由蒸压加气混凝土(AAC)制成的加筋建筑砌块的制作方法

文档序号:13382878阅读:586来源:国知局

蒸压加气混凝土(aac)或蒸压多孔混凝土(acc)可用于制造由细集料、水泥和使新鲜混合物像面包面团一样膨胀的膨胀剂制成的建筑砌块。通常,在工厂,模制该材料并切割成精确尺寸的单元。此后获得的蒸压加气混凝土的固化块或板可用薄层砂浆接合。



背景技术:

蒸压加气混凝土(aac)或蒸压多孔混凝土(acc)的进一步信息和定义可例如由europeanautoclavedaeratedconcreteassociation(eaaca)提供。

由于根据现有技术状况使用的酐基环氧粘合剂的化学性质,迄今,由蒸压加气混凝土制成的加筋建筑砌块不耐受碱和高运行温度。混凝土固化在前28天在具有放热效应(高达60℃)的高碱性反应介质中进行,其是对基于异甲基对苯二甲酸酐(imtgpa)的复合材料的物理-机械性质有害的介质。



技术实现要素:

现在令人惊讶地发现,基于固化剂b)的复合筋材耐碱得多。由蒸压加气混凝土(aac)和基于纤维载体和固化剂b)的筋材制成的加筋建筑砌块与现有技术状况相比具有优异的物理和机械性质。此外,基于固化剂b)的复合筋材可暴露在比现有技术状况的筋材高的温度下,因此可用于建筑砌块以提供改进的耐热性。

本发明提供由蒸压加气混凝土(aac)制成的加筋建筑砌块,

其特征在于

所述加筋建筑砌块包含

基本由下列成分形成的筋材:

a)至少一种纤维载体

b)固化组合物作为基质材料,其由b1)至少一种环氧化合物和b2)至少一种二胺和/或多胺以0.8:1至2:1的环氧化合物b1)与二胺和/或多胺组分b2)的化学计量比形成,

c)任选地,其它辅助剂和添加剂。

该筋材基本由a)至少一种纤维载体和b)固化组合物形成。因此,在制造筋材时,使用纤维载体和可固化(尚未固化)组合物。用于形成该筋材的可固化组合物任选可以包含其它辅助剂和添加剂。如果存在其它辅助剂和添加剂,它们优选为加强存在。

本发明的建筑砌块可用于各种用途并具有正面性质。

·组件,即本发明的建筑砌块可用于墙、地板、天花板和屋顶。

·该轻质材料提供极好的隔音和隔热,并且像所有水泥基材料一样,牢固和耐火。

·为了耐久,aac需要某种类型的外加饰面,如聚合物改性的灰泥、天然或人造石材或壁板。

用于制造本发明的建筑砌块的筋材的详述

该筋材基本由下列成分形成:

a)至少一种纤维载体

b)固化组合物作为基质材料,其由b1)至少一种环氧化合物和b2)至少一种二胺和/或多胺以0.8:1至2:1的环氧化合物b1)与二胺和/或多胺组分b2)的化学计量比形成,

以及

c)任选地,其它辅助剂和添加剂。

该筋材基本由a)至少一种纤维载体和b)固化组合物形成。因此,在制造筋材时,使用纤维载体和可固化(尚未固化)组合物。用于形成该筋材的可固化组合物任选可以包含其它辅助剂和添加剂。如果存在其它辅助剂和添加剂,它们优选为加强存在。

环氧化合物b1)与二胺和/或多胺b2)的化学计量比为0.8:1至2:1,优选0.95:1,更优选1:1。该化学计量比如下计算:化学计量反应是指环氧树脂中的一个环氧乙烷基团与胺中的一个活性氢原子反应。例如0.8:1的环氧组分b1)与胺组分b2)的化学计量比是指(环氧当量[g/eq]×0.8)至(胺的h活性当量[g/eq]×1)。

在施加和固化组合物b)(优选通过热处理)后,该筋材不粘并因此可以非常有效地装卸和进一步加工。根据本发明使用的组合物b)在纤维载体上具有极好的粘合和分布。

根据本发明使用的组合物b)是液体,因此不添加溶剂就适用于浸渍纤维材料,环保且便宜,具有良好的机械性质,可以以简单的方式加工并在固化后具有良好的耐候性。

根据本发明,该筋材具有出色的耐化学性,尤其是对混凝土的碱性介质。

纤维载体a)

该纤维载体由纤维材料(通常也称作增强纤维)构成。任何构成纤维的材料通常都合适,但优选使用由玻璃、碳、塑料,如聚酰胺(芳族聚酰胺)或聚酯、天然纤维或矿物纤维材料,如玄武岩纤维或陶瓷纤维(基于氧化铝和/或氧化硅的氧化物纤维)制成的纤维材料。也可以使用纤维类型的混合物,例如芳族聚酰胺和玻璃纤维、或碳和玻璃纤维的组合。

主要由于它们的相对较低成本,玻璃纤维是最常用的纤维类型。原则上,所有类型的玻璃基增强纤维在此合适(e玻璃、s玻璃、r玻璃、m玻璃、c玻璃、ecr玻璃、d玻璃、ar玻璃或中空玻璃纤维)。碳纤维通常用在高性能复合材料中,其中另一重要因素是在高强度的同时密度低于玻璃纤维。碳纤维是由碳质原材料构成的工业生产纤维,其通过热解转化成类似石墨排列的碳。区分各向同性和各向异性类型:各向同性纤维只有低强度和较低工业重要性;各向异性纤维表现出高强度和刚度以及同时低断裂伸长率。天然纤维在此是指获自植物和动物材料的所有织物纤维和纤维材料(例如木纤维、纤维素纤维、棉纤维、大麻纤维、黄麻纤维、亚麻纤维、剑麻纤维和竹纤维)。类似于碳纤维,芳族聚酰胺纤维表现出负的热膨胀系数,即在加热时变短。它们的比强度和它们的弹性模量明显低于碳纤维。与基质树脂的正膨胀系数结合,可以制造具有高尺寸稳定性的组件。与碳纤维增强塑料相比,芳族聚酰胺纤维复合材料的压缩强度低得多。芳族聚酰胺纤维的已知商标是来自dupont的nomex®和kevlar®或来自teijin的teijinconex®、twaron®和technora®。特别合适和优选的载体是由玻璃纤维、碳纤维、芳族聚酰胺纤维或陶瓷纤维制成的那些。在本发明中,提到的所有材料都适合作为纤维载体。增强纤维的综述包含在“compositestechnologies“,paoloermanni(第4版),演讲稿,ethzürich,2007年8月,第7章。

优选根据本发明使用的载体材料的特征在于该纤维载体由玻璃、碳、塑料(优选聚酰胺(芳族聚酰胺)或聚酯)、矿物纤维材料,如玄武岩纤维或陶瓷纤维构成,独自或作为不同纤维类型的混合物。

特别优选的是任何几何的玻璃纤维,尤其是圆形玻璃纤维,其为实心杆或空心杆的形式。

特别优选的是具有表面轮廓的实心杆以牢固锚定在混凝土,例如借助绕线或铣削出(milling)环形或螺旋槽。

该杆可另外带有表面顶涂层。

基质材料b)

环氧化合物b1)

合适的环氧化合物b1)描述在例如ep675185中。

可用的化合物是每分子含有多于一个环氧基,优选两个环氧基的已知用于此用途的许多化合物。这些环氧化合物可以是饱和或不饱和的并且是脂族、脂环族、芳族或杂环的,还具有羟基。它们可另外含有在混合或反应条件下不会造成任何麻烦的副反应的取代基,例如烷基或芳基取代基、醚部分等。它们优选是衍生自多元酚,尤其是双酚和酚醛清漆树脂并具有100至1500,尤其是150至250,g/eq.的基于环氧基数量me的摩尔质量(“环氧当量”,“ev值”)的缩水甘油醚。

多元酚的实例包括:间苯二酚、氢醌、2,2-双(4-羟苯基)丙烷(双酚a)、二羟基二苯甲烷的异构体混合物(双酚f)、4,4'-二羟基二苯基环己烷、4,4'-二羟基-3,3'-二甲基二苯基丙烷、4,4'-二羟基联苯、4,4'-二羟基二苯甲酮、双(4-羟苯基)-1,1-乙烷、双(4-羟苯基)-1,1-异丁烷、2,2-双(4-羟基-叔丁基苯基)丙烷、双(2-羟基萘基)甲烷、1,5-二羟基萘、三(4-羟苯基)甲烷、双(4-羟苯基)醚、双(4-羟苯基)砜等,和上述化合物的氯化和溴化产物,例如四溴双酚a。非常特别优选使用具有150至200g/eq.的环氧当量的基于双酚a和双酚f的液体二缩水甘油醚。

也可以使用多元醇的多缩水甘油醚,例如乙-1,2-二醇二缩水甘油醚、丙-1,2-二醇二缩水甘油醚、丙-1,3-二醇二缩水甘油醚、丁二醇二缩水甘油醚、戊二醇二缩水甘油醚(包括新戊二醇二缩水甘油醚)、己二醇二缩水甘油醚、二乙二醇二缩水甘油醚、二丙二醇二缩水甘油醚、更高级聚氧烷撑二醇二缩水甘油醚,例如更高级聚氧乙二醇二缩水甘油醚和聚氧丙二醇二缩水甘油醚、共聚氧乙二醇-丙二醇二缩水甘油醚、聚氧四亚甲基二醇二缩水甘油醚、甘油的多缩水甘油醚、己-1,2,6-三醇的多缩水甘油醚、三羟甲基丙烷的多缩水甘油醚、三羟甲基乙烷的多缩水甘油醚、季戊四醇的多缩水甘油醚或山梨糖醇的多缩水甘油醚、烷氧基化多元醇(尤其例如甘油、三羟甲基丙烷、季戊四醇)的多缩水甘油醚、环己烷二甲醇的二缩水甘油醚、双(4-羟基环己基)甲烷的二缩水甘油醚和2,2-双(4-羟基环己基)丙烷的二缩水甘油醚、蓖麻油的多缩水甘油醚、三(2-羟乙基)异氰脲酸三缩水甘油酯。

进一步可用的组分b1)包括:可通过表氯醇和胺,如苯胺、正丁胺、双(4-氨基苯基)甲烷、间苯二甲胺或双(4-甲基氨基苯酚)甲烷的反应产物的脱卤化氢获得的多(n-缩水甘油基)化合物。该多(n-缩水甘油基)化合物也尤其包括异氰脲酸三缩水甘油酯、三缩水甘油基脲唑及其低聚物、环亚烷基脲的n,n'-二缩水甘油基衍生物和乙内酰脲的二缩水甘油基衍生物。

此外,也可以使用通过表氯醇或类似的环氧化合物与脂族、脂环族或芳族多羧酸,如草酸、琥珀酸、己二酸、戊二酸、邻苯二甲酸、对苯二甲酸、四氢邻苯二甲酸、六氢邻苯二甲酸、萘-2,6-二甲酸和更高级的二缩水甘油基二羧酸酯,例如二聚或三聚亚麻酸的反应获得的多羧酸的多缩水甘油酯。实例是己二酸二缩水甘油酯、邻苯二甲酸二缩水甘油酯和六氢邻苯二甲酸二缩水甘油酯。

应该另外提到不饱和羧酸的缩水甘油酯和不饱和醇或不饱和羧酸的环氧化酯。除多缩水甘油醚外,也可以使用多缩水甘油醚的质量的最多30%,优选10%至20%的比例的少量单环氧化物,例如甲基缩水甘油醚、丁基缩水甘油醚、烯丙基缩水甘油醚、乙基己基缩水甘油醚、长链脂族缩水甘油醚,例如鲸蜡基缩水甘油醚和硬脂基缩水甘油醚,更高级的异构醇混合物的单缩水甘油醚、c12至c13醇的混合物的缩水甘油醚、苯基缩水甘油醚、甲苯基缩水甘油醚、对叔丁基苯基缩水甘油醚、对辛基苯基缩水甘油醚、对苯基苯基缩水甘油醚、烷氧基化月桂醇的缩水甘油醚以及单环氧化物,如环氧化单不饱和烃(环氧丁烷、环氧环己烷、氧化苯乙烯)。

合适的环氧化合物详细列举可见于手册"epoxidverbindungenundepoxidharze"[epoxycompoundsandepoxyresins],a.m.paquin著作,springerverlag,berlin1958,第iv章和leeneville"handbookofepoxyresins",1967,第2章。

可用的环氧化合物b1)优选包括缩水甘油醚和缩水甘油酯、脂族环氧化物、基于双酚a和/或双酚f的二缩水甘油醚和甲基丙烯酸缩水甘油酯。此类环氧化物的其它实例是异氰脲酸三缩水甘油酯(tgic,商品名:araldit810,huntsman)、对苯二甲酸二缩水甘油酯和偏苯三酸三缩水甘油酯的混合物(商品名:aralditpt910和912,huntsman)、叔碳酸(versaticacid)的缩水甘油酯(商品名:cardurae10,shell)、3',4'-环氧环己烷甲酸3,4-环氧环己基甲酯(ecc)、乙基己基缩水甘油醚、丁基缩水甘油醚、季戊四醇四缩水甘油醚(商品名:polypoxr16,uppcag)和具有游离环氧基的其它polypox产品。

也可以使用所提到的环氧化合物的混合物。

所用环氧组分b1)更优选包含基于双酚a二缩水甘油醚、双酚f二缩水甘油醚或脂环族类型的聚环氧化物。本发明的可固化组合物b)中所用的环氧树脂优选选自基于双酚a二缩水甘油醚的环氧树脂、基于双酚f二缩水甘油醚的环氧树脂和脂环族类型,例如3,4-环氧环己基环氧乙烷或3,4-环氧环己烷甲酸3,4-环氧环己基甲酯,特别优选的是双酚a基环氧树脂和双酚f基环氧树脂。

根据本发明,也可以使用环氧化合物的混合物作为组分b1)。

胺b2)

二胺或多胺b2)是文献中已知的。这些可以是单体化合物、低聚化合物和/或聚合化合物。

单体化合物和低聚化合物优选选自二胺、三胺、四胺。

对于组分b2),优选使用伯和/或仲二胺或多胺,特别优选使用伯二胺或多胺。二胺或多胺b2)的氨基可连接到伯、仲或叔碳原子上,优选连接到伯或仲碳原子上。

所用组分b2)优选是独自或混合的下列胺:

•脂族胺,如多亚烷基多胺,优选选自乙-1,2-二胺、丙-1,2-二胺、丙-1,3-二胺、丁-1,2-二胺、丁-1,3-二胺、丁-1,4-二胺、2-(乙基氨基)乙胺、3-(甲基氨基)丙胺、二亚乙基三胺、三亚乙基四胺、五亚乙基六胺、三甲基己二胺、2,2,4-三甲基己二胺、2,4,4-三甲基己二胺、2-甲基戊二胺、己二胺、n-(2-氨基乙基)乙-1,2-二胺、n-(3-氨基丙基)丙-1,3-二胺、n,n''-1,2-乙二基双(1,3-丙二胺)、二亚丙基三胺、己二酸二酰肼、肼;

•氧化烯多胺,选自聚氧丙烯二胺和聚氧丙烯三胺(例如jeffamine®d-230、jeffamine®d-400、jeffamine®t-403、jeffamine®t-5000)、1,13-二氨基-4,7,10-三氧杂十三烷、4,7-二氧杂癸烷-1,10-二胺;

•脂环族胺,选自异佛尔酮二胺(3,5,5-三甲基-3-氨基甲基环己基胺)、4,4'-二氨基二环己基甲烷、2,4'-二氨基二环己基甲烷和2,2'-二氨基二环己基甲烷(独自或为异构体的混合物)、3,3'-二甲基-4,4'-二氨基二环己基甲烷、n-环己基-1,3-丙二胺、1,2-二氨基环己烷、3-(环己基氨基)丙胺、哌嗪、n-氨基乙基哌嗪、tcd二胺(3(4),8(9)-双(氨基甲基)三环[5.2.1.02,6]癸烷),

•芳脂族胺,如苯二甲胺;

•芳族胺,选自苯二胺、苯-1,3-二胺、苯-1,4-二胺、4,4'-二氨基二苯甲烷、2,4'-二氨基二苯甲烷、2,2'-二氨基二苯甲烷(独自或为异构体的混合物);

•加合物固化剂,其是环氧化合物,尤其是双酚a和f的缩水甘油醚与过量胺的反应产物;

•聚酰胺型胺固化剂,其通过单羧酸和多羧酸与多胺的缩合,尤其通过二聚脂肪酸与多亚烷基多胺的缩合获得;

•曼尼希碱固化剂,其通过单酚或多元酚与醛,尤其是甲醛和多胺的反应获得;

•曼尼希碱,例如基于酚和/或间苯二酚,甲醛和间苯二甲胺,以及n-氨基乙基哌嗪和n-氨基乙基哌嗪与壬基苯酚和/或苄醇的共混物,在由腰果酚、醛和胺的曼尼希反应中获得的酚醛胺。

也可以使用上文提到的二胺或多胺的混合物作为组分b2)。

优选使用二胺作为组分b2),其选自异佛尔酮二胺(3,5,5-三甲基-3-氨基甲基环己基胺,ipd)、4,4'-二氨基二环己基甲烷、2,4'-二氨基二环己基甲烷、2,2'-二氨基二环己基甲烷(也称作pacm)(独自或为异构体的混合物)、2,2,4-三甲基己二胺和2,4,4-三甲基己二胺的异构体混合物(tmd)、基于环氧化合物和上述胺或上述胺的组合的反应产物的加合物固化剂。也可以使用这些化合物的混合物。

非常特别优选使用异佛尔酮二胺(3,5,5-三甲基-3-(氨基甲基)环己基胺,ipd),和/或异佛尔酮二胺与2,2,4-三甲基己二胺/2,4,4-三甲基己二胺的异构体混合物(tmd)的组合,和/或基于环氧化合物和上述胺或上述胺的组合的反应产物的加合物固化剂。

除二胺和多胺b2)外,还可以与潜性固化剂一起使用该二胺和多胺作为组分b2)。所用的附加潜性固化剂原则上可以是已知用于此用途的任何化合物,即在80℃的指定极限温度以下对环氧树脂呈惰性但一超过此熔融温度就迅速反应以使该树脂交联的任何化合物。所用潜性固化剂的极限温度优选为至少85℃,尤其是至少100℃。这种类型的化合物是公知的并且也可购得。

合适的潜性固化剂的实例是二氰二胺,氰基胍,例如us4,859,761或ep-a-306451中描述的化合物,芳族胺,例如4,4-或3,3-二氨基二苯基砜,或胍,例如1-邻甲苯基双胍,或改性多胺,例如ancaminetm2014s(anchorchemicaluklimited,manchester)。

合适的潜性固化剂也是n-酰基咪唑,例如1-(2,4,6-三甲基苯甲酰基)-2-苯基咪唑或1-苯甲酰基-2-异丙基咪唑。此类化合物描述在例如us4,436,892、us4,587,311或jp专利743,212中。

另外合适的固化剂是如例如us3,678,007或us3,677,978中描述的咪唑的金属盐配合物,羧酸酰肼,例如己二酸二酰肼、间苯二甲酸二酰肼或邻氨基苯甲酸酰肼,三嗪衍生物,例如2-苯基-4,6-二氨基-s-三嗪(苯并胍胺)或2-月桂基-4,6-二氨基-s-三嗪(月桂胍胺),和三聚氰胺及其衍生物。后几种化合物描述在例如us3,030,247中。

作为合适的潜性固化剂,也描述了氰乙酰基化合物,例如在us4,283,520中,例如新戊二醇双(氰乙酸酯)、n-异丁基氰基乙酰胺、六亚甲基1,6-双(氰乙酸酯)或环己烷-1,4-二甲醇双(氰乙酸酯)。

合适的潜性固化剂还有n-氰基酰胺化合物,例如n,n-二氰基己二酰二胺。此类化合物描述在例如us4,529,821、us4,550,203和us4,618,712中。

另外合适的潜性固化剂是us4,694,096中描述的酰基硫代丙基酚和us3,386,955中公开的脲衍生物,例如甲苯-2,4-双(n,n-二甲基脲)。

优选的潜性固化剂是4,4-二氨基二苯基砜,尤其是二氰二胺。

上文提到的潜性固化剂可以以总胺组合物(组分b2)的最多30重量%的量存在。

辅助剂和添加剂c)

除组分a)和b)(载体材料和树脂组合物)外,该筋材还可包括附加添加剂;这些通常添加到树脂组合物b)中。例如,可以加入光稳定剂,例如位阻胺,或如例如ep669353中所述的其它辅助剂,其总量为0.05重量%至5重量%。可以添加总组合物的最多30重量%的量的填料和颜料,例如二氧化钛或有机染料。为了制造本发明的反应性组合物,另外可以加入添加剂,如流平剂,例如聚硅氧烷,增粘剂,例如基于丙烯酸酯的那些。此外,还可任选存在其它组分。另外使用的辅助剂和添加剂可以是链转移剂、增塑剂、稳定剂和/或抑制剂。此外,可以加入染料,填料,润湿、分散和流平助剂,增粘剂,紫外线稳定剂,消泡剂和流变添加剂。

此外,可以加入用于环氧基-胺反应的催化剂。合适的促进剂描述在:h.lee和k.neville,handbookofepoxyresins,mcgraw-hill,newyork,1967中。通常,促进剂以该配制剂总重量的不大于10%的量,优选5%或更小的量使用。

合适的促进剂的实例是有机酸,如水杨酸、二羟基苯甲酸、三羟基苯甲酸、甲基水杨酸、2-羟基-3-异丙基苯甲酸或羟基萘甲酸、乳酸和乙醇酸、叔胺如苄基二甲胺(bdma)、1,4-二氮杂双环[2.2.2]辛烷(dabco)、三乙胺、n,n'-二甲基哌嗪或氨基乙基哌嗪(aep),羟胺如二甲基氨基甲基苯酚、双(二甲基氨基甲基)苯酚、2,4,6-三(二甲基氨基甲基)苯酚(ancaminek54),脲(urons)如3-(4-氯苯基)-1,1-二甲基脲(灭草隆)、3-(3,4-二氯苯基)-1,1-二甲基脲(敌草隆)、3-苯基-1,1-二甲基脲(非草隆)、3-(3-氯-4-甲基苯基)-1,1-二甲基脲(绿麦隆),四烷基胍如n,n,n',n'-四甲基胍(tmg),咪唑和咪唑衍生物如1h-咪唑、1-甲基咪唑、2-甲基咪唑、1-苄基-2-甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑、2-苯基-4-甲基咪唑、1-乙烯基咪唑、1-(2-羟乙基)咪唑、1,2-二甲基咪唑、1-氰乙基咪唑及其合适的盐,酚和酚衍生物如叔丁基苯酚、壬基苯酚、双酚a或双酚f,和有机或无机盐和配合物,如甲基三苯基溴化鏻、硝酸钙(accelerator3130)或mg、ca、zn和sn的羧酸盐、磺酸盐、膦酸盐、硫酸盐、四氟硼酸盐或硝酸盐。

本发明还提供一种制造本发明的建筑砌块的方法,其中

将至少一个基本由下列成分形成的筋材置于模具中:

a)至少一种纤维载体

b)固化组合物作为基质材料,其由b1)至少一种环氧化合物和b2)至少一种二胺和/或多胺以0.8:1至2:1的环氧化合物b1)与二胺和/或多胺组分b2)的化学计量比形成,

c)任选地,其它辅助剂和添加剂,

加入加气混凝土砂浆并将模具的内容物固化。

在本发明的制造方法中,可以将所述至少一个筋材与其它筋材(如果存在)连接(紧固在一起)以形成加固网。本发明的制造方法优选使用多个筋材,它们例如用塑料夹连接在一起以形成加固网,然后将砂浆添加到模具中以制造具有增强的机械稳定性的建筑砌块。该模具可以由各种材料制成。该模具优选由钢制成。加气混凝土组合物及其固化条件是本领域技术人员已知的。

施加、固化、温度、方法、变体

优选通过拉挤成型法制造由纤维增强的聚合物构成的本发明的筋材。拉挤成型是纤维增强的热固性材料的连续制造法。该产品传统上是具有均匀横截面的连续型材。这涉及将增强材料,通常例如粗纱或切割垫(cutmats)、连续垫(continuousmats)、稀松织物(scrims)和非织造物独自或结合传送经过树脂浴,剥除过量树脂,借助适当的狭槽预成型该结构,然后将浸渍后的纤维拉过具有适当型材横截面的加热模具或以自由漂浮方式经过固化装置,和将它们固化。概括而言,拉挤成型系统由下列组件构成:

-增强纤维的退卷站

-浸渍装置

-预成型和进给单元

-模具(a)或固化装置(b)

-牵拉站

-精整。

该退卷站由用于粗纱的粗纱架和/或用于二维增强材料的适当退卷站构成。该浸渍装置可以是开放树脂浴或封闭多组件浸渍单元。该浸渍装置可以是可加热的和/或设计成具有循环单元。在纤维已被树脂体系浸渍后,将浸渍后的增强材料导过小孔,在此过程中剥除过量树脂,因此建立目标纤维体积含量。该狭槽的形状也连续生成近净形的预成型坯。由此界定的浸渍纤维预成型坯随后进入加热模具。拉过模具(a)使得拉挤型材获得其最终尺寸和形状。在这一成型过程中,该组件固化。用电或借助热油实现加热。该模具优选配有多个可独立控制的加热段。用于拉挤成型的工具通常为75厘米至1.50米长并可以是一件式或两件式的。牵拉站从各自的退卷站连续拉出增强材料,将增强纤维拉过浸渍单元,将浸渍后的纤维材料拉过小孔并将连续制成的预成型坯拉过成型模具,其中该树脂体系随后固化并最后从中排出成品型材。该工艺链中的最终单元是用于表面构型的加工站(例如铣床),接着锯切站,在此随后将拉挤型材切割成所需尺寸。

或者并且优选地,该筋材的表面构型可在浸渍步骤和剥除过量树脂之后和在该纤维/基质结构进入固化装置(b)之前。在这种情况下,在树脂剥除后为浸渍的复合纤维束提供以交叉或螺旋方式缠绕的卷绕线。在一些情况下,用砂处理表面。固化装置在这种情况下是炉,其中连续制成的树脂浸渍纤维结构以自由漂浮方式固化。可以借助热空气、红外辐射或微波加热实现该固化装置的加热或将热引入该材料中。这样的固化装置通常具有2至10米的长度,具有可独立控制的加热段。在100至300℃的温度下实施该固化;典型推进速率为0.5至5m/min。

在整个成型过程结束时(具有表面构型的条固化),也可任选进行表面涂布步骤。

具体实施方式

由蒸压加气混凝土(aac)制成的加筋建筑砌块的制造

阶段1:“温度因素对复合筋材性质的影响”

在玻璃纤维上由

b1)基于双酚a二缩水甘油醚的环氧化合物

b2)

1.对比例:

甲基四氢邻苯二甲酸酐,以2,6-双(1,1-二甲基乙基)-4-甲基苯酚作为催化剂和二乙二醇醚;3-氧杂-1,5-戊二醇作为增塑剂

2.本发明:

98重量份异佛尔酮二胺和2重量份2,2,4-三甲基己二胺/2,4,4-三甲基己二胺异构体混合物(tmd)的混合物,

以1.0:1.1的环氧化合物b1)与组分b2)的化学计量比形成固化组合物,它们在马弗炉中在210℃下放置12小时。在实验完成后进行目视检查。没有发现可见破坏,保持筋材性质(对于所有样品而言)。

阶段2:“用复合筋材加固蒸压加气混凝土”

根据阶段1形成的玻璃复合材料5mm筋材段和相应形成的玄武岩复合材料以加固网的形式用塑料夹紧固在一起并置于金属模具(尺寸-100х100х100)中,然后以d500的设计密度填充加气混凝土砂浆。

在凝固和强度增加后,将样品从模具中取出并根据下列方案在工业蒸压器中在190℃的温度和1.24mpa的压力下暴露在蒸压处理下:

40分钟-真空加工;

3小时–压力增大;

6小时–压力保持;

2小时–卸压。

在蒸压完成后,将样品从蒸压器中取出并检查压缩强度、湿含量和密度。

作为本发明的优点发现的结论:

对比例(玻璃复合材料和玄武岩复合材料)

暴露在高于100℃的温度下和水汽和碱性环境的影响对该涂料和复合筋材造成破坏。

本发明的实施例(玻璃复合材料和玄武岩复合材料)

根据本发明的实施例异佛尔酮二胺和2,2,4-三甲基己二胺/2,4,4-三甲基己二胺异构体混合物(tmd)的组合在这两种纤维上都极好地耐受高达190℃的工作温度。因此,通过施加具有由基于异佛尔酮二胺和2,2,4-三甲基己二胺/2,4,4-三甲基己二胺异构体混合物(tmd)的组合的胺固化剂(evonik制造的产品vestamin®r215)提供的改进的耐热性质的涂料,可以扩大该温度范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1