用于光学涂层的可空气氧化的防划痕防护层的制作方法

文档序号:2430582阅读:283来源:国知局

专利名称::用于光学涂层的可空气氧化的防划痕防护层的制作方法
技术领域
:本发明主要涉及在没有受热时能完全被氧化的外部划痕防护层。该外部防护层被应用到各种基板上的光学涂层的上部,并为下面的层提供增强的划痕防护。特别地,本发明涉及应用金属、金属化合物或者金属间化合物层作为光学涂层的外部划痕防护层。
背景技术
:低发射率的光学涂层或者含有红外反射金属的光学涂层可以沉积在透光基板上,以降低某些或者全部入射到基板上的红外辐射的透射。已发现减反射薄银涂层可以反射很大部分红外辐射,但允许可见光透过。这些优良的特性使得减反射薄银涂层被应用到各种应用中,如窗户玻璃,该涂层能改进窗户的隔热性能。美国专利No.4,749,397和No.4,995,895描述了低发射率银涂层。目前窗户市场上销售含有银的真空沉积低发射率涂层。美国专利No.4,995,895公开了使用可氧化金属作为霾减少顶部涂层,该顶部涂层对于防护可回火的低发射率涂层是有效的。该发明被定位为用于减少由暴露在高于60(TC的温度下所产生的霾的方法。金属、金属合金和金属氧化物涂层己经被应用于低发射率银涂层,以改进涂覆对象的性能。美国专利No.4,995,895描述了一种金属或者金属合金层,其被沉积作为应用到玻璃基板上的所有层的最外层。金属和金属合金层被氧化,并作为减反射涂层。美国专利No.4,749,397描述了一种方法,其沉积金属氧化物层作为减反射层。将银层夹在减反射层之间使透射最优化。遗憾的是,光学涂层经常在运输和操作时被划坏。金属薄膜层是被公认的易划坏层。由电介质层或者金属和电介质层组合而成的薄膜叠层也经常会遭到划坏。建筑玻璃上的溅射低发射率(也被称为"软"低发射率)涂层尤其易划伤。低发射率涂层的基板可以大到3乘4米,然而它们仍然必须用自动装置或者手动装置移动。从而,机械磨损所导致的损伤时常发生。针对这个问题,目前所用的大部分低发射率叠层在低发射率薄膜叠层内或上的均使用阻挡层。如果某些阻挡层形成外部层,则利用其硬度或降低的摩擦系数降低低发射率叠层的物理划痕损伤。目前,将纯金属用作可氧化的防腐蚀和划痕/5。金属层是公知的有效的阻挡层,因为其具有物理和化学防扩散的性能。如果该层是无孔洞的,扩散被物理阻挡。已将溅射碳防护层用于提供划痕防护,但是溅射碳典型地光吸收可见光波,并且其在高于40(TC的温度时由于氧化而被移除。由于玻璃基板的回火,在低发射率涂层受热后碳防护防划痕层将失效。可氧化金属氮化物已被用作防划痕防护层,且除了氮化硅和氮化铝外,也都是光吸收的。而光吸收的金属氮化物只在高温下氧化。采用硬质材料制备低发射率涂层的最外层是很实际的。氮化硅作为一种硬质材料常用于低发射率涂层中的最外层电介质层。如专利申请US2003/0235719A1所述,具有作为外部层的氮化硅的低发射率叠层优于具有氧化锡或氧化锌作为外部电介质的叠层。氮化硅也具有耐热的优点,并用于可回火低发射率涂层。氮化硅薄膜可能不符合化学计量Si3N4。这种用于低发射率叠层的外部电介质的薄膜材料可以由氮氧化硅组成。该层的化学定量关系相关于与氮气或者氧气的反应的程度,可以从亚化学计量到超化学计量变化。为了能使硅导电并适于溅射,铝还可以作为硅的掺杂成分,并且典型地与硅的质量分数比为1:10,然而铝的含量还可以更高。也可以使用诸如硼等的其它掺杂物。许多其他类型的薄膜光学叠层可以得益于这种划痕防护层,其包括但不限于金属反射涂层、具有不同于氮氧化硅或多数其它的光干涉类型设计的顶层的光学叠层。直到当涂层被加热和回火后,在低发射率光学涂层中的划痕可能才会变得明显,加热和回火可以导致划痕的产生和扩大。因此,在本领域内存在对防护层的需求,该层在室温能完全被氧化,并且具有足够的硬度和强度以降低划伤,同时允许可见光透过。本发明的各种不同实施例的目的是实现本领域前面所述的需求,和/或其它需求,而一旦给出以下公开说明,对于本领域技术人员来说,这些需求将变得明显。
发明内容本发明的主要目的是通过设置层可氧化防护层以克服上述现有技术的缺陷,该层具有足够的硬度和强度以降低划伤,同时能i上可见光透过。本发明的另一目的是制备一种防护层,其充分地减少划痕,而不不明显影响如透光和反光等光学特性。该防护层还必须容易与光学涂层工艺接合而很少有分裂,且应该不需耍暴露于热。本发明通过在与空气接触的表面制备厚度不大于刚好能使其在空气中完全氧化时的厚度的金属、金属合金、金属化合物或者金属间化合物层,,实现上述所有目的。该划痕防护层的厚度典型地为1到3纳米,其在产生氧化后没有光吸收。该层起初是在未氧化或未氮化的状态下被沉积的。在将金属、金属化合物或者金属间化合物层暴露在空气中数天之后,其完全氧化。如果是暴露在等离子体、放电或者含有如氧气或氮气等的反应气体的离子束下时,划痕防护层可以有2到5纳米的厚度。以F参考附图详细描述本发明的更多的特征和优点以及本发明的优选实施例的结构和构成。本发明的优选实施例将在以下参考附图具体描述。这些附图旨在说明本发明的各种实施例,而并不是旨在以任何方式限制本发明。图1示出具有可氧化的金属顶部涂层的低发射率结构的例子;图2示出由划痕测试所得的A(delta)霾;图3示出具有1-3纳米厚的Zr顶部涂层的低发射率基板结构的透射比随时间的变化。具体实施方法本发明提供一种作为光学涂层上的外部层的在空气中可氧化的防划痕防护层。在应用防护层之前,光学涂层表面的最外层最好包括氮化硅、金属、MgF2、Ti02、Si02、A1203、YO禾口/或SnZnOx。本发明包括在光学叠层的空气接触面上生成的金属、金属合金、金属化合物或者金属间化合物层,其厚度不大于其在室温下的空气中可以完全氧化的厚度。该金属、金属合金、金属化合物或者金属间化合物层的厚度是这样的,使得当其被移出真空系统并暴露在空气屮数天后,金属发生完全氧化。该防护层的厚度最好在1到3纳米之间。如果暴露于等离子体、放电或者包括如氧气或氮气等的反应气体的离子朿,划痕防护层可以有2到5纳米的厚度。由于如本技术所公知的那样,非常薄的金属和金属氧化物层可能是不连续的(美国专利No.4,749,397),所以厚度为1到5纳米并能提供划痕防护的涂层是令人不可思议的。如果金属的厚度是等于或者小于3纳米时,大部分金属、金属合金、金属化合物或者金属间化合物层将会在室温下的空气中被完全氧化。当金属是锆时,其优选厚度为2nm。本发明的空气氧化层必须满足两个要求它们必须提供划痕防护并在一定的时间间隔内氧化成基本透明状态。这个可接受的时间间隔大约是从涂层制备到光学涂层组装成其最终应用的时间。在低发射率涂层涂覆玻璃基板的情况下,其氧化必须在涂层被密封在绝缘玻璃基板单元中之前发生。在250小时以内、优选在25小时内、最好在l小时以内,金属、金属合金、金属化合物或者金属间化合物层氧化为一个基本上透明的状态。用于本发明的金属、金属合金、金属化合物或者金属间化合物的每一种将有其各自的最大厚度,以满足氧化时间间隔的要求。而其他金属、金属化合物和金属间化合物层采用常规的实验就能容易地确定其最佳厚度。如果氧化是在通过暴露于氧等离子体或氧离子束实现时,可以使用较厚的金属、金属合金、金属化合物和金属间化合物层。对于有些金属、金属合金、金属化合物和金属间化合物来说,其在真空中氧化的附加厚度可以改进其涂层提供的防划痕性能。这可以是最外层电介质是软材料而不是氮化硅时的情况。典型的备选可氧化金属成分是Ti、Zr、Al、Cr、Fe、Nb、Mo、Hf、Ta、Si和W。如前面所述,这些金属的合金、化合物、混合物或者金属间化合物也可成为备选成分。Zr是优选金属。适用于可氧化金属防划痕层的金属和金属合金一般具有低于-150千焦/摩尔的金属的氧化生成热和高于1600摄氏度的熔点。优选具有低于-200千焦/摩尔的氧化生成热的金属和金属合金更好。这些金属一般易氧化并生成防划痕氧化物。具有660摄氏度熔点的铝是其中的一个例外。任何合适的方法或者方法的组合都可以被用来沉积划痕防护层和光学叠层屮的层。这些方法包括但不限制于蒸镀(热或电子束)、真空蒸镀、化学气相沉积、等离子体辅助化学气相沉积、真空镀膜和非活性金属溅射。不同的层可以采用不同的技术沉积。本发明的金属层优选采用真空镀膜、特别是惰性气氛中金属溅射沉积。根据本发明的金属化合物防护层可以是在未氧化或部分氧化或氮化的状态沉积在任何合适的光学叠层表面,以改进其防划痕性能。优选地,光学叠层的最外层包括氮化硅、金属、MgF2、Ti02、Si02、A1203、YO、和/或SnZnOx。更优地,光学叠层的最外层包括氮化硅或者氮氧化硅。如美国专利No.4,995,895和No.4,749,397所述,光学叠层中层的各种组合是公知的。这种光学叠层最好包括至少一个银层、至少一个在溅射过程中防护银层的阻挡层以及在热处理过程中防护银层的至少一个可选的阻滞层、阻挡层或者牺牲层。本领域的技术人员可以理解的是,光学叠层中的层可以排列和改变,以改进或调整光学叠层的性能。上述光学叠层中的层构成了日光控制涂层(例如低-E或低发射率涂层),其可以配置在玻璃基板上。叠层可以在基板上重复一次或多次。也可以提供其他所述层之上或之下的层。因此,当该层状系统或涂层处于基板的"上面"或者被基板"支撑"(直接或间接)时,其他层可以设置在它们之间。另外,某些实施例中可能取消某些涂层,而其他的实施例可以增加其他的涂层,但不偏离本发明的整体精神。依照本发明的防护层提供改进的硬度和密度。本发明包括但不限制于以下一些优点1.氧化过程中,金属都会有体膨胀。这种体膨胀可以增加薄膜层的压应力和附加密度。鉴于层的厚度非常小,该层对划痕减少的影响是很大的。2.源于金属薄膜氧化作用后的氧化物层的密度往往比如发生在反应溅射法等过程中的直接以氧化物沉积生成的氧化物层的密度要大。在反应溅射法中,靶表面完全或者部分被氧化。某些或者全部的溅射原子是以金属氧化物分子的形式存在。当这些分子打到基表面吋,其一般具有小于金属原子的吸附原子迁移率。这种较低迁移率导致在沉积涂层内的较低的堆积密度。3.对于给定的太阳得热系数,大部分低发射率产品被设计成最大的可见光透射比。期望低发射率叠ii中的任意层具有尽可能小的光吸收。当完成本发明金属层的氧化过程吋,增加很少或者不增加光吸收。4.氧化后,该划痕防护层一般具有3纳米或更小的厚度。由于其小的厚度,它的光学干涉效应很小;因此该层不会对整个低发射率叠层的光学特性产生很大的影响。5.由于该层在空气中完全氧化,对该层的加热具有很小的化学或光学影响。对于可回火的低发射率涂层来说,在回火处理过程中,期望其具有低的色移。该层不会产生对回火色移的可检测的影响。6.金属层一般比氧化物层容易溅射得多。玻璃涂层需要溅射靶的连续运行一到四周的时间。当溅射运行如此长时间时,靶弧光放电和残留物落在基板上成为问题。而用金属溅射法引起的这些问题远比反应溅射法的要小。7.金属溅射法允许采用不太昂贵和复杂的设备沉积。本发明的薄层可以采用低功率直流平面磁控法沉积,而反应溅射法常需要采用交流或脉冲直流电源驱动的双旋转阴极。如在本说明书中所使用的那样,说法"沉积到上面"或者"沉积上"表示将物质直接或间接涂覆到所提及的层上。而其他层可涂覆在该物质和所提及的层之间。根据本发明不同的实施例的涂层制品可以应用到建筑窗户(如中空玻璃)、汽车窗户或者其他合适的应用环境。在本发明的不同实施例中,涂层制品可以或者可以不被热处理。某些术语在玻璃涂层技术中所盛行使用,特别是当定义涂层玻璃的性能和日光管理特性时。这些术语在这里根据其公知的含义来使用。举例来说,此处所用反射的可见光波的光密度,即"反射率",由它的百分比来定义,并且被称为RxY或Rx(即RY值指适光反射,而TY指适光透射),其中的"X"是玻璃面"G"或者膜面"F"。"玻璃面"(即"G")意思是,从玻璃基板的角度来看,与涂层所处的位置是相对的,而"膜面"(即"F")的意思是,从玻璃基板面的角度来看,其上为涂层。使用CIELAB1976a*,M坐标和比例来测量和记录彩色特性(例如,CIE1976a*b,,III.CIE-C2级观察工具),其中y是(Cm1976)光亮度单元a^是(CIE1976)红-绿单元1*是(CIE1976)黄-绿单元。术语"发射率"(或发射)和"透射比"在本领域中很好理解,并且在此处根据其公知的含义使用。因此,举例来说,此处的名词"透射比"的意思是日光的透射率,其是由可见光透射比(Tvis的TY),红外能透射比(TnO和紫外光透射比(Tuv)组成。总太阳能透射比(TS或t;。&)可以定性为这些值的加权平均。对于这些透射比来说,可见光透射比可由作建筑用途的标准光源C号2度技术标准来定性;而可见光透射比可由作汽车用途的III号A2度技术标准(这些技术可参照如标准ASTME-308-95)来定义。为发射率的目的,使用了特定的红外范围(即2,500-40,000nm)。用于计算/测量任何禾P/或所有上述参数的各种标准可以在上述所要求优先权的临时申请中可以看到。"霾"一词的定义如下。在许多方向上光的散射造成的对比度的降低。术语"霾"在此处是指根据ASTMD1003号标准定义的,其将霾定义为透射光线中偏离入射光束平均大于2.5度的透射光的百分数。此处的"霾"有可以通过毕克-加特纳霾度仪来测量(这里所有霾值都是由这种霾度仪来测量,并设定为散射光的百分数)。"发射率"(或发射度)(E)是一个量度或在给定波长的吸收和反射特性。它通常表示为以下公式E4-反射率膜。用于建筑用途时,发射率值在所谓的"中间范围"里变得非常重要,其有吋也被称为红外光谱的"远端范围",即约2,500-40,000nm,例如,参照下文,如由劳伦斯,伯克利实验室的WINDOW4.1程序,LBL-35298(1994年)所规定。因此,此处所用的术语"发射率",用于指在ASTM标准E1585-93所规定的红外范围内所测量的发射率值,该标准的标题为"使用辐射测量方法测量和计算建筑平板玻璃产品的发射率的标准测试方法"。该标准以及其规定在这里并入作为参考。在该标准里,发射率被记录为半球发射率(Eh)和正常发射率(En)。用于测量这种发射率值的实际的数据累积是常规的,可以使用如具有"VW"附件的贝克曼模型4260分光光度计(贝克曼科学研究股份有限公司)来实施。该分光光度计可以测量反射率与波长之间的关系,由此,利用上述ASTM标准1585-93计算出发射率。此处所用的"机械耐久性"是由如下测试定义的。用一个研磨垫在平面基板的所涂覆表面来回滑动。一种3M型ScotchBrite垫#7448可用于该测试。该7448型研磨垫采用"超细粉级"的碳化硅作为磨料。垫的尺寸为2"乘4"。一种埃利克森刷测试仪可用作使磨料在样品表面来回移动的机械装置。研磨垫夹具可以是序号为0513.01.32的埃利克森部件,其以135克的质量加载研磨垫。每次测试都使用一个新的研磨垫。其测试时间为200行程(stroke)。划痕所造成损伤可从三个方面来衡量发射率的变化、A霾值和膜侧反射的AE。这项测试可以结合浸泡测试或热处理以使划痕更为明显。样品加载135克载荷时,使用200干行程(drystroke)后能产生很好的效果。如果有必要,该行程数可减少,或者可使用较不强烈的磨料。基于样品之间所需的分辨率水平,负载和/或行程数可被调整,这是本测试法的优点之一。可以实施更强烈的测试以得到更多的等级。测试的可重复性可以通过在一特定时段内测试多个相同薄膜的样品来检査。此处所用的术语"热处理"、"经过热处理"和"热处理中"表示加热制品,使其达到一个足以使包括玻璃的制品能够热回火、弯曲或者热强化的温度,例如,加热所涂覆制品到一个至少约iioo华氏度的温度(即在温度约550摄氏度至700摄氏度之间)达到足够的时间,使其能回火、热强化或者弯曲。术语表AgTi02NiCrOxNiCrSiAlNxSiAlO美Zr在上沉积光学涂层否则下面所列术语意指以下说明中所述的含义,银合金或含有氧化镍和氧化铬的混合物。其氧化态可能是从化学计量到亚镍铬金属合金或含有镍反应溅射法制备的氮化硅铝,其可能包括氮氧化硅。溅射靶中Al是Si的质量分数典型地为10%,然而该百分比可以变化。反应溅射法制备的氮氧化硅铝锆在上述所涂覆的层的顶部上直接或间接涂覆,如果是间接涂覆,可以插入一个或多个层涂覆在基板上的一个或多个涂层,其组合影响基台匕板的光学性會低发射率叠层透明基板,其具有有由一个或多个层组成的低热发射率光学涂层阻挡层在制备过程中沉积,用来防护另一层的层,可以为提供上部层的更好的附着,在制备工艺完成后共溅射可以或可以不存在一定厚度的材料,其具有一定的功能和化学成分,其每一面通过界面与另一厚度的材料粘合,后者具有不同的功能和/或化学成分,由于制备过程中的化学反应,所沉积层在制备之后可能或者可能不存在由两种或更多靶材料组成的两个或更多独立的溅射靶同时溅射到一个基板表面。所得沉积涂层.以由不同材料的反应.「"一/t反应的两种靶材料的混合物或者两者兼有所组成。金属间化合物合金系统里的特定相,其是由两种或更多的金属元素按照特殊化学计量配比化合而成。其金属元素是通过电子式或者填隙式结合,而不是典型的标准合金那样以固溶体的形式存在。金属间化合物常有与其元素组成物不同的性质,特别是增加了其硬度或脆度。硬度的增基本透射数标准金属或金属合金来说有出色的防划痕'性夂率不高于2%,优选不高于厶匕目巨可见光波的光'i%。实例以下实例是用来说明而不是限制本发明的。实例i图i所示的一种低发射率结构被溅射了一层氮化硅最外层电介质。作为真空镀膜中的最后涂覆步骤,将2nm厚的Zr层沉积在氮化硅上。Zr层在空气中氧化一周以上的时间,则低发射率结构的透射比达到无顶部涂层的低发射率结构的0.5%以内的水平。实例2如图1所示的低发射率结构被溅射了一层氮化硅最外层电介质。作为真空镀膜中的最后涂覆步骤,将2.5nm厚的Zr层沉积在氮化硅上。在真空镀膜设备中将Zr层暴露在含氧等离子体中,以执行进一步的氧化过程。Zr层在空气中氧化一周以上的时间,则低发射率结构的透射比达到与无顶部涂层的低发射率结构的0.5%以内差别的水平。实验步骤涂层的制备一采用一个1米宽的具有Zr靶的双磁场靶溅射涂覆样品。并由HuttingerBIG100提供交流电功率。样品在以下三种不同的气氛中溅射1.仅仅采用氩气气氛以沉积金属层。2.添加少量(10sccm)02以制成掺氧锆层。该层基本上仍然是金属层。该材料由ZrOx定义。3.添加少量(10sccm)N2以制成掺氮锆层。该层基本上仍然是金属层。该材料由ZrNx定义。i层的最夕:层电介质是氮氧化硅。该^Zr层也沉^只i5^低发射率涂层上,其没有作为最外层的氮化硅层。顶部涂层一该层是lnm、2nm、3nm厚的Zr层。氧化一采用两种氧化方法丄二室温下暴露于环境空气中。L在真空中暴露在氧离子束或等离子体下。其使用了Veeco34厘米线性阳极层离子源实施照射。该离子源可以以高电流(扩散的)或由高电压(准直的)模式操作。其操作条件在以下表格中示出。表l<table>tableseeoriginaldocumentpage15</column></row><table>划痕测试一采用ScotchBrite划痕测试法进行划痕测试。样品完成涂覆后立即进行划痕测试,并在经过24个小时后进行划痕测试。以确定最少量的氧化和假定氧化近似完全后的划痕防护性能。ScotchBrite划痕测试说明研磨垫在平面基板的所涂覆表面来回滑动,以测试薄膜涂覆表面的防划痕性能。使用3MScotchBrite//7448型垫实施本项测试。该7448型垫采用"超细粉级"碳化硅作为磨料。该垫尺寸为2"乘4"。埃利克森刷测试仪用作使磨料在样品表面来回移动的机械装置。研磨垫夹具是埃利克森部件第0513.01.32号,其以135克的质量加载研磨垫。每个测试都使用一个新的研磨垫。测试持续时间为200行程。划痕所造成的损伤由两个途径来衡量△(delta)霾和膜侧反射的AE。通过薄膜划痕前的霾值减去薄膜划痕后的霾值来量度△霾。AE(色彩的改变量)的测量是由通过测量完整无损和划痕薄膜的膜侧反射(Rf)实现的。在划痕前后色彩坐标里的A或不同、L*、a*和b*,代入下列公式来计算划痕导致的AE:△E=(AL*2+Aa*2+Ab*2)'/2方程1在回火前后测量样本的△霾和AE。回火放大了划痕的尺寸和形貌,使得划痕的程度更明显和可测量化。光学测量一每间隔大约一小时测量TY,T色,RfY,Rf色,RgY和Rg色,以此追踪空气氧化样品在氧化进程中的光学性能。反射的可见波长的光的密度,即"反射率",由其百分比来定义,并且被记为RxY或Rx(即RY值指适光反射,而TY指适光透射),其中"X"是玻璃面的"g"或者膜面的"f"。"玻璃面"(即"g")表示,从与涂层所处的位置相反的玻璃基板的侧来看,而"薄膜面"(即"r)表示,从其上为涂层的玻璃基板面的侧来看。划痕测试结果-MM—如果不考虑涂层的寿命,所有样品表明具有Zr顶部涂层的极大改进的防划痕性能。然而在老化24小时后,防划痕性能发生了最大程度改进。可以相信的是,大多数锆金属层必须被氧化才能实现其完全的划痕防护的潜力。所有样品的A霾值的结果显示在图2中。光学结果一不同厚度的金属顶部涂层显示出不同的完全氧化的进展程度(图4)。一纳米厚的层的透射水平很容易达到与初始的无涂层基板相似的低发射率值。本试验中基板的发射率值为大约75.6%。一纳米的样品显示出比更厚的Zr层差的防划痕性能。在120小吋后,两纳米的锆样品的透射比比初始的透射比低大约0.5%。期望它们能达到一个可接受的氧化水平,从而满足透射要求。在真空下氧化使该层很容易地达到透射要求。在可接受的时间限度内,三纳米的空气氧化样品看来是不能达到透射要求的。真空中氧化3nm厚的锆层能提高3个百分点左右的透射比,但仍不足以让该层满足需求。实例3下表中示出了在有无顶部涂层的情况下低发射率叠层的划痕数据。该实例中的ZrSi顶部涂层是由双磁场溅射成的共溅射层,所述双磁场一侧的磁控管设置了一个Zr粑,而另-一侧则设置了一个Sil0wt%Al耙。该共溅射过程是在氩气气氛下完成的。两个靶上的溅射功率相等。所生成的顶部涂层大约3nm厚。划痕测试是进行200行程Scotch-Brite机械耐久忭测试。在这种情况下,由于所有样品上的划痕损伤太小而不能釆用霾测量法来检测。因此直接通过计算涂层表面的划痕数量来量化。该计算通过计算所有的Scotch-Brite垫轨迹方向上可视划痕数量来执行。计算分为三个区域一个是划痕样品的中心区域,另外两个分别是划痕样品的中心两侧1.5英尺的区域。划痕样品是4〃x6"。本项测试中,Zr和ZrSi顶部涂层都提供划痕防护。表2<table>tableseeoriginaldocumentpage18</column></row><table>权利要求1、一种具有改进的划痕防护的制品,其包括基板,光学涂层,其包括在所述基板上的一或多层,和最外层划痕防护层,其包括防护金属、合金、金属化合物或者金属间化合物层,其中所述最外层划痕防护层厚度为1到3nm。2、l要求1所述的制品,其中所述金属被完全氧化。3、l要求1所述的制品,其屮所述金属合金或者金属化合物的所述金属部分,逸铁、铝和硅所组成的组。、铁、钛、锆、铪、铌、钽、钼、4、根据权利要求3其中所述金属部分是锆,5、根据权利要求l所述的制品,其中所述金属是锆。6、根据权利要求l所述的制品,其中所述基板是透明基板。7、根据权利要求6所述的制品,其中所述透明基板是沉积有光学涂层的玻璃基板。8、根据权利要求7所述的制品,其中所述光学涂层包括一或多层的NiCrOx、Ag和SiAINx。9、根据权利要求8所述的制品,其中所述金属是锆。10、根据权利要求1所述的制品,其中所述最外层划痕防护层不:变所述制品在可见光波长或红外波长中的光谱反射系数和/或透射比。11、根据权利要求1所述的制品,其中所述最外层划痕防护层被沉积到SiAIOxNy层上。12、一种具有改进的划痕防护的制品,包括基板包括基板上一或多层的光学涂层,和最外层划痕防护层,其包括防护金属,其中所述最外层划痕防护层厚度为2到5nm。13、-一种用于改进制品上的光学涂层的划痕防护的方法,包括在制品上沉积包括一或多层的光学涂层,在所述光学涂层上沉积l一3nm的包括未被氧化的金属、金属合金、金属化合物或金属间化合物的层,以提供划痕防护层,以及氧化所述金属、金属合金、金属化合物或金属间化合物层。14、根据权利要求13所述的方法,其中所述金属合金或金属化合物的所述金属部分,选自由铬、铁、钛、锆、铪、铌、钽、钼、钨、铁镍、铝和硅所组成的组。15、根据权利要求14所述的方法,其中所述金属部分是锆。16、根据权利要求13所述的方法,其中所述基板是透明制品。17、根据权利要求13所述的方法,其中所述基板是玻璃。18、根据权利要求13所述的方法,其中所述光学涂层包括一或多层的NiCrOx、Ag和SiAINx。19、根据权利要求13所述的方法,其中通过将所述金属、金属合金、金属化合物或金属间化合物层暴露在空气中将其氧化。20、根据权利要求13所述的方法,其中将所述划痕防护层沉积到SiAIOxNy层上。21、根据权利要求13所述的方法,其中所述金属具有小于-150千卡/摩尔的氧化物形成热和高于1600摄氏度的熔点。22、根据权利要求13所述的方法,其中所述金属具有小于-200千卡/摩尔的氧化物形成热高于1600摄氏度的熔点。23、根据权利要求13所述的方法,其屮在沉积所述金属之后的250小时内,所述金属在环境空气屮被基本l:氧化到透明状态。24、根据权利要求23所述的方法,其中在沉积所述金属之后的25小吋内,所述金属在环境空气中被基本上氧化到透明状态。25、根据权利要求24所述的制品,其中在沉积所述金属之后的1小时内,所述金属在环境空气中被基本上氧化到透明状态。26、一种用于改进具有光学涂层的制品的划痕防护的方法,包括在制品上沉积包括一或多层的光学涂层,在所述的光学涂层上沉积2—5nm的包括未被氧化的金属、金属合金、金属化合物或金属间化合物的层,以提供划痕防护层,以及通过暴露在等离子体、放电或者含有反应气体的离子束中,将所述金属、金属合金、金属化合物或金属化合物层氧化27、根据权利要求26所述的方法,其中所述反应气体是氧气或风气全文摘要本发明提供一种划痕防护层,其包括沉积在空气接触表面上的金属、金属合金、金属化合物或者金属间化合物层。该划痕防护层一般具有从1到3nm的厚度,且在氧化后不会出现光吸收。该层初始沉积是在未被氧化或氮化的状态下进行的。金属、金属合金、金属化合物或者金属间化合物层的完全氧化是暴露在空气中数天内发生的。如果将该层暴露在等离子体、放电或者含有如氧气或氮气的反应气体的离子束下时,其可以具有2到5nm的厚度。文档编号B32B17/06GK101119941SQ200580046769公开日2008年2月6日申请日期2005年12月19日优先权日2004年12月17日发明者P·A·马施威茨申请人:Afg工业公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1