有源矩阵基板、光闸基板、显示装置、有源矩阵基板的制造方法与流程

文档序号:16808127发布日期:2019-02-10 13:17阅读:195来源:国知局
有源矩阵基板、光闸基板、显示装置、有源矩阵基板的制造方法与流程

本发明涉及用于显示装置的有源矩阵基板。



背景技术:

液晶显示装置、有机el显示装置、mems(microelectromechanicalsystems:微电子机械系统)显示器等显示装置中使用排列有多个tft(薄膜晶体管)的有源矩阵基板。

现有技术文献

专利文献

专利文献1:日本公开特许公报“特开2011-43856号公报(2011年3月3日公开)”



技术实现要素:

发明要解决的技术问题

有源矩阵基板通常包含使形成在不同层的两个金属膜经由接触孔电连接的构造,但是会因在接触孔内产生的金属膜的断接(disconnection,连接断开)而产生两者间的连接不良。

本发明的目的之一在于提供难以在接触孔内产生金属膜的断接的有源矩阵基板。

用于解决技术问题的手段

本发明的一个方式的有源矩阵基板包括:基板;形成在比基板靠上层的位置的第一绝缘膜;形成在比第一绝缘膜靠上层的位置的第二绝缘膜;形成在比第二绝缘膜靠上层的位置的第三绝缘膜;形成在基板与第一绝缘膜之间的第一金属膜;在第二绝缘膜和第三绝缘膜之间的层形成的第二金属膜;一部分形成在比第三绝缘膜靠上层的位置的第三金属膜;在第二绝缘膜和第二金属膜之间的层形成的氧化物半导体膜;和将第一金属膜和第二金属膜电连接的接触孔,所述接触孔具有:形成在第一绝缘膜中的第一孔;形成在第二绝缘膜中的第二孔;和形成在第三绝缘膜中的第三孔,在所述第一孔的内侧,第一金属膜和第三金属膜接触,在所述第三孔的下方的区域,第二绝缘膜和氧化物半导体膜重叠,在所述第一绝缘膜的上方且第三孔的内侧或下方的区域,第二金属膜和第三金属膜接触。

发明效果

采用上述结构,能够实现难以在接触孔内产生导体膜的断接的有源矩阵基板。

附图说明

图1是表示实施方式1的显示装置的结构的示意图。

图2是表示实施方式1的光闸基板的结构的截面图。

图3是表示实施方式1的光闸基板的结构的电路图。

图4是表示实施方式1的有源矩阵基板的结构(tft部分)的截面图。

图5是表示实施方式1的有源矩阵基板的结构(接触孔部分)的截面图。

图6是表示实施方式1的有源矩阵基板的制造工序的流程图。

图7是表示实施方式1的有源矩阵基板的制造工序的截面图。

图8是表示实施方式2的有源矩阵基板的结构(接触孔部分)的截面图。

图9是表示实施方式3的有源矩阵基板的结构(接触孔部分)的截面图。

图10是表示实施方式4的有源矩阵基板的结构(接触孔部分)的截面图。

图11是表示实施方式5的显示装置的结构的示意图。

图12是表示实施方式5的有源矩阵基板的结构的截面图。

图13是表示实施方式5的有源矩阵基板的另一结构的截面图。

图14是表示参考方式的有源矩阵基板的结构的截面图。

具体实施方式

下面,基于图1~图14对本发明的实施方式进行说明。

〔实施方式1〕

(mems显示器)

如图1所示,实施方式1的mems显示器80包括:光闸装置60,其包括光闸基板20和与光闸基板20相对的对置基板30;和背光源bl,其经由对置基板30向光闸基板20照射led光或激光。

(光闸基板的结构)

如图2所示,光闸基板20包括:包含薄膜晶体管(tft)的有源矩阵基板17;和配置在该有源矩阵基板17的背光源bl侧且为mems(microelectromechanicalsystems:微电子机械系统)的多个光闸机构21。光闸机构21按每个像素设置,在光闸基板20上设置有使通过了光闸机构21的光通过的光透射路径。

如图1和图2所示,光闸机构21包括:具有开口28k的闸体28;与闸体28的一侧端连接的闸梁23x;与闸体28的另一侧端连接的闸梁23y;与闸梁23x相对的驱动梁22x;和与闸梁23y相对的驱动梁22y。

闸梁23x经由闸固定器23b与有源矩阵层的闸线连接,闸梁23y经由闸固定器23d与有源矩阵层的闸线连接,驱动梁22x经由驱动固定器22b与有源矩阵层的tft连接,驱动梁22y经由驱动固定器22d与有源矩阵层的另一tft连接,通过驱动梁22x、22y的电位控制,弹簧状的闸梁23x、23y发生变形,闸体28在与基板面平行的方向滑动。由此,可控制通过光闸机构和光透射路径而向观看者50出射的光的光量,显示图像。

图3是表示光闸基板20的一部分的结构的电路图。如图3所示,光闸基板包括:扫描线sc、数据线ds、驱动线ac、更新线ud、闸线st、预充电线pc和使能线en这7根信号线;晶体管tr1~tr5;数据保持电容c1以及主电容c2和从电容c3。

在图3的结构中,当选择扫描线sc时,决定光闸机构的开闭的数据电压经由数据线ds和晶体管tr3蓄积在数据保持电容c1中。该期间,使更新线ud为高电平(high),不论数据电压如何,都使晶体管tr4截止。

接着,当选择预充电线pc时,来自驱动线ac的电压经由晶体管tr1和tr2而蓄积在与主电容c2连接的驱动梁22x和与从电容c3连接的驱动梁22y中。

接着,当更新线ud从高电平(high)变化为低电平(low)时,根据数据电压来控制tr4。具体而言,在数据电压为高电平(high)的情况下,晶体管tr4导通,在数据电压为低电平(low)的情况下,晶体管tr4保持截止状态。

接着,当使能线en从高电平(high)变化为低电平(low)时,根据驱动梁22x的电压来控制晶体管tr5。具体而言,在数据电压为低电平(low)且驱动梁22x为高电平(high)时,晶体管tr5导通,当数据电压为高电平(high)且驱动梁22x为低电平(low)时,晶体管tr5截止。

这样,驱动梁22x和驱动梁22y彼此极性相反,极性与闸体28的极性相反的驱动梁(22x或22y)通过电的力将闸体28拉到跟前。为了防止带电,从闸线st向闸体28供给极性周期性地反转的信号。

如图1和图2所示,在光闸机构21中,当闸体28被拉到驱动梁22y侧时,如图1的(b)和图2的(a)所示的那样,光闸机构成为开(打开)状态,当闸体28被拉到驱动梁22x侧时,如图1的(c)和图2的(b)所示的那样,光闸机构成为闭(关闭)状态。

在图2的光闸装置中,在光闸基板20与背光源bl之间设置有通过在玻璃基板31上形成金属等遮光层32而形成的对置基板30,且形成有从在对置基板30的遮光层32形成的狭缝32s向与基板面垂直的方向去而到达光闸基板20的遮光膜2的狭缝2s的光透射路径lw,在如图2的(a)所示的那样闸体28的开口28k与光透射路径lw重叠(光闸机构为打开状态)时,背光源光通过光闸机构和光透射路径lw向观看者50侧出射,在如图3的(b)所示的那样闸体28的开口以外的部分与光透射路径lw重叠(光闸机构为关闭状态)时,背光源被遮断。

(有源矩阵基板的结构)

图4的(a)是实施方式1的有源矩阵基板的tft部分的截面图,图4的(b)是与图4的(a)对应的透视平面图。图5的(a)是实施方式1的有源矩阵基板的金属膜的接触部分的截面图,图5的(b)是与图5的(a)对应的透视平面图。

如图4和图5所示,有源矩阵基板17包括:玻璃基板1;形成在玻璃基板1的上层的遮光膜2;形成在遮光膜2的上层的无机膜3a;形成在无机膜3a的上层的第一金属膜5;形成在第一金属膜5的上层的第一绝缘膜4;形成在第一绝缘膜4的上层的无机膜3b;形成在无机膜3b的上层的第二绝缘膜6;形成在第二绝缘膜6的上层的氧化物半导体膜7;形成在氧化物半导体膜7的上层的第二金属膜9(9s、9d);形成在第二金属膜9的上层的钝化膜10a;形成在钝化膜10a的上层的第三绝缘膜11;形成在第三绝缘膜11的上层的钝化膜10b;形成在钝化膜10b的上层的第三金属膜12;和形成在第三金属膜12的上层的第四金属膜13。

遮光膜2是利用可涂敷的遮光性树脂(例如,旋涂玻璃材料)形成的,第一绝缘膜4和第三绝缘膜11是利用可涂敷的透光性树脂(例如,旋涂玻璃材料)形成的。第一绝缘膜4和第三绝缘膜11可以使用有机sog材料、可涂敷的感光性有机材料(例如,酚醛清漆树脂等绝缘材料与感光材料的混合物)。遮光膜2、第一绝缘膜4和第三绝缘膜11分别具有比第一金属膜5和第二金属膜9的厚度大的0.5~3μm的厚度,也作为平坦化膜发挥作用。

无机绝缘膜3a、3b是为了提高其下层膜和上层膜的密合性而设置的。其厚度为50~200nm左右,其材料例如使用sio2。

第二绝缘膜6例如为栅极绝缘膜,可通过利用pecvd法依次形成sinx膜和sio2膜而形成。不过,也可以为sio2膜或sinx膜的单层膜。

氧化物半导体膜7可通过利用溅射法使氧化物半导体成膜后对其进行图案化而形成。氧化物半导体与作为非晶半导体的非晶硅相比具有20~50倍的电子迁移率,可实现光闸基板的晶体管的高速开关,进而实现光闸机构的闸体28的高速开闭。

氧化物半导体膜7例如可以含有in、ga和zn中的至少1种金属元素。例如包含in-ga-zn-o系半导体(例如,铟镓锌氧化物)。in-ga-zn-o系半导体为in(铟)、ga(镓)、zn(锌)的三元系氧化物。in、ga和zn的比例(组成比)没有特别限定,例如可以为in:ga:zn=2:2:1、in:ga:zn=1:1:1、in:ga:zn=1:1:2等。

也可以是氧化物半导体膜7包含例如in-sn-zn-o系半导体(例如in2o3-sno2-zno;insnzno)。in-sn-zn-o系半导体为in(铟)、sn(锡)和zn(锌)的三元系氧化物。另外,沟道层可以包含:in-al-zn-o系半导体、in-al-sn-zn-o系半导体、zn-o系半导体、in-zn-o系半导体、zn-ti-o系半导体、cd-ge-o系半导体、cd-pb-o系半导体、cdo(氧化镉)、mg-zn-o系半导体、in-ga-sn-o系半导体、in-ga-o系半导体、zr-in-zn-o系半导体、hf-in-zn-o系半导体等。在此,al表示铝,ti表示钛,cd表示镉,ge表示锗,pb表示铅,mg表示镁,zr表示锆,hf表示铪。

钝化膜10a、10b可通过利用pecvd法依次形成sinx膜和sio2膜并进行图案化而形成。不过,也可以为sio2膜或sinx膜的单层膜。

第一金属膜和第二金属膜以及第四金属膜可通过利用溅射法将铝(al)膜、钨(w)膜、钼(mo)膜、钽(ta)膜、铬(cr)膜、钛(ti)膜、铜(cu)等金属或它们的合金形成为单层或多层的膜并进行图案化而形成。

第三金属膜12例如可以做成使用ito(indiumtinoxide:氧化铟锡)或izo(indiumzincumoxide:氧化铟锌)的透光性金属膜。

光闸机构可使用:n+非晶硅;铝(al)膜、钨(w)膜、钼(mo)膜、钽(ta)膜、铬(cr)膜、钛(ti)膜、铜(cu)等金属或它们的合金;和sinx,利用光刻工序和蚀刻工序等形成。

在图4中,由第一金属膜5、第二绝缘膜6、氧化物半导体膜7和第二金属膜9s、9d构成tft(例如,图2的晶体管tr4)。在设置在由钝化膜10a、第三绝缘膜11和钝化膜10b构成的层间绝缘膜f中的接触孔内,第二金属膜9d与第三金属膜12接触,两者电连接。此外,在第三金属膜12上,以与该第三金属膜12接触的方式形成有第四金属膜13。

在第一绝缘膜4中设置有与第一金属膜5重叠的孔(挖通部),在孔内形成有tft。

采用图4的结构,能够使在第一金属膜5与第二金属膜9s、9d之间产生的寄生电容减小。因为在第一金属膜5上存在具有平坦化功能的第一绝缘膜4,所以能够使第一金属膜5的膜厚增大,或使其边缘立起。

在图5中,在第三金属膜12的形成区域内形成有接触孔ch,在接触孔ch的底部,第一金属膜5与第三金属膜12接触而电连接,并且从接触孔ch的侧壁向其内侧突出的第二金属膜9与第三金属膜12接触而电连接,由此,第一金属膜5与第二金属膜9电连接。即,不使第一金属膜5与第二金属膜9直接接触,而使第一金属膜5与第二金属膜9经由第三金属膜12电连接。

接触孔ch具有:形成在第一绝缘膜4中的第一孔h1;形成在第二绝缘膜6中的第二孔h2;和形成在第三绝缘膜11中的第三孔h3。在图5的接触孔ch中,在俯视时,第二金属膜9以与氧化物半导体膜7重叠的方式设置,第三孔h3的开口k3位于氧化物半导体膜7的形成区域内,并且以与第二金属膜9重叠且与第一孔h1的开口k1整体重叠的方式设置。在俯视时,第二孔h2的开口k2位于第一孔h1的开口k1内,并且以与氧化物半导体膜7的开口kx匹配的方式设置。在俯视时,第三金属膜12以与第三孔h3的开口k3整体重叠的方式形成。

在接触孔ch中,在形成在第一孔h1内的第二孔h2的内侧,第一金属膜5和第三金属膜12接触而电连接,在第一绝缘膜4的上方(与第一绝缘膜4重叠的比第一绝缘膜4靠上侧的位置)且第三孔h3的下方(与第三孔h3重叠的比第三孔h3靠下侧的位置)的区域,第二金属膜9和第三金属膜12接触而电连接,结果,第一金属膜5和第二金属膜9电连接。

在此,在第三孔下方的第一孔h1的内侧形成有第二孔h2,因此,能够将在第三孔h3的下方的区域重叠的第二绝缘膜6和氧化物半导体膜7做成2级台阶形状。即,氧化物半导体膜7具有:在第三孔h3的下方且第一孔h1的内侧的区域形成的第一部分7f;和在第三孔h3的下方且第一绝缘膜4的上方的区域形成的第二部分7s,第一部分7f和第二部分7s分别与第三金属膜12接触,第二部分7s与第二金属膜9接触。

由此,在接触孔内,能够将第三金属膜12经过氧化物半导体膜7的呈2级台阶形状的部分(第一部分7f和第二部分7s)引导至接触孔ch的底部的第一金属膜5,与图6所示的方式相比,能够抑制接触孔ch内的第三金属膜12的断接。

氧化物半导体膜7中的形成在第三孔h3的下方的部分全都与第二绝缘膜6重叠。氧化物半导体膜7的第一部分7f和第二绝缘膜6以及第三金属膜12重叠,氧化物半导体膜7的第二部分7s和第二金属膜9以及第三金属膜12重叠,在接触孔ch内,第一金属膜5和第二金属膜9不接触。

在实施方式1中,在用包含通过接触孔ch的中心且与第一金属膜5的延伸方向垂直的线和基板法线的面将接触孔ch分成两个部分时,在两个部分分别设置有具有2级台阶形状(第一部分7f和第二部分7s)的氧化物半导体膜7,仅在一个部分进行第二金属膜9与第三金属膜12的连接。

(有源矩阵基板的制造方法)

图7是表示有源矩阵基板的制造工序的一部分工序的流程图。在步骤s1中,形成遮光膜2并对其进行图案化,在步骤s2中,形成第一金属膜5并对其进行图案化,在步骤s3中,形成第一绝缘膜4并对其进行图案化。在步骤s3中,如图8的(a)所示的那样,在第一绝缘膜4中形成图5的孔h1。在步骤s4中,形成第二绝缘膜6。

在步骤s5中,形成氧化物半导体膜7,在步骤s6中进行高温退火处理。高温退火处理例如在氮气气氛下、400~500℃、1~2小时的条件下进行。

在步骤s7中,对氧化物半导体膜7进行图案化。在步骤s7中,如图8的(b)所示的那样,形成氧化物半导体膜7的第一部分7f和第二部分7s以及开口kx。

在步骤s8中,形成第二金属膜9并对其进行图案化。在步骤s8中,将图5的第二金属膜9引出至第三孔h3的形成区域内。

在步骤s9中,形成钝化膜10a,在步骤s10中,形成第三绝缘膜11,在步骤s11中,形成钝化膜10b。

在步骤s12中,通过干式蚀刻对层间绝缘膜f(钝化膜10a、第三绝缘膜11和钝化膜10b)和第二绝缘膜6进行图案化。即,在第三绝缘膜11中形成第三孔h3,并且在第二绝缘膜6中形成第二孔h2,从而形成接触孔ch。

在此,利用了氧化物半导体难以被干式蚀刻的特性,氧化物半导体膜7的第一部分7f和第二部分7s作为形成接触孔时的蚀刻阻挡层发挥作用。通过步骤s12,如图8的(c)所示的那样,第二金属膜9、氧化物半导体膜7的第一部分7f和第二部分7s以及第一金属膜5在接触孔ch内露出。

在步骤s13中,在层间绝缘膜f上形成第三金属膜12。在接触孔ch内,第三金属膜12与第一金属膜5以及第二金属膜9接触,结果,第一金属膜5和第二金属膜9电连接。此时,第三金属膜12经过与第二金属膜9以及氧化物半导体膜7的第二部分7s和第一部分7f的接触,而与接触孔ch底部的第一金属膜5接触,因此,能够抑制接触孔ch内的第三金属膜12的断接。

通过以上步骤,能够形成图5的有源矩阵基板17。

〔实施方式2〕

图9的(a)是实施方式2的有源矩阵基板中的金属膜的接触部分的截面图,图9的(b)和图9的(c)是与图9的(a)对应的透视平面图。tft部分与实施方式1同样。

在实施方式2中,与实施方式1不同,在用包含通过接触孔ch的中心且与第一金属膜5的延伸方向垂直的线和基板法线的面g将接触孔ch分成两个部分时,仅在一个部分px设置有具有2级台阶形状(在第三孔h3的下方且第一孔h1的内侧的区域形成的第一部分7f;和在第三孔h3的下方且第一绝缘膜4的上方的区域形成的第二部分7s)的氧化物半导体膜7,在另一个部分py进行第二金属膜9与第三金属膜12的连接。

在图9中,在形成在第一孔h1内的第二孔h2的内侧,第一金属膜5和第三金属膜12接触而电连接,在将接触孔ch分成两个部分时的一个部分py,在第一绝缘膜4的上方且第三孔h3的下方的区域,第二金属膜9和第三金属膜12接触而电连接,结果,第一金属膜5和第二金属膜9电连接。

仅在将接触孔ch分成两个部分时的一个部分px,氧化物半导体膜7的第一部分7f和第二部分7s分别与第三金属膜12接触。即,能够将第三金属膜12经过氧化物半导体膜7的呈2级台阶形状的部分(第一部分7f和第二部分7s)引导至接触孔ch的底部的第一金属膜5,与图6所示的方式相比,能够抑制接触孔ch内的第三金属膜12的断接。

关于第一孔h1的开口k1和第二孔h2的开口k2的宽度(与第一金属膜5的延伸方向垂直的方向的长度),可以是如图9的(b)所示的那样,开口k2的宽度大于开口k1的宽度,也可以是如图9的(c)所示的那样,开口k1的宽度大于开口k2的宽度。

〔实施方式3〕

图10的(a)是实施方式3的有源矩阵基板中的金属膜的接触部分的截面图,图10的(b)和图10的(c)是与图10的(a)对应的透视平面图。tft部分与实施方式1同样。

在实施方式3中,与实施方式1不同,在用包含通过接触孔ch的中心且与第一金属膜5的延伸方向垂直的线和基板法线的面g将接触孔ch分成两个部分时,仅在一个部分py设置有具有2级台阶形状(在第三孔h3的下方且第一孔h1的内侧的区域形成的第一部分7f;和在第三孔h3的下方且第一绝缘膜4的上方的区域形成的第二部分7s)的氧化物半导体膜7,并且进行第二金属膜9与第三金属膜12的连接。

在此,在形成在第一孔h1内的第二孔h2的内侧,第一金属膜5和第三金属膜12接触而电连接,在将接触孔ch分成两个部分时的一个部分py,在第一绝缘膜4的上方且第三孔h3的下方的区域,第二金属膜9和第三金属膜12接触而电连接,结果,第一金属膜5和第二金属膜9电连接。

仅在将接触孔ch分成两个部分时的一个部分px,第一部分7f和第二部分7s分别与第三金属膜12接触。即,能够将第三金属膜12经过氧化物半导体膜7的呈2级台阶形状的部分(第一部分7f和第二部分7s)引导至接触孔ch的底部的第一金属膜5,与图6所示的方式相比,能够抑制接触孔ch内的第三金属膜12的断接。

关于第一孔h1的开口k1和第二孔h2的开口k2的宽度(与第一金属膜5的延伸方向垂直的方向的长度),可以是如图10的(b)所示的那样,开口k2的宽度大于开口k1的宽度,也可以是如图10的(c)所示的那样,开口k1的宽度大于开口k2的宽度。

〔实施方式4〕

图11的(a)是实施方式4的有源矩阵基板中的金属膜的接触部分的截面图,图11的(b)和图11的(c)是与图11的(a)对应的透视平面图。tft部分与实施方式1同样。

在实施方式4的有源矩阵基板17中,在俯视时,第二金属膜9以与氧化物半导体膜7重叠的方式设置,第三孔h3的开口k3位于氧化物半导体膜7的形成区域,并且以与第二金属膜9重叠且与第一孔h1的开口k1整体重叠的方式设置,第二孔h2的开口k2和第一孔h1的开口k1以与氧化物半导体膜7的开口kx匹配的方式设置,第三金属膜12以与第三孔h3的开口k3整体重叠的方式形成。

在接触孔ch中,在第一孔h1的内侧,第一金属膜5和第三金属膜12接触而电连接,在第一绝缘膜4的上方且第三孔h3的下方的区域,第二金属膜9和第三金属膜12接触而电连接,结果,第一金属膜5和第二金属膜9电连接。

在此,氧化物半导体膜7形成在第三孔h3的下方且第一绝缘膜4和第二绝缘膜6的上方的区域,氧化物半导体膜7分别与第二金属膜9和第三金属膜12接触。

由此,在接触孔内,能够将第三金属膜12经过氧化物半导体膜7引导至接触孔ch的底部的第一金属膜5,与图6所示的方式相比,能够抑制接触孔ch内的第三金属膜12的断接。

氧化物半导体膜7中的形成在第三孔h3的下方的部分全都与第二绝缘膜6重叠,在接触孔ch内,第一金属膜5和第二金属膜9不接触。

此外,在实施方式1中,在用包含通过接触孔ch的中心且与第一金属膜5的延伸方向垂直的线和基板法线的面将接触孔ch分成两个部分时,在两个部分分别设置有氧化物半导体膜7,仅在一个部分进行第二金属膜9与第三金属膜12的连接。

〔实施方式5〕

在实施方式1中,对mems显示器进行了说明,但是并不限定于此。实施方式1~4的有源矩阵基板也能够应用于液晶显示装置。

如图12的(a)所示,实施方式5的液晶显示装置100包括:包括有源矩阵基板27和对置基板(彩色滤光片基板)37的液晶面板67;和向有源矩阵基板27照射led光或激光的背光源bl。在液晶面板67的像素pix中,如图12的(b)所示,液晶电容lc的像素电极经由晶体管tr与数据信号线ds和扫描信号线sc连接,液晶电容lc的对置电极与共用电极线com连接。

液晶面板67可以使用例如如图13所示,从实施方式1的有源矩阵基板17(参照图4、图5)中去掉了遮光膜2和无机绝缘膜3a的有源矩阵基板27。也可以使用如图14所示,从实施方式4(参照图4、图11)的有源矩阵基板17中去掉了遮光膜2和无机绝缘膜3a的有源矩阵基板27。关于实施方式2、3也是同样。

〔关于实施方式1~4〕

在实施方式1~4的有源矩阵基板中,将第一金属膜5和第二金属膜9电连接,但是这些金属膜的形成层并不限定于上述各实施方式的结构。本发明的一个方式的有源矩阵基板能够应用于包括具有将形成在不同层的2个金属膜电连接的结构的有源矩阵基板(特别是在这些金属膜之间的层形成有涂敷型的绝缘膜或有机绝缘膜等的有源矩阵基板)的所有显示装置。也适用于具有有机发光二极管的有机el显示器。

〔总结〕

本发明的方式1的有源矩阵基板的特征在于,包括:基板;形成在比基板靠上层的位置的第一绝缘膜;形成在比第一绝缘膜靠上层的位置的第二绝缘膜;形成在比第二绝缘膜靠上层的位置的第三绝缘膜;形成在基板与第一绝缘膜之间的第一金属膜;在第二绝缘膜和第三绝缘膜之间的层形成的第二金属膜;一部分形成在比第三绝缘膜靠上层的位置的第三金属膜;在第二绝缘膜和第二金属膜之间的层形成的氧化物半导体膜;和将第一金属膜和第二金属膜电连接的接触孔,上述接触孔具有:形成在第一绝缘膜中的第一孔;形成在第二绝缘膜中的第二孔;和形成在第三绝缘膜中的第三孔,在上述第一孔的内侧,第一金属膜和第三金属膜接触,在上述第三孔的下方的区域,第二绝缘膜和氧化物半导体膜重叠,在上述第一绝缘膜的上方且第三孔的内侧或下方的区域,第二金属膜和第三金属膜接触。

本发明的方式2的有源矩阵基板的特征在于,在上述方式1中,第二孔形成在上述第一孔的内侧,第一金属膜和第三金属膜在第二孔的内侧接触。

本发明的方式3的有源矩阵基板的特征在于,在上述方式1中,上述氧化物半导体膜具有第一部分,该第一部分形成在第三孔的下方且第一孔的内侧的区域,该第一部分与第三金属膜接触。

本发明的方式4的有源矩阵基板的特征在于,在上述方式3中,上述氧化物半导体膜具有第二部分,该第二部分形成在上述第三孔的下方且第一绝缘膜的上方的区域,该第二部分与第三金属膜接触。

本发明的方式5的有源矩阵基板的特征在于,在上述方式1或2中,上述氧化物半导体膜中的形成在第三孔的下方的部分全都与第二绝缘膜重叠。

本发明的方式6的有源矩阵基板的特征在于,在上述方式4中,上述第二部分与第二金属膜接触。

本发明的方式7的有源矩阵基板的特征在于,在上述方式6中,上述第一部分和第二绝缘膜以及第三金属膜重叠,上述第二部分和第二金属膜以及第三金属膜重叠。

本发明的方式8的有源矩阵基板的特征在于,在上述方式1~7中的任一方式中,在俯视时,第三孔的开口与第一孔的开口整体重叠。

本发明的方式9的有源矩阵基板的特征在于,在上述方式8中,在第一孔的内侧设置有氧化物半导体的开口。

本发明的方式10的有源矩阵基板的特征在于,在上述方式1~9中的任一方式中,第一金属膜和第三金属膜在所述接触孔内不接触。

本发明的方式11的有源矩阵基板的特征在于,在上述方式1~10中的任一方式中,第三金属膜为透明导电膜。

本发明的方式12的有源矩阵基板的特征在于,在上述方式1~11中的任一方式中,上述第一绝缘膜和第三绝缘膜由有机材料形成。

本发明的方式13的有源矩阵基板的特征在于,在上述方式1~12中的任一方式中,上述第二绝缘膜由无机材料形成。

本发明的方式14的光闸基板包括:上述方式1~13中的任一方式的有源矩阵基板;和形成在该有源矩阵基板上的光闸机构。

本发明的方式15的显示装置包括上述方式1~13中的任一方式的有源矩阵基板。

本发明的方式16的显示装置为在上述有源矩阵基板上设置有有机发光二极管的结构。

本发明的方式17的有源矩阵基板的制造方法的特征在于,包括:在第一金属膜的上层形成第一绝缘膜的工序;在第一绝缘膜的上层形成第二绝缘膜的工序;在上述第二绝缘膜的上层形成氧化物半导体膜的工序;在上述氧化物半导体膜的上层形成第二金属膜的工序;在上述第二金属膜的上层形成第三绝缘膜的工序;在上述第一绝缘膜~上述第三绝缘膜中,以使第一金属膜、第二金属膜和氧化物半导体膜露出的方式形成接触孔的工序;和以与上述第一金属膜、第二金属膜和氧化物半导体膜分别接触的方式形成第三金属膜的工序。

本发明的方式18的有源矩阵基板的制造方法的特征在于,在上述方式17中,上述氧化物半导体膜作为形成接触孔时的蚀刻阻挡层发挥作用。

本发明并不限定于上述的实施方式,可以在权利要求所示的范围内进行各种改变,将在不同的实施方式中分别公开的技术手段适当组合而得到的实施方式,也包含在本发明的技术范围内。通过将在各实施方式中分别公开的技术手段组合,能够形成新的技术特征。

符号说明

1玻璃基板

2遮光膜

4第一绝缘膜

5第一金属膜

6第二绝缘膜

7氧化物半导体膜

7f第一部分

7s第二部分

9(9s、9d)第二金属膜

10a、10b钝化膜

11第三绝缘膜

12第三金属膜

13第四金属膜

17有源矩阵基板

20光闸基板

21光闸机构

22x、22y驱动梁

23x、23y闸梁

27有源矩阵基板

28闸体

30对置基板

lw光透射路径

f层间绝缘膜

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1