Al的制作方法

文档序号:2430575阅读:388来源:国知局
专利名称:Al的制作方法
技术领域
本发明涉及一种具有耐磨涂层的切板或具有这种耐磨涂层的切削工具。
对于目前的切削工具,都希望它具有长使用寿命和韧性。这些要求源于切削特别是坚硬和坚韧材料的需要,以及由于所期望的切削速度的增加。作为减磨涂层,特别是用于切削钢的涂层,已发现氧化铝层是非常适合的。然而,逐渐发现切板的韧性和它们对各类磨损的抵抗性不仅取决于所用减磨涂层的材料组成,而且取决于层序、特别取决于所用诸层的厚度以及其粘附性,或各个单独层的粘附性。
关于这一点,EP 134 8779 A1公开了例如包括氧化铝层的减磨涂层,所述氧化铝层嵌入在TiCN层之间。尽管整个结构的厚度不超过30μm,但进一步想象,氧化铝层是设置在下面的TiCN层厚的一至三倍,而顶部TiCN层是设置在下面的两层结合厚度的0.1至1.2倍。一般认为由于该层结构,可以获得良好的切削结果。
US 6,221,479 B1尝试通过改善基体的组成来改善切板的切削性能。
另一方面,DE 101 23 554 A1提出了一种在减磨涂层的外层中增加压缩张力或减少拉伸应力的方法使涂层经受辐射处理,其中例如将氧化锆颗粒、压力喷雾钢粉或烧结硬金属喷雾颗粒干喷到待处理的表面上。该方法导致表面变光滑,且在涂层中减少了内部拉伸应力或产生了压缩张力。
EP 0727509 B1公开了一种具有多层κ-Al2O3涂层的切板,所述涂层包括六到八个Al2O3层。在κ-Al2O3层下设置有作为所谓中间层的TiN或TiCN层。在每种情况下,κ-Al2O3层之间都具有由(Alx-Tiy)(OwC2Nu)层组成的改性层,其中x和y=2~4,用于改善κ-Al2O3层对放在下面的各κ-Al2O3层的附着。κ-Al2O3多层涂层设置在基础层如TiCN上面。
于此,本发明的目的是进一步分别改善相应的切板以及切削工具。
该目的通过根据权利要求1的切板或切削工具而解决根据本发明的切板或切削工具分别设置有在底部包括第一单独层或多层的减磨涂层,所述第一单独层或多层包括如下物质的至少一个层第四、第五或第六副族金属的氮化物、碳化物、碳氮化物、氧碳氮化物、硼氮化物、硼碳氮化物、硼碳氧氮化物、或那些化合物的组合。在其上面设置的是作为第二层的Al2O3多层。在该层之上设置有覆盖层,所述覆盖层由Ti、Zr或Hf的氮化物、碳化物、碳氧氮化物或碳氮化物、或这些层的组合组成,并且其厚度优选大于3μm。已发现该组合在切削过程中具有优良的效果。特别是对于切削钢以及断续切削时更是如此。Al2O3层本身是绝热的并减少了气蚀磨损,特别是由于内部张力的同时减少,使得多层涂层的布置是有利的。这在不断续切削中是有利的。大尺寸(generously dimensioned)的覆盖层同时提供了高的耐磨损性,所述覆盖层由Ti、Zr或Hf的氮化物、碳化物、碳氧氮化物或碳氮化物或这些层的组合的至少两个涂层组成。该覆盖层优选为MT-TiCN层,并且基本比其下面的任何Al2O3层厚。优选其厚度是单独Al2O3层厚度的1.5至2倍。
单独Al2O3层的厚度为0.5μm至4μm,优选为2μm。它们通过CVD方法沉积。中间层优选为TiCN-TiCNO结合层,其中为了改善TiCN-TiCNO层和Al2O3层之间的连接,可以设置TiAlCNO中间锚定层。这些层优选包括TiCN和Al2TiO5的相混合物(假板钛矿(Pseudo-Brookit)结构)。通过将铝含量限制到至多4原子%,而获得特别良好的连接。已经在该连接中形成的特别是Al2O3-TiCN-TiCNO-TiAlCNO-Al2O3的层布置是合适的。TiCN层可以直接施加到Al2O3层上。不需要中间锚定层。
由于该特殊的中间层布置,特别是由于使用了TiCN层,获得了总体非常低的单独层张力、在断续切削期间低的磨损以及高的抗磨损性。例如,TiNCN中间层的单独层张力仅为100至150MPa。例如与单独层张力为200至300MPa的TiN中间层相比,这是相当大的改善,并且总体减少了多层涂层的单独层张力。由于可能平稳过渡到氧化层(TiCNO)和另外可能的含铝层(TiAlCNO),基本上改善了在多层构造中Al2O3层的连接。
中间层的层厚度优选在0.2μm和2μm之间。优选厚度为1.0μm。中间连接层的厚度为0.1至0.7μm,优选0.5μm。以此方式得到的Al2O3多层涂层构造、特别是连同超过3μm的覆盖层,为切板提供了非常良好的耐磨性。该Al2O3多层涂层优选施加到基础层(TiCN层)上。为了连接,可以再次使用TiCNO层和TiAlCNO锚定层,其铝含量优选在4原子%以下。例如,锚定层的厚度为仅仅0.5μm。优选地,基础层上接着具有多层构造,其层结构从外向内为如下6)HT-TiAlCNO5)HT-TiCNO4)HT-Ti(CxNy),(富含碳),X>0.53)HT-Ti(CxNy),(富含氮),Y>0.52)MT-TiCN1)MT-TiN这里“HT”是指高温CVD方法(超过950℃的加工温度),MT是指中温CVD方法(低于950℃加工温度)。
整个层布置可以由CVD方法生产。该层布置的特殊特征在于,基本上降低了中间层以及Al2O3和在该第一Al2O3层后的覆盖层的单独应力。这解释了该多层涂层的单独应力的总和之低。这里的单独应力通常是正的,那就是说,它们为拉伸应力。在一个特别优选的实施方案中,那些应力至少在表面区域上转变为压缩应力。为此目的,将附加层例如TiN外层施加到外部TiCN层上,然后再次除去该附加层的至少几个部分。该附加层的除去可以通过研磨法例如湿喷射法完成。这在覆盖层中、至少在其外部区域上产生了高压缩应力和表面区域硬度的增加,所述表面区域硬度的增加大大减少了层的断裂敏感性,特别是脊的断裂敏感性。
除了单独应力的层依赖性,各层还依据它们在整个层组织体系中的位置而具有不同的优先取向。
此外,本发明实施方案的有利特征从下面的附图或说明中将变得显而易见。附图示出了本发明的具体实施方案。


图1示意性地显示了改善切板的本发明涂层的层布置;和图2显示了在除去外部TiN层前后,外层结构(最后的Al2O3层和覆盖层)中的应力。
图1显示了根据本发明的切板或切削工具的层布置。它包括在图1中标为衬底的基体1。在CVD方法中,由TiN组成的基础层2施加到衬底上。该层的厚度大约为1μm,优选更少,例如0.5μm。由几个TiCN部分层3a、3b、3c(实际是Ti(CxNy),部分层)和TiCNO层3d组成的第一层3沉积在基础层2上。第一部分层3a在例如小于950℃的相对中等温度下施加。因此该部分层3a也称为MT-TiCN层,并具有列状结构。接着是富含氮的多晶TiCN部分层3b(Ti(CxNy)1,Y>0.5)。该层可以有效作为扩散阻挡层。然后接着是另一种富含碳的TiCN部分层3c(Ti(CxNy)1,X>0.5),所述层3c具有部分为针状的晶体结构并同样在较高温度下施加。在同样具有针状晶体结构的TiCNO层3d上,可以沉积附加层,例如TiAlCNO层15,为随后Al2O3层提供改善的连接。该附加层的厚度可以为0.2μm至1.0μm。第一层3总体上具有列状结构,其中单独列的平均宽度为0.5至0.3μm(在涂覆实验期间测量,层厚度为10μm)。因此,该层具有五列。所述列垂直于单独层而延伸,即它们沿图1水平取向。层1 5具有针状或片状结构,用于改善Al2O3层的机械连接。上述的复杂层构造,限制了在硬质金属外的化合物扩散入层中,并改善了减磨涂层的层连接。
Al2O3多层4施加到该TiCN层上,所述Al2O3多层4的总厚度优选在8μm至10μm之间。它具有至少两个、然而优选几个(优选不超过五个)单独层。其中包括有Al2O3层5、6、7,其厚度分别为约2μm。例如,该Al2O3层为κ-Al2O3层。这样通过Al2O3层提供了良好的绝热,以及在对钢的机械加工方面有利的良好热负荷承载能力。然而,该Al2O3层也可以为α-Al2O3层。这些层具有较高的导热性并且在高温下同样稳定。它们在铸铁加工方面可以提供更好的结果。也可以是α-Al2O3层和κ-Al2O3层的结合。例如,可以交替地设置一个或几个α-Al2O3层和一个或几个κ-Al2O3层。也可以将一个或几个κ-Al2O3层沉积在一个或几个α-Al2O3层上。在这种情况下,该κ-Al2O3层形成了热保护α-Al2O3层的隔热层。
中间层8、9形成在Al2O3层5、6、7之间。它们各自至少由TiCN层11、12和TiCNO层11a、12a组成。此外,它们可以包含TiAlCNO层13、14。中间层8、9的总体厚度优选在0.5和1.5μm之间。TiCN层11、12连同TiCNO层11a、12a各自具有大约0.7μm的厚度,而设置在其上面的TiAlCNO中间锚定层13、14各自具有0.5μm的厚度。中间锚定层13、14连同设置在下面的TiCNO层11a、12a用于将Al2O3层6、7附着至设置在其下的TiCN层11、12上。
在Al2O3层5和第一层3之间,也可以具有TiAlCNO层,所述TiAlCNO层厚度为0.5μm,形成了锚定层15。
整个Al2O3多层涂层通过CVD方法沉积。由于多层布置具有低的单独应力,总体的层应力也低。
在Al2O3多层4上,覆盖层17可以通过适合的连接层16(例如TiCNO或TiAlCNO)沉积。覆盖层17包括具有不同C/N比和显微结构的不同TiCN层和TiN层。TiCN层主要由MT层组成,并且总体层厚为3μm至6μm。它具有列状结构,所述列状结构具有垂直于层平面取向的列。该列相对较宽。在6μm厚的层中,列宽度优选在0.4至0.5μm的范围。在MT-TiCN层下面是HT-TiCN层17a。总共的单独层应力如图2所示存在。Al2O3层7以及MT-TiCN层1 7受到低拉伸应力。
尽管这种构造的切板已具有优良的机械加工性能,特别是在使用断续切削的铸铁和钢的机械加工中,然而该切板的性能仍然可以通过施加TiN层18以及在后续处理中随后将它完全或部分除去(特别是机械方式)而改善。由此获得了如图2底部所示的应力曲线。MT-TiCN层在外部区域提供了高的压缩应力。根据用于除去层的机械过程,这些压缩应力可以扩展并直到Al2O3层上。在此优选实施方案中,压缩应力保留在MT-TiCN层中。引入的压缩张力优选在TiCN层内抵消,即该层在外部受到高压缩应力而在内部受到略微增加的拉伸应力。
例如出于切板的准确原因(true sake),仅仅通过局部除去TiN层18,可以生产双色性的切板。该TiN层具有不同于那些TiCN层的颜色。
在所述的实施方案中,可以产生出以下拉伸应力第一,MT层,层(3) +612MPa第二,MT层,覆盖层(17) +202MPa第一Al2O3层(5) +667MPaHT-TiCN中间层 +100----150MPa第三,Al2O3层(7)+343MPa。
由所示的层布置,可以生产出具有低的单独拉伸应力(例如,仅仅约200MPa)的多层Al2O3涂层。对于切削性能,认为低单独应力是有利的。同样,外部Al2O3层6、7比基础层3或内部Al2O3层5具有更低的单独应力。就考虑应力而言,这产生对于总体布置有利的状态,覆盖层以及多层Al2O3涂层中均具有低的单独应力。
为了进行切削试验,将具有单层Al2O3涂层和厚TiCN覆盖层的传统切板以及具有单层Al2O3涂层和薄TiN覆盖层的切板,与具有在此描述涂层结构的根据本发明的切板相比。与传统切板相比以及与单层氧化铝涂层和TiCN覆盖层相比,使用连续细切削来切削钢获得了大幅增加的使用寿命。从断续切削试验(锐铣(sharp milling)试验)中,根据本发明切板的单独应力条件的改善将变得更加清楚明显,其使用寿命的变化得以减少。
通过CVD方法生产的切板的层布置包括MT-TiCN的厚外覆盖层17和设置在下面的多层Al2O3层以及TiN和MT-TiCN的第一层。该多层Al2O3涂层由两个、三个或多个氧化铝层组成,在它们之间布置有TiCN层和可能用于改善连接的TiCNO和TiAlCNO层。这种总体构造具有特别良好的机械加工性能。
权利要求
1.一种用于切削工具的切板或切削工具,其包括由以下组成的减磨涂层多层基础涂层(2,3),其至少包括第四和/或第五和/或第六副族金属的氮化物、碳化物、碳氮化物和至少一种氧碳氮化物、硼氮化物、硼碳氮化物、硼碳氧氮化物或含铝的氧碳氮化物、或这些化合物的组合;Al2O3多层涂层(4),其由Al2O3层(5,6,7)和设置在该Al2O3层(5,6,7)之间的中间层(8,9)组成,所述中间层(8,9)各自包含至少一个TiCN层(11,12)和至少一个TiCNO层(11a,12a);和至少两层覆盖涂层(17),其由Ti、Zr或Hf的氮化物、碳化物、碳氧氮化物或碳氮化物或这些层的组合组成,并具有超过3μm的厚度。
2.根据权利要求1的切板或切削工具,其特征在于Al2O3层(5,6,7)的厚度为0.5μm至4μm,优选1μm至3μm。
3.根据权利要求1的切板或切削工具,其特征在于覆盖层(17)的厚度为Al2O3层(5,6,7)的1.5至2倍。
4.根据权利要求1的切板或切削工具,其特征在于Al2O3层(5,6,7)的厚度为2μm。
5.根据权利要求1的切板或切削工具,其特征在于中间层(8,9)的TiCN层(11,12)为多晶层。
6.根据权利要求1的切板或切削工具,其特征在于中间层(8,9)除了包括至少一个TiCN层(11,12)和至少一个TiCNO层(11a,12a)之外,还包括至少一个TiAlCNO中间锚定层(13,14),所述TiAlCNO中间锚定层(13,14)包含至多4%铝。
7.根据权利要求1的切板或切削工具,其特征在于中间层(8,9)的层厚度为0.2μm至2μm,优选0.5至1.5μm。
8.根据权利要求1的切板或切削工具,其特征在于中间层(8,9)的厚度为1μm。
9.根据权利要求6的切板或切削工具,其特征在于TiAlCNO中间锚定层(13,14)的厚度为0.1至0.7μm。
10.根据权利要求1的切板或切削工具,其特征在于Al2O3多层涂层(4)设置在TiAlCNO锚定层(15)上,所述TiAlCNO锚定层(15)包含至多4原子%铝。
11.根据权利要求10的切板或切削工具,其特征在于TiAlCNO锚定层(15)的厚度为0.2μm至1.0μm。
12.根据权利要求11的切板或切削工具,其特征在于TiAlCNO锚定层(15)的厚度为0.5μm。
13.根据权利要求1的切板或切削工具,其特征在于基础层(3)在TiAlCNO锚定层(15)的下面,基础层(3)部分地是列宽为0.1μm至0.5μm的五列MT-TiCN层(3)的形式。
14.根据权利要求1的切板或切削工具,其特征在于从衬底开始朝着Al2O3多层(4)的方向,基础层(3)包括以下布置1)MT-TiN层(2)2)MT-TiCN层(3a)3)HT-Ti(cxNy)层(3b)(富含氮),Y>0.54)HT-Ti(CxNy)层(3c)(富含碳),X>0.55)HT-TiCNO层(3d)6)HT-TiAlCNO。
15.根据权利要求1的切板或切削工具,其特征在于覆盖层(17)的厚度为至少5μm。
16.根据权利要求1的切板或切削工具,其特征在于覆盖层(17)具有列宽为0.4-0.5μm的列状结构。
17.根据权利要求1的切板或切削工具,其特征在于整个层结构由CVD方法形成。
18.根据权利要求1的切板或切削工具,其特征在于覆盖层(17)在其外部区域受到压缩应力。
19.根据权利要求1的切板或切削工具,其特征在于覆盖层(17)至少在几个部分中设置有外层(18),而且覆盖层(17)具有在施加外层后通过研磨方法将外层除去的区域。
20.根据权利要求1的切板或切削工具,其特征在于至少一个Al2O3层是κ-Al2O3层。
21.根据权利要求1的切板或切削工具,其特征在于至少一个Al2O3层是α-Al2O3层。
22.根据权利要求1的切板或切削工具,其特征在于覆盖层(17)受到的拉伸应力比基础层(3)中的单独拉伸应力至少低50%。
23.根据权利要求1的切板或切削工具,其特征在于外部Al2O3层(7)受到的单独拉伸应力比内部Al2O3层的单独拉伸应力至少低三分之一。
全文摘要
本发明提供了根据CVD方法生产的切板的层结构,其包含厚的TM-TiCN外部覆盖层和布置在该覆盖层下方的多层Al
文档编号B32B27/14GK101094934SQ200580045662
公开日2007年12月26日 申请日期2005年11月25日 优先权日2004年12月30日
发明者黑尔加·霍尔茨舒 申请人:瓦尔特公开股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1