中所述的喷雾干燥法制备基本上为圆球形的烧结实心陶瓷颗粒的方法的图表。
图2图示了一种用于本文中所述的喷雾干燥法的干燥室,其中具有并流和逆流的结合。
图3图示了一种用于本文中所述的喷雾干燥法的干燥室,其中具有并流。
图4说明了使用本文中所述的喷雾干燥法制备基本上为圆球形的实心陶瓷颗粒的干燥室的尺寸放大。
详细描述本发明特别描述了一种制备基本上为圆球形的实心烧结陶瓷颗粒的方法,所述陶瓷颗粒的平均粒径大于约200微米,堆积密度大于约1.40g/cc,并且表观比重大于约2.60。在某些实施方式中,该颗粒的平均粒径大于约300微米,或大于约400微米。本文中所用的术语“平均粒径”描述了由一批颗粒的筛选分布所计算得到的粒径。
本文中所用的术语“实心陶瓷颗粒”描述了内部空隙小于颗粒的约10体积%的陶瓷颗粒。在某些实施方式中,实心陶瓷颗粒的内部空隙小于颗粒的约5体积%。
现参见图1,使用喷雾干燥法制备基本上为圆球形的实心陶瓷颗粒的方法包括浆料制备100,雾化102,接触104,干燥106,排放108和烧结110。
在浆料制备100中,制备包含水和陶瓷原料的浆料,所述陶瓷原料中氧化铝含量大于约40wt%。该浆料通过共混、混合、搅拌或本领域普通技术人员公知的那些类似方法进行制备。该陶瓷原料可以是未煅烧的陶瓷材料,部分煅烧的陶瓷材料,煅烧的陶瓷材料或它们的组合。在某些实施方式中,陶瓷原料是可以由其制备基本上为圆球形实心陶瓷颗粒的材料,该材料含有天然存在的挥发物,并且该挥发物可包括水分、有机物和化学结合水(也称作“结合水”)。在某些实施方式中,天然存在的挥发物的量为陶瓷原料的约10-约40wt%。在其它实施方式中,该陶瓷原料是未煅烧的粘土,部分煅烧的粘土,煅烧的粘土或它们的组合。在另一些实施方式中,陶瓷原料是高岭土(kaolin clay)、铝矾土(bauxtic clay)或铝土矿(bauxite),其中任一种可以是煅烧的,部分煅烧的,或未煅烧的,以及它们的组合。
在某些实施方式中,该浆料进一步包含粘结剂,如聚乙烯醇、聚乙酸乙烯酯、甲基纤维素、糊精和糖蜜。粘结剂是用于提高颗粒强度的常规有机材料。在某些实施方式中,水可以用作粘结剂。
在另一些实施方式中,该浆料进一步包含分散剂,如胶体、聚合电解质、焦磷酸四钠、焦磷酸四钾、多磷酸盐、柠檬酸铵、柠檬酸铁铵和六偏磷酸钠。包含分散剂是用于通过降低浆料粘度而提高浆料的总固含量。如果含有分散剂,则浆料中所用分散剂的量在雾化浆料能力和制备实心球形颗粒能力之间取得平衡。
浆料中陶瓷原料、水、粘结剂(如果含有的话)和分散剂(如果含有的话)的相对量取决于实心陶瓷支撑剂的预期性能,但是其限定于能使浆料在雾化过程102中适合泵送通过压力喷嘴或转轮,并且能制备可以通过烧结而形成基本上为圆球形的实心陶瓷颗粒的生颗粒的那些量。在某些实施方式中,浆料中固含量范围为约50-约75wt%,而在其它实施方式中,固含量为约50-约60wt%,或约60-约70wt%。
在其中浆料包含粘结剂的实施方式中,粘结剂的量可以低于干燥陶瓷原料的约0.5wt%,或低于干燥陶瓷原料的约1.0wt%。
在其中浆料包含分散剂的实施方式中,分散剂的量可以低于干燥陶瓷原料的约0.3wt%,低于干燥陶瓷原料的约0.5wt%,或低于干燥陶瓷原料的约1.0wt%。
在雾化过程102中,将浆料进料至雾化设备中。适合的雾化设备包括但不限于转轮雾化器、压力喷嘴雾化器和双流体喷嘴雾化器。转轮、压力喷嘴和双流体喷嘴雾化器对于本领域普通技术人员来说是公知的,并且其包括可购于各种来源例如Niro,Inc.的喷雾干燥器中的那些。喷嘴设计对于本领域普通技术人员来说是公知的、明白的,其例如,K.Masters″Spray Drying Handbook″,John Wiley andSons,New York(1979)。
是否使用转轮、压力喷嘴或双流体喷嘴雾化器取决于最终的干燥实心陶瓷颗粒中所希望的性能如粒径、分布和形状以及预期的生产能力。通常,转轮雾化器制备出细颗粒,而在一定压力下工作的压力喷嘴和双流体喷嘴可以制备出比较大的颗粒。
当使用转轮雾化器时,将陶瓷浆料进料至雾化器转轮的中部,并通过离心力移动至轮的周围。雾化在轮边缘进行。所得喷雾中微滴的粒径和粒径分布取决于给予浆料的能量的量以及在新形成的微滴和轮附近湍流空气流之间的摩擦效应。将微滴喷雾从轮水平喷出,但迅速跟随着由空气分散器形成的空气流型,所述空气分散器以一种受控形式指导热空气向下进入干燥室。在具有转轮雾化器的喷雾干燥器中所制备的陶瓷的粒径随着雾化器轮速的下降而增加。进料速率的作用在给定雾化器轮的最佳工作范围内并不大,在运行中进料速率的波动没有改变所制备的陶瓷粉末的粒径分布。和转轮雾化器一起使用的腔室的直径通常应足够大以便防止半湿的沉积物形成于雾化器水平面处的腔室壁处。相反,直径较小但大于圆筒高度的腔室可以与压力喷嘴和双流体喷嘴雾化器一起使用。
当使用压力喷嘴雾化器时,在一定压力下将浆料进料至喷嘴中。在使用双流体喷嘴时,通过独立的喷嘴进料浆料和干燥空气。加压空气进料,而浆料进料可以被加压或者是虹吸/重力进料。在本文中所述的使用双流体喷嘴的实例中,浆料进料被加压。
压能被转化为动能,并且浆料作为容易分裂为微滴的高速薄膜从喷嘴孔流出。由压力喷嘴雾化器或加压的双流体喷嘴制备的微滴粒径随压力反比例变化,而随进料速率和进料粘度正比例变化。压力喷嘴或加压的双流体喷嘴的容量随压力的平方根而变化。在希望是高进料速率和/或高容量的喷雾干燥的实施方式中,使用多喷嘴体系。
现在转到接触104,离开雾化设备的浆料微滴的喷雾与进入干燥室中的热干燥空气接触。微滴和干燥空气如何开始接触,以及微滴/颗粒如何通过干燥室通常可以描述为并流、逆流或它们的组合。在某些实施方式中,例如图2所示的那种实施方式中,具有并流和逆流结合的干燥室被示例和压力喷嘴雾化器一起使用。
图2是包含干燥室204和压力喷嘴202的喷雾干燥装置的简化图。喷雾干燥器通常包括附加组件,它们在本文中无需详述,因为喷雾干燥器及其组件对于本领域普通技术人员来说是公知的。在图2中,浆料由进料源200通过压力喷嘴202进料。虽然在图2中仅图示了一个压力喷嘴,但是可以使用多个喷嘴。适合进料浆料的各种类型的设备对于本领域普通技术人员来说是公知的,其可以包括例如,含或不含过滤器的进料泵。压力喷嘴202将浆料雾化为微滴,并将微滴向上喷雾至干燥室204中,这由箭头A进行图示。热空气由空气源206进料至干燥室204中,其通过进口208进入到干燥室204中,在其中所述热空气和浆料微滴接触。这样,热空气由高于将浆料喷雾至干燥室的位置的点进入,并以通常为向下的方向在该室中流动。开始,浆料微滴以通常为向上的方向在干燥室中流动,因此形成逆流。然而,在某些点上,微滴将结束(exhaust)它们的垂直轨迹,并开始以通常为向下的方向在该室中流动,因此形成并流。如图2所示的那种干燥室中的微滴具有延长的垂直轨迹,其提供了更长的空中干燥时间。虽然图2图示了与并流和逆流干燥室结合使用的压力喷嘴雾化器,但这种干燥室也可以和转轮雾化器以及双流体喷嘴雾化器一起使用。
在某些实施方式中,如图3所示的那种实施方式中,并流干燥室和压力喷嘴雾化器一起使用。图3是包含干燥室304和压力喷嘴302的喷雾干燥装置的简化图。浆料由进料源300通过压力喷嘴302进料。压力喷嘴302将浆料雾化为微滴,并将微滴以通常为向下的方向(表示为“A”)喷雾至干燥室304中。热空气由空气源306进料至干燥室304中,并以通常为向下的方向(表示为“B”)流入干燥室304中。这样,热空气和浆料微滴以通常为向下的方向在干燥室中流动,并由此形成并流。虽然图3图示了与并流干燥室一起使用的压力喷嘴雾化器,但并流干燥室也可以和转轮雾化器以及双流体喷嘴雾化器一起使用。
适合将热空气进料至用于干燥微滴的干燥室中的各种类型的设备对于本领域普通技术人员来说是公知的,其可以包括例如,含或不合空气过滤器的加热器。在干燥106中,当水分从微滴中蒸发时,形成了生陶瓷颗粒。当浆料被喷雾至干燥室204中并与热空气接触时,蒸发从微滴表面发生并且饱和蒸汽薄膜在微滴表面上形成。如果存在分散剂和粘结剂的话,则它们是可溶的。因此,当存在分散剂和/或粘结剂时,各个雾化的喷雾微滴含有不溶的陶瓷材料和可溶的添加剂。在喷雾干燥的蒸发阶段,可溶的粘结材料将其自身以薄膜形式涂覆在微滴表面上。
当继续干燥时,朝向微滴内部的水分蒸发了。根据本文中所述的方法,来自微滴内部的水分通过扩散而至少部分蒸发了,其通过填充在微滴中的实心颗粒,并朝着微滴表面扩散,然后通过微滴表面上的薄膜。当来自微滴内部的水分蒸发时,微滴表面上的薄膜朝着微滴内部向内生长。
尽管干燥空气的进口空气温度相对较高,但是微滴表面温度是低的。蒸发首先在恒速条件下发生,但是,当微滴接近最终残余水分含量的条件时,于是速率降低。由于微滴含有未溶解的固体,因此干燥曲线显现了一段明显的恒速时期的特征,这段时期有助于颗粒的球形化。在干燥时,由于水分蒸发过程中微滴粒径改变了,因此喷雾微滴的粒径分布也改变了。微滴和颗粒的聚结也可能发生,并且这可能归因于干燥室中的湍流空气流型以及温度和湿度水平的复杂分布。
由于微滴在通过干燥室喷出时通常不旋转,因此微滴的一面可能暴露于来自进口的空气,并且该空气比微滴另一面所暴露的空气要热(本文中分别称为“热面”和“冷面”)。在这种情况下,热面上的蒸发更快,并且在微滴表面上形成的薄膜在热面上比在冷面上更快地变厚。微滴中的液体和固体迁移至热面。在这一点上,希望冷面被向内拉,但这将产生具有凹痕的中空生颗粒,而不是本文中所述的实心生颗粒。然而,根据本文中所述的方法,颗粒是实心的而不是中空的,这是因为下列因素中的一种或多种本文中所述重量百分比的固含量,本文中所述重量百分比的可溶物含量(分散剂和/或粘结剂)和本文中所述范围的空气进口温度。
对于固含量来说,可以使用固含量大于约50wt%的浆料制备本文中所述的基本上为圆球形的实心颗粒。根据某些实施方式,可以使用固含量约60-约70wt%的浆料制备基本上为圆球形的实心颗粒。
对于可溶物含量来说,粘结剂增加了浆料的粘度,这可能导致需要降低固含量以便保持能够雾化的浆料。然而,较低的固含量可能导致非实心的颗粒。而对于分散剂来说,它使固体更快地向颗粒表面运动,这也能够导致非实心的颗粒。因此,浆料中的可溶物含量(添加剂如粘结剂和分散剂的量)应和浆料的固含量保持平衡。优选使用由调节浆料粘度的需要而确定的最小量的粘结剂和/或分散剂。
对于空气进口的温度来说,根据本文中所述的方法对进入干燥室的空气的温度进行控制。因此,在某些实施方式中,空气进口温度范围为约100℃-约200℃,或约200℃-约300℃,或约300℃-约400℃,或约400℃-约500℃。在其它实施方式中,空气进口温度范围为约150℃-约200℃,或约200℃-约250℃。优选使用这些范围下端的温度以便降低颗粒的干燥速率,而这又有助于制备可以通过烧结而制备基本上为圆球形的实心陶瓷颗粒的生颗粒。
再参见图1,排放108包括生陶瓷颗粒从干燥室中的分离和排放。在某些实施方式中,使用两点排放体系。在两点排放体系中,生陶瓷颗粒最粗部分的主要排放从室的底部完成,较细部分的排放从旋风分离器和集尘室体系的底部完成。在某些其它实施方式中,使用单点排放体系。在单点排放体系中,生陶瓷颗粒的回收从干燥室中完成。例如,在图2和3所示的示意图中,在重力影响下生陶瓷颗粒至少部分从干燥室排放至排放210和310中。
除图2和3所示的组件外,适合的干燥装置可以进一步包括风扇和导管,废气净化设备(旋风分离器、集尘室、洗涤器)和控制仪表。本文中所述的这些另外的组件和设备以及它们在喷雾干燥法中的用途,对于本领域普通技术人员来说是公知的。
在排放108之后,然后使用常规的烧结设备烧结110生陶瓷颗粒以形成基本上为圆球形的实心陶瓷颗粒。烧结和实施烧结的设备对于本领域普通技术人员来说是公知的。例如,参见Fitzgibbon的美国专利No.4,427,068。在某些实施方式中,烧结在约1000℃-约1600℃的温度下在峰值温度下进行约20-约45分钟。
下列实施例说明了上述方法和颗粒。
实施例1现在参见下表1,其报道了根据本文中所公开方法制备基本上为圆球形的实心陶瓷颗粒的9次试验的结果。表1中作为“n/a”所报道的值没有被确定。
具有表1所述浆料性能的九种浆料由CARBO Ceramics,Inc.(“CARBO”)Eufaula,Alabama制备,并从该公司获得。通常,这些浆料通过将未煅烧的铝矾性高岭土(bauxitic kaolin clay)和水及分散剂在Denver耐磨洗涤器中一起搅拌以得到具有所报道的固含量的浆料而进行制备。该粘土的氧化铝含量大于约50wt%,并且其是开采于Eufaula,Alabama地区的粘土共混物。所用分散剂是一种作为Rhone Poulenc Colloid 102而购买的聚丙烯酸铵。向浆料中加入以商品名Airvol购于Air Products and Chemicals Inc.且分子量为100,000Mn的聚乙烯醇(PVA),并且该浆料得自于CARBO并用作样品5和6。使用Sartorius水分天平在160℃下达30分钟来确定表1所报道的固含量。使用布氏粘度计和2号转子确定表1所报道的粘度数据(其以特定RPM下的厘泊(“cps”)进行报道),该粘度计购于Brookfield Engineering Laboratories,Middleboro,MA。根据布氏粘度计的规定操作程序对其进行操作。
根据表1所报道的雾化条件使浆料雾化。在表1所报道的温度和雾化压力下以表1所报道的进料速率将各种浆料进料至压力喷嘴雾化器中。所用特定雾化器装备有Niro Nozzle Tower中试装置,其具有直径为2.55米,圆筒高度为5.95米的干燥室,并且总喷雾高度为9米。为表1所报道的各个试验调整喷嘴设计,其中字母指示“AA”描述了喷嘴的腔室设计,数字指示“#.#”描述了喷嘴孔的直径(毫米)。这种字母和数字指示对于本领域普通技术人员来说是公知的、明白的。表1所报道的持续时间表明,为了从所用的特定喷嘴中制备浆料微滴而以指示速率泵送浆料的时间。
当雾化的浆料微滴离开压力喷嘴时,它们被暴露于表1所报道的干燥条件下。将热空气以所报道的速率进料至Niro Nozzle Tower中试装置的干燥室中,所述速率由热线风速计进行测量。所报道的干燥室进口和出口温度用热电偶进行确定。当水分因和热空气进料接触而从微滴中蒸发时,形成了具有表1所报道的生料性能的生陶瓷颗粒。用Mettler水分分析器在200℃下确定所报道的残余挥发物%达30分钟,其表明在干燥期间未从颗粒中蒸发出的水分。倾倒密度表示填满已知容积容器的生颗粒的量,而轻拍密度表示在填充容器时轻拍容器,并在这种情况下填满已知容积容器的生颗粒的量。
在静态炉中烧结生颗粒以制备基本上为圆球形的实心陶瓷颗粒。使用12℃/分钟的加热速率加热至1510℃的峰值温度并在该峰值温度下保持30分钟而完成烧结。烧结的实心陶瓷颗粒的烧结性能,如粒径、晶粒度(grain fineness number)、堆积密度、表观比重和压碎强度如下所报道。堆积密度、表观比重和压碎强度使用测试支撑剂用的API建议的操作规程RP60进行确定。

*在从制备地点收到浆料后加入的PVA。
具有较高固体填充量的浆料(例如样品3和7)制备出在GFN和平均粒径上较大粒径的颗粒。样品3和7还具有较高的粘度,并制备出在GFN和平均粒径上具有第2和第3粗粒径的材料。相反,具有较高总可溶物含量的浆料(例如样品5和6,其包括粘结剂)制备出具有最高GFN且平均粒径最小的材料(这也表明制备出了较小的颗粒)。样品7制备出最大的颗粒,并且其进一步说明了九个样品中,样品7还含有最高的残余挥发物,这指示了从干燥室中排出的颗粒的自由水含量。样品7的残余挥发物含量表明,与从干燥室中排出的具有较低残余挥发物含量的那些样品(例如,样品5和6)相比,样品7被暴露至降低的干燥速率。因此,降低的干燥速率应有助于制备具有本文中所述性能的陶瓷颗粒。
实施例2现在参见下表2,其报道了根据本文所公开方法制备基本上为圆球形的实心陶瓷颗粒的5次试验的结果。表2中作为“n/a”所报道的值没有被确定。
具有表2所报道的浆料性能的五种浆料通过将未煅烧的铝矾性高岭土和水及分散剂在高剪切Cowles溶解器中一起搅拌以得到具有所报道的固含量的浆料而进行制备。该粘土的氧化铝含量大于约50wt%,并且得自于JF Blecher。分散剂是六偏磷酸钠,并且在各种浆料中的含量是用于制备浆料的粘土干重的约0.15wt%。六偏磷酸钠购于Innophous Chemicals Inc.。向样品4和5中加入额外的120g六偏磷酸钠。以足以制备pH约为9.5的浆料的量向各种浆料中加入氢氧化铵。除了水以外,在任何浆料中都不使用粘结剂。
使用Ohaus MB45水分天平在190℃下确定表2所报道的浆料固含量直至所有物理水被除去。
使用布氏RVF粘度计和1号转子(在20rpm下)确定粘度数据,其中该粘度计购于Brookfield Engineering Laboratories,Middleboro,MA。根据布氏粘度计的规定操作程序对其进行操作。
在表2所报道的环境温度和雾化压力下将各种浆料进料至双流体喷嘴中。
对各种样品使用相同的喷嘴设计。该喷嘴类型是空气雾化喷嘴(Air Atomizing Nozzle)1/2JBC,其购于Spraying Systems,Inc.。根据本领域普通技术人员所公知的关于喷雾体系(SprayingSystem)喷嘴操作的Spraying Systems Catalog 60B Express(2000),该喷嘴被配置为圆形喷雾,外部混合,no.SU 70喷雾设置以及压力设置。使用外部混合,干燥室的空气进口不是在进入的浆料物流中。所用的特定双流体喷嘴雾化器被用于中试塔装置中,该装置具有直径为1.524米,圆筒高度为4.267米并且干燥体积为8.59立方米的干燥室。其总喷雾高度为5.587米。本实施例2所用的干燥室得自于Drytec North America LLC,Olympia Fields,IL。
当雾化的浆料微滴离开压力喷嘴时,它们被暴露于表2所报道的干燥条件下。将热空气以所报道的速率进料至干燥室中,其中所述速率使用通过旋风分离器容器的压力降进行测量。所报道的干燥室进口和出口温度用K型热电偶进行确定。
当水分因和热空气进料接触而从微滴中蒸发时,形成了具有表2所报道的生料性能的生陶瓷颗粒。基于完全的水分干燥损失,用CSC水分分析器确定所报道的残余挥发物%,其表明在干燥期间未从颗粒中蒸发出的水分。倾倒密度表示填满已知容积容器的生颗粒的量,而轻拍密度表示在填充容器时轻拍容器,并在这种情况下填满已知容积容器的生颗粒的量。
在CM快速温度静态实验室型炉中烧结筛分粒径为40/270(美国目)的生颗粒以制备基本上为圆球形的实心陶瓷颗粒。使用17℃/分钟的加热速率加热至1500℃的峰值温度并在该峰值温度下保持30分钟而完成烧结。烧结的实心陶瓷颗粒的烧结性能,如粒径、晶粒度、堆积密度、表观比重和压碎强度如下所报道。
堆积密度根据ANSI B74-4-1992方法进行确定,表观比重和压碎强度使用测试支撑剂用的API建议的操作规程RP60进行确定。
样品2和3的比较显示出,当干燥室的出口空气温度(因此同样进口空气温度)提高时(由样品2中的118℃至样品3中的135℃),生颗粒平均粒径从435微米下降至426微米。样品4和5的比较显示出,当干燥室的出口空气温度(因此同样进口空气温度)提高时(由样品4中的118℃至样品5中的129℃),生颗粒平均粒径从411微米下降至374微米。本领域普通技术人员明白,本文中所述的较高的干燥室出口空气温度表明了较高的进口空气温度。如样品2和3以及样品4和5之间的进口空气温度的减少表明用较低的进口空气温度可以制备出较大的颗粒。
样品2和4的比较显示出,当存在额外的分散剂时(样品4含有比样品2多120g的分散剂,因此也具有比样品2低的粘度),生颗粒平均粒径从435微米下降至411微米。与样品2相比,样品4额外的粘结剂和较低的粘度显示出,在较少粘结剂和较高粘度(即,样品2)的情况下可以制备出较大的颗粒。
另外,表2中所报道的堆积密度和ASG表明至少一部分烧结的颗粒是实心的。
此外,表2中所报道的值显示了具有适合用作支撑材料的粒径、堆积密度、表观比重和7500psi压碎强度的颗粒可以由本文中所述的浆料制备,并且可以用喷雾干燥器技术进行加工。
实施例3现在参见下表3,其报道了根据本文中所公开方法制备基本上为圆球形的实心陶瓷颗粒的7次试验的结果。表3中作为“n/a”所报道的值没有被确定。
具有表3所报道的浆料性能的七种浆料通过将未煅烧的铝矾性高岭土和水及分散剂在高剪切Cowles溶解器中一起搅拌以得到具有所报道的固含量的浆料而进行制备。该粘土的氧化铝含量约为50wt%氧化铝,并且得自于JF Blecher。所用分散剂是以商品名C-211购于Kemira Chemicals的聚丙烯酸钠,并且其以表3中所报道的量使用,该量是用于制备浆料的干燥粘土的重量百分比。向样品4和5中加入其量约为用于制备浆料的干燥粘土的0.30wt%的分子量为25,000Mn的聚乙烯醇(PVA)。该PVA能够以商品名Elvanol购于DuPont。
使用Ohaus MB45水分天平在190℃下确定表3所报道的浆料固含量直至所有物理水被除去。使用布氏RVF粘度计和1号转子(在20rpm下)确定粘度数据,其中该粘度计购于Brookfield EngineeringLaboratories,Middleboro,MA。根据布氏粘度计的规定操作程序对其进行操作。
根据表3所报道的雾化条件雾化这些浆料。在表3所报道的环境温度和雾化压力下以表3所报道的进料速率将各种浆料进料至双流体喷嘴雾化器中。表3中所报道的持续时间表明,为了制备浆料微滴而以所指明的速率泵送浆料的时间。
对表3中所报道的各种样品使用相同的喷嘴设计。喷嘴类型是空气雾化喷嘴1/4J,其购于Spraying Systems,Inc.。根据本领域普通技术人员所公知的关于喷雾体系喷嘴操作的Spraying Systems Catalog60B Express(2000),该喷嘴被配置为扁平喷雾,外部混合,no.SUE45喷雾设置以及压力设置。该喷嘴被配置在Drytec Nozzle Tower中试装置中,该装置具有直径为1.000米,圆筒高度为2.000米的干燥室,并且其总喷雾高度为2.866米。
当雾化的浆料微滴离开压力喷嘴时,它们被暴露于表3所报道的干燥条件下。将热空气以所报道的速率进料至干燥室中,其中所述速率使用通过旋风分离器容器的压力降进行测量。所报道的干燥室进口和出口温度用K型热电偶进行确定。
当水分因和热空气进料接触而从微滴中蒸发时,形成了具有表3所报道的生料性能的生陶瓷颗粒。基于完全的水分干燥损失,用CSC水分分析器确定所报道的残余挥发物%,其表明在干燥期间未从颗粒中蒸发出的水分。倾倒密度表示填满已知容积容器的生颗粒的量,而轻拍密度表示在填充容器时轻拍容器,并在这种情况下填满已知容积容器的生颗粒的量。
在静态的Blue M Lindberg实验室型炉中烧结该生颗粒以制备基本上为圆球形的实心陶瓷颗粒。使用12℃/分钟的加热速率加热至1510℃的峰值温度并在该峰值温度下保持30分钟而完成烧结。烧结的实心陶瓷颗粒的烧结性能,如粒径、晶粒度、堆积密度、表观比重和压碎强度如下所报道。
堆积密度、表观比重和压碎强度使用测试支撑剂用的API建议的操作规程RP60进行确定。
表3所述的示范性浆料说明了固含量大于约50wt%,大于约60wt%和大于约65wt%的浆料可以维持在适合通过喷雾干燥器的雾化设备进料的粘度下。浆料的固含量有助于本文中所述的实心的且基本上为圆球形的颗粒的形成。
表3中所报道的堆积密度和ASG表明至少一部分烧结的颗粒是实心的。用于加工本实施例3浆料的低进口空气温度(其由较低的出口空气温度确定)有助于实心颗粒的制备。此外,没有使用粘结剂制备表3所述的实心的且基本上为圆球形的颗粒。
另外,最大平均粒径的材料由最高残余挥发物的样品(样品6)制备。样品6的残余挥发物含量表明,与从干燥室中排出的具有较低残余挥发物含量的那些样品相比,样品6被暴露于降低的干燥速率中。因此,降低的干燥速率应有助于制备具有本文中所述性能的陶瓷颗粒。
再进一步,表3中所报道的值显示了具有适合用作支撑材料的粒径、堆积密度、表观比重和7500psi压碎强度的颗粒可以使用如本文中所述制备的浆料制备出,并且可以用喷雾干燥器技术进行加工。
实施例4现在参见下表4,其报道了根据本文中所公开方法制备基本上为圆球形的实心陶瓷颗粒的7次试验的结果。表4中作为“n/a”所报道的值没有被确定。
该颗粒由约5加仑批料的浆料进行制备,其中所述浆料通过将煅烧的铝矾性高岭土和水及分散剂在高剪切Cowles溶解器中一起搅拌以得到固含量约为59.5wt%,在环境温度和60RPM下的粘度约为130厘泊,pH约为9.5(通过加入氢氧化铵)的浆料而进行制备,并且该浆料含有基于干燥粘土原料重量约0.03wt%的分散剂。
分散剂是由Kemira Chemicals生产并且商品名为C-211的聚丙烯酸钠。该粘土的氧化铝含量在煅烧过的基础上约为47wt%,并且作为煅烧材料(煅烧至约2wt%的灼烧损失)得自于CE Minerals,Andersonville GA。
该浆料没有立即通过喷雾干燥器加工,因此必须使用额外的分散剂改进其粘度以使粘度回到浆料能够被喷雾的值。当进行浆料第一次试验时,加入7.1g额外的C-211牌分散剂。在第一次试验后,加入7.2g额外的C-211牌分散剂,以使加入到浆料(批料)的总量为14.3g。在第二次试验后,没有加入额外的分散剂,因此如表4所报道的,额外的分散剂的总量保持为14.3g。
当进行喷雾以形成颗粒时,浆料具有如表4所报道的固含量和粘度。使用Ohaus MB45水分天平在190℃下确定表4所报道的浆料固含量直至所有物理水分被除去。使用布氏RVF粘度计和1号转子在20rpm下确定粘度数据,其中该粘度计购于BrookfieldEngineering Laboratories,Middleboro,MA。根据布氏粘度计的规定操作程序对其进行操作。
根据表4所报道的雾化条件雾化这些浆料。在表4所记报道的环境温度和雾化压力下以表4所报道的进料速率将各种浆料进料至双流体喷嘴雾化器中。表4中所报道的持续时间表明,为了制备浆料微滴而以所报道的速率泵送浆料的时间。
对表4中所报道的各种样品使用相同的喷嘴设计。喷嘴类型是空气雾化喷嘴1/4J,其购于Spraying Systems,Inc.。根据本领域普通技术人员所公知的关于喷雾体系喷嘴操作的Spraying Systems Catalog60B Express(2000),该喷嘴被配置为扁平喷雾,外部混合,no.SUE45喷雾设置以及压力设置。该喷嘴被配置在Drytec Nozzle Tower中试装置中,该装置具有直径为1.000米,圆筒高度为2.000米的干燥室,并且其总喷雾高度为2.866米。
当雾化的浆料微滴离开压力喷嘴时,它们被暴露于表4所报道的干燥条件下。将热空气以所报道的速率进料至干燥室中,其中所述速率使用通过旋风分离器容器的压力降进行测量。所报道的干燥室进口和出口温度用K型热电偶进行确定。
当水分因和热空气进料接触而从微滴中蒸发时,形成了具有表4所报道的生料性能的生陶瓷颗粒。基于完全的水分干燥损失,用CSC水分分析器确定所报道的残余挥发物%,其表明在干燥期间未从颗粒中蒸发出的水分。倾倒密度表示填满已知容积容器的生颗粒的量,而轻拍密度表示在填充容器时轻拍容器,并在这种情况下填满已知容积容器的生颗粒的量。
在静态的Blue M Lindberg实验室型炉中烧结该生颗粒以制备基本上为圆球形的实心陶瓷颗粒。使用12℃/分钟的加热速率加热至1510℃的峰值温度并在该峰值温度下保持30分钟而完成烧结。烧结的实心陶瓷颗粒的烧结性能,如粒径、晶粒度、堆积密度、表观比重和压碎强度如下所报道。
堆积密度、表观比重和压碎强度使用测试支撑剂用的API建议的操作规程RP60进行确定。
表4所述的示范性浆料说明了固含量大于约50wt%的浆料可以在适合通过喷雾干燥器的雾化设备进料的粘度下获得。浆料的固含量有助于本文中所述的实心的且基本上为圆球形的颗粒的形成。
表4中所报道的堆积密度和ASG表明至少一部分烧结的颗粒是实心的。用于加工本实施例4浆料的低进口空气温度(其由较低的出口空气温度确定)有助于实心颗粒的制备。此外,没有使用粘结剂制备表4所述的实心的且基本上为圆球形的颗粒。
另外,最大平均粒径的材料由最高残余挥发物的样品(样品7)制备。样品7的残余挥发物含量表明,与从干燥室中排出的具有较低残余挥发物含量的那些样品相比,样品7被暴露于降低的干燥速率中。因此,降低的干燥速率应有助于制备具有本文中所述性能的陶瓷颗粒。
实施例5从通过实施例1-4所研究出的方法中,可以估算出喷雾干燥设备,特别是干燥室的尺寸,其中所述设备能够制备比实施例1-4实际所制备的那些颗粒还要大的颗粒。
现在参见图4,其图示了可期望设备尺寸的估算。实施例2和3的干燥室高度,和其中所制备的生颗粒的体积在图4上分别绘于点1和2处。图4上的点3相应于由American Custom Drying制造的生产用喷雾干燥室的高度(约9.8m),并且在其测试可以获得。假设线性关系由点1和2确定,则高度为9.8m的干燥室应得到约0.110mm3的生颗粒体积。继续一种线性关系的假设,则绘于图4上的点4和5分别相应于约0.212mm3和约0.234mm3的期望的生颗粒体积。如果给定了所述期望的生颗粒体积,则估算出产生这种体积的干燥室的估算高度并完成点4和5的绘制。
如图4所示,用于制备30/50支撑剂分级的颗粒(生颗粒平均粒径近似为765微米)的干燥室的估算高度将为19.8米。使用工业筛选机如Rotex Inc Model 522,可以筛选干燥的颗粒,并得到分级的支撑剂颗粒以生产20/40、20/30或18/40的产品。
本文中所述的高度为19.8米的干燥室可以具有约7.4250米的直径和约857.33m3的容积。本领域普通技术人员能够意识到本实施例5中所述的干燥室的尺寸可以变化,并能够设计其它的直径和比率。
选择干燥室的尺寸,并结合本文中已论述的方法,也就是,使浆料固含量最大化,使浆料中的可溶物(例如,分散剂和/或粘结剂)的量最小化,但仍然保持可喷雾粘度,并降低进料至干燥室的进口和出口空气温度,应会生产出基本上为圆球形的实心陶瓷颗粒,并且当被烧结时,具有适合用作支撑剂材料的平均粒径、堆积密度、表观比重和压碎强度。
根据本发明方法,通过调节(1)固含量(优选在浆料中较高的固含量);(2)可溶物含量(优选在浆料中最低的或不含分散剂和/或粘结剂);(3)空气进口温度(优选低温以降低颗粒的干燥速率)中的一种或多种而制备实心球形陶瓷颗粒。另外,控制通过干燥室的干燥空气流速(优选低速)可能有助于制备本文中所述的实心球形陶瓷颗粒。此外,选择设备尺寸如喷雾干燥器干燥室的高度,可以提高根据本文中所述方法所制备的颗粒的平均粒径。
根据本文中所述方法所制备的基本上为圆球形的实心陶瓷颗粒适于多种用途,包括但不限于用作油井或气井的支撑剂,以及用作铸造介质。从本文中所公开的本发明说明书和实践考虑,本发明的其它实施方式对于本领域技术人员来说是显而易见的。然而,前述说明书应认为其仅是本发明的示范,而本发明的真正范围和精神由下述权利要求表示。
权利要求
1.一种制备基本上为圆球形的实心烧结陶瓷颗粒的方法,其包括制备固含量大于约50wt%,并且含有水和陶瓷原料的浆料,其中陶瓷原料的氧化铝含量大于约40wt%;将该浆料进料至可操作地连接于干燥器的雾化器中;操作雾化器将浆料雾化为微滴;操作干燥器以提供约100℃-约500℃的空气进口温度;通过使微滴通过干燥器并通过干燥器的排放而离开,形成基本上为圆球形的实心颗粒;将从干燥器排放出的至少一部分颗粒在约1000℃-约1600℃的温度下烧结并在峰值温度下烧结约20-约45分钟,其中形成了基本上为圆球形的烧结实心颗粒,该颗粒平均粒径大于约200微米,平均堆积密度大于约1.40g/cc,并且平均表观比重大于约2.60。
2.如权利要求1的方法,其中空气进口温度的范围选自约100℃-约200℃,约200℃-约300℃,约300℃-约400℃,和约400℃-约500℃。
3.如权利要求1的方法,其中空气进口温度的范围选自约150℃-约200℃和约200℃-约250℃。
4.如权利要求1的方法,其进一步包括在将浆料进料至雾化器之前,向浆料中加入粘结剂,其中以低于陶瓷原料重量约0.5wt%的量向浆料中加入粘结剂。
5.如权利要求1的方法,其进一步包括在将浆料进料至雾化器之前,向浆料中加入粘结剂,其中以低于陶瓷原料重量约1.0wt%的量向浆料中加入粘结剂。
6.如权利要求1的方法,其进一步包括在将浆料进料至雾化器之前,向浆料中加入分散剂,其中以低于约0.3wt%的量向浆料中加入分散剂。
7.如权利要求1的方法,其进一步包括在将浆料进料至雾化器之前,向浆料中加入分散剂,其中以低于约0.5wt%的量向浆料中加入分散剂。
8.如权利要求1的方法,其进一步包括在将浆料进料至雾化器之前,向浆料中加入分散剂,其中以低于约1.0wt%的量向浆料中加入分散剂。
9.如权利要求1的方法,其中陶瓷原料选自煅烧的材料,未煅烧的材料,部分煅烧的材料以及它们的组合。
10.如权利要求1的方法,其中陶瓷原料选自高岭土、铝矾性高岭土和铝土矿。
11.如权利要求1的方法,其中雾化器选自转轮雾化器、压力喷嘴雾化器和双流体喷嘴雾化器。
12.一种制备基本上为圆球形的实心烧结陶瓷颗粒的方法,其包括制备固含量大于约50wt%,并且含有水和陶瓷原料的浆料,其中陶瓷原料的氧化铝含量大于约40wt%;将该浆料进料至可操作地连接于干燥器的雾化器中;将干燥空气进料至干燥器中;操作雾化器将浆料雾化为微滴;通过使微滴通过干燥器而形成基本上为圆球形的实心颗粒;控制浆料固含量、进入干燥器的干燥空气的温度、和进入干燥器的干燥空气的进料速率中的至少一种以制备基本上为圆球形的实心颗粒,并且当在约1000℃-约1600℃的温度下烧结并在峰值温度下烧结约20-约45分钟时,其平均粒径大于约200微米,平均堆积密度大于约1.40g/cc,并且平均表观比重大于约2.60。
13.如权利要求12的方法,其进一步包括向浆料中加入至少一种选自分散剂和粘结剂的添加剂;和控制所选添加剂的量以制备基本上为圆球形的烧结实心颗粒,其平均粒径大于约200微米,平均堆积密度大于约1.40g/cc,并且平均表观比重大于约2.60。
14.如权利要求13的方法,其中所选的添加剂是选自胶体、聚合电解质、焦磷酸四钠、焦磷酸四钾、多磷酸盐、柠檬酸铵、柠檬酸铁铵和六偏磷酸钠的分散剂。
15.如权利要求13的方法,其中所选的添加剂是选自聚乙烯醇、聚乙酸乙烯酯、甲基纤维素、糊精和糖蜜的粘结剂。
16.如权利要求12的方法,其进一步包括调节干燥器的尺寸以对基本上为圆球形的实心颗粒的平均粒径、堆积密度和表观比重中的至少一种进行调节。
17.如权利要求16的方法,其中提高干燥器的高度以提高基本上为圆球形的实心颗粒的平均粒径。
18.一种颗粒,其特征在于是实心的;基本上为圆球形;平均粒径大于约200微米;平均堆积密度大于约1.40g/cc;并且平均表观比重大于约2.60,其中该颗粒通过下述过程而形成制备固含量大于约50wt%,并且含有水和陶瓷原料的浆料,其中陶瓷原料的氧化铝含量大于约40wt%;将该浆料进料至可操作地连接于干燥器的雾化器中;操作雾化器将浆料雾化为微滴;操作干燥器以在约100℃-约500℃的空气进口温度下提供进入干燥器的空气流;通过使微滴通过干燥器并通过干燥器的排放而离开,形成基本上为圆球形的实心颗粒;将从干燥器排放出的至少一部分颗粒在约1000℃-约1600℃的温度下烧结并在峰值温度下烧结约20-约45分钟。
全文摘要
一种由煅烧的、未煅烧的或部分煅烧的原料的浆料制备基本上为圆球形的实心烧结颗粒的方法,其中该原料的氧化铝含量大于约40wt%。使用喷雾干燥法将该浆料加工为基本上为圆球形的实心烧结颗粒,其中该颗粒的平均粒径大于约200微米,堆积密度大于约1.40g/cc,并且表观比重大于约2.60。
文档编号B28B1/00GK101043990SQ200580030252
公开日2007年9月26日 申请日期2005年7月8日 优先权日2004年7月9日
发明者S·卡诺瓦, T·C·帕拉马拉, J·C·伍德 申请人:卡博陶粒有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1