显示面板及其制作方法与流程

文档序号:15142305发布日期:2018-08-10 20:02阅读:133来源:国知局

本公开涉及显示领域,具体地涉及一种显示面板及其制作方法。



背景技术:

手机上的距离传感器(proximitysensor)可用来检测用户身体与手机听筒的接近度,使得手机能够基于此来控制屏幕的唤醒和熄灭。常规的手机距离传感器设计为单独的模块,占用较大的结构设计空间,并且不利于手机屏幕的窄边框设计。



技术实现要素:

本公开提出了一种显示面板及其制作方法。

根据本公开的一个方面,提供了一种显示面板。所述显示面板包括红外接收器。所述红外接收器设置在衬底基板上,且位于所述衬底基板的靠近出光面的一侧,其中,所述红外接收器能够接收从所述出光面入射的红外光。

在一个实施例中,所述红外接收器是具有pn结结构的光敏二极管,并且与tft阵列中的一层是同层布置的。

在一个实施例中,所述红外接收器与所述tft阵列中的栅极绝缘层是同层布置的。

在一个实施例中,所述显示面板还包括:红外发射器,用于发射将从出光面射出的红外光。

在一个实施例中,所述显示面板为液晶显示面板,所述红外发射器位于所述显示面板的背光模组中。

在一个实施例中,所述红外接收器到所述出光面之间的各个层中的至少一层中形成有通光孔,所述通光孔在所述衬底基板上的正投影与所述红外接收器在所述衬底基板上的正投影至少部分地重合。所述红外发射器到所述出光面之间的各个层中的至少一层中形成有通光孔,所述通光孔在所述衬底基板上的正投影与所述红外发射器在所述衬底基板上的正投影至少部分地重合。

在一个实施例中,所述红外接收器布置在所述衬底基板上的单层区域。

在一个实施例中,所述显示面板还包括:遮光层,布置在所述红外接收器与所述衬底基板之间。

在一个实施例中,所述显示面板还包括:缓冲层,布置在所述红外接收器与所述衬底基板之间,并覆盖所述遮光层。

根据本公开的另一方面,提供了一种显示面板的制作方法。所述制作方法包括:布置衬底基板;在衬底基板上形成红外接收器,其中,所述红外接收器形成于所述衬底基板的靠近出光面的一侧,并且能够接收从出光面入射的红外光。

在一个实施例中,所述形成红外接收器的步骤还包括:在衬底基板上的用于形成红外接收器的区域形成多晶硅层;在衬底基板上形成tft阵列中的至少一层,所述tft阵列中的至少一层覆盖所述多晶硅层;对与所述多晶硅层的第一半区相对应的区域进行刻蚀,以去除第一厚度的覆盖多晶硅层的膜层;向与所述多晶硅层的第一半区相对应的区域中注入空穴,以使得所注入的空穴进入所述多晶硅层的第一半区;对与所述多晶硅层的第二半区相对应的区域进行刻蚀,以去除第二厚度的覆盖多晶硅层的膜层;向与所述多晶硅层的第二半区相对应的区域中注入电子,以使得所注入的电子进入所述多晶硅层的第二半区。

在一个实施例中,所述剩余tft阵列对应于栅极绝缘层。

在一个实施例中,所述制作方法还包括:布置红外发射器,所述红外发射器用于发射将从出光面射出的红外光。

在一个实施例中,所述显示面板为液晶显示面板。所述布置红外发射器的步骤还包括:在所述显示面板的背光模组中布置所述红外发射器。

在一个实施例中,所述制作方法还包括:在所述在所述红外接收器到所述出光面之间的各个层中的至少一层中形成通光孔,所述通光孔在所述衬底基板上的正投影与所述红外接收器在所述衬底基板上的正投影至少部分地重合;以及在所述红外发射器到所述出光面之间的各个层中的至少一层中形成通光孔,所述通光孔在所述衬底基板上的正投影与所述红外发射器在所述衬底基板上的正投影至少部分地重合。

在一个实施例中,所述红外接收器形成在所述衬底基板上的单层区域中。

在一个实施例中,所述制作方法还包括:在所述衬底基板上形成遮光层,其中,所述红外接收器形成于所述遮光层上。

在一个实施例中,所述制作方法还包括:在所述衬底基板上形成缓冲层,其中,所述缓冲层覆盖所述遮光层,并且所述红外接收器形成于所述缓冲层上。

附图说明

图1示出了常规距离传感器在电子设备上的布置的示意图。

图2示出了根据本公开实施例的距离传感器在电子设备上的布置的示意图。

图3示出了将距离传感器布置在显示面板的单层区域的示意图。

图4示出了与图3中示出的位置相对应地在背光模组布置红外发射器的示意图。

图5示出了根据本公开实施例的距离传感器在电子设备上的另一布置的示意图。

图6示出了根据本公开实施例的距离传感器在电子设备上的另一布置的示意图。

图7示出了根据本公开实施例的显示面板的制作方法的流程图。

图8示出了图7中在衬底基板上形成红外接收器的步骤的更为详细的流程图。

具体实施方式

为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部。基于所描述的本公开实施例,本领域普通技术人员在无需创造性劳动的前提下获得的所有其他实施例都属于本公开保护的范围。应注意,贯穿附图,相同的元素由相同或相近的附图标记来表示。在以下描述中,一些具体实施例仅用于描述目的,而不应该理解为对本公开有任何限制,而只是本公开实施例的示例。在可能导致对本公开的理解造成混淆时,将省略常规结构或构造。应注意,图中各部件的形状和尺寸不反映真实大小和比例,而仅示意本公开实施例的内容。

本公开中的红外接收器是具有pn结结构的光敏二极管。pn结在红外光照射时产生光生载流子,载流子会增加反向电流,并且反向电流在一定范围内会随着光照强度的增大而增大。从而,能够根据反向电流的大小来判断反射红外光的外部物体与电子设备的接近度。在本公开的一个实施例中,多晶硅是形成光敏二极管的pn结的主体,通过对pn结分别进行电子和空穴掺杂,形成能够用于接收红外光的红外接收器。

以下参考附图对本公开进行具体描述。

图1示出了常规距离传感器在电子设备上的布置的示意图。在常规的距离传感器布置中,将红外发射器和红外接收器作为单独的电子模块安装在电子设备的例如pcb板上。如图1所示,电子设备的pcb板130上设置有红外发射器110和红外接收器120,二者之间通过挡块140间隔开。在红外接收器120的上方还设置有透镜150。从红外发射器110发出的红外光通过与电子设备接近的物体的反射,从透镜透射,最终被红外接收器接收,使得电子设备可以测量所述物体与电子设备之间的接近度。然而,这一常规距离传感器占用的结构设计空间较大,并且与手机屏幕的集成度不高,不利于手机屏幕的窄边框设计。

图2示出了根据本公开实施例的距离传感器在电子设备上的布置的示意图。

在图2中,电子设备的显示面板对应于液晶显示面板,其中包括背光模组230、衬底基板240、tft阵列250和盖板玻璃260。距离传感器由红外发射器220和红外接收器210组成,其中,红外接收器210设置在衬底基板240上,位于衬底基板240的靠近出光表面的一侧。

红外发射器220则位于衬底基板的另一侧。在一个实施例中,红外发射器220位于背光模组230中。在下文中,将参考红外发射器220位于背光模组230中的情况进行描述。

但应该理解的是,在本申请的其他实施例中,红外发射器220可以不位于背光模组230中,甚至可以与红外接收器210位于衬底基板的同一侧(比如,嵌入盖板玻璃中),或者还可以嵌入衬底基板中,本公开在此不进行限制。

在另一实施例中,所述红外发射器220甚至可以不是显示面板的一部分,例如,红外发射器220可以是能够可拆卸地安装到所述显示面板的单独组件。

tft阵列250(或称为tft阵列膜层250)是包括多层(例如,栅极层、栅极绝缘层、源漏层、阻挡层等)的层叠结构,其在显示区域包括多个tft以矩阵形式组成的阵列。本公开不对tft阵列250的层叠结构在显示区域的组成或各个层的层叠顺序进行限制。

在一个实施例中,红外接收器210与tft阵列中的一层(例如,栅极绝缘层)同层布置。一般地,可以将衬底基板240和tft阵列250一起称为tft阵列基板。

一般地,红外接收器210不位于与显示面板的显示区域,并且红外接收器210周围的tft阵列250与显示区域中的tft阵列250可以具有不同的层结构。如下文中参照图8描述的实施例,在该实施例中,通过在形成tft阵列250后再对红外接收器210的主体材料(多晶硅)进行掺杂来形成最终的红外接收器210,刻蚀步骤的存在将导致最终形成的tft阵列250在红外接收器210周围和显示区域中具有不同的层结构。

在图2中,红外发射器220发射的红外光穿过衬底基板240、tft阵列250和盖板玻璃260,并在外部物体反射后,再次穿过盖板玻璃260、tft阵列250,最终由红外接收器210接收。为了实现这一过程,需要使衬底基板240、tft阵列250和盖板玻璃260是透明的。例如,衬底基板240可以是可透光的玻璃制成的,红外接收器210周围的tft阵列250也可通过透光材料(如ito等)形成。

在另一实施例中,衬底基板240、tft阵列250和盖板玻璃260中的一层或多层中与红外发射器220和红外接收器210对应的位置处可以形成有用于使红外光通过的通光孔。例如,所述通光孔在衬底基板240上的正投影与红外接收器210或红外发射器220在衬底基板上的正投影至少部分地重合。如图5所示,tft阵列250中与红外发射器220和红外接收器210相对应的部分a和b处分别形成有用于红外光通过的通光孔。通光孔的设置可以减少了对tft阵列250所采用的材料的限制,并且与采用透明材料相比,能够增加透过率,提高光感性能。应该理解的是,图5中的通光孔的设置只是示例性的,在其他实施例中,可以根据材料、工艺以及器件的需要,在衬底基板240、tft阵列250和盖板玻璃260(以及任何其他没有示出的层)中的一层或多层中设置用于通过红外光的通光孔。

在一个实施例中,盖板玻璃260上与红外发射器220相对应的区域设置有滤光板,以过滤掉除红外光之外的其他光。

图6示出了根据本公开实施例的距离传感器在电子设备上的另一布置的示意图。与图2中不同的是,图6中的结构还包括缓冲层270、遮光层280和传输线290。

遮光层280设置在衬底基板240上。缓冲层270同样设置在衬底基板240上,并且覆盖遮光层280。遮光层280与红外接收器210相对应的设置。遮光层280用于防止红外光在衬底基板240中通过衍射照射到红外接收器210上,从而避免造成误报。缓冲层270用于防止衬底基板内的杂质进入红外接收器210,从而影响红外接收器210的光感性能。

传输线290设置在红外接收器210的两端,使得具有pn结结构的红外接收器210的两端能够与ic相连(如下文中图3所示)或与fpc相连,以向红外接收器210施加反向偏压。当反向电流增大时,通过传输线290将信号传回ic,并输出到整机芯片上进行判断处理。

在图6中,传输线290设置在红外接收器210的表面,以便与红外接收器210形成电接触。在其他实施例中,还可以在红外接收器210的表面处打孔,以使得传输线290伸入到红外接收器210中,以形成更良好的电接触。

在图2(以及图6)的布置中,红外接收器110和红外发射器120位于显示面板的非显示区域(如下文所述的单层区域),因此,其上方并不设置有液晶层、黑矩阵以及彩膜层等结构。应当理解的是,图2所示的显示面板结构可以包括其他的层,比如在盖板玻璃260下方包括条带(tape)等。

具体地,红外接收器110和红外发射器120可以位于显示面板的单层区域(或称为pad区域(焊盘区域)、引线区域等)。在显示面板的液晶模组中,在显示区域之外,紧挨着显示区域的边缘,会布置用于与显示区域外部的电路(例如,驱动电路等)连接的焊盘,这些焊盘通过引线与tft像素电路连接。如上所述,与显示区域不同的是,该部分区域布置有衬底基板,但并不布置有彩膜层等膜层,故而可称为“单层区域”。应该理解的是,术语“单层区域”的命名只是为了便于读者理解本发明的技术方案的细节,而并不限定所标示的区域只具有单层结构。

图3示出了将距离传感器布置在显示面板的单层区域的示意图。应该理解的是,图3中所示的单层区域在显示面板的层结构中与图2中的衬底基板240和tft阵列250(即tft阵列基板)相对应。

如图3所示,显示面板的单层区域布置有银浆点区域310、扇出(fanout)线区域320、柔性线路板(fpc)焊块区域330、集成电路(ic)焊块区域340、电性测试焊盘区域350、红外发射器孔360和红外接收器370。其中,ic焊块区域340将引线引至红外接收器370,以与之连接。红外发射器孔360与红外接收器区域370相邻地设置,以使得红外发射器发射的红外光能够从红外发射器孔360射出并通过外部物体反射后回到红外接收器370。在图3中,红外发射器孔360和红外接收器370布置在常规的电性测试焊盘区域350和银浆点区域310之间,无需对常规的单层区域的尺寸或布局进行改变,不会增加该部分的制作复杂度,也不会降低显示面板的显示区域比例。应该理解的是,图3中所示出的位置关系只是示例性的,在本公开的其他实施例中,还可以将红外发射器孔360和红外接收器370布置在单层区域中的其他位置,本公开在此并不进行限定。

具体地,红外发射器370的尺寸可以为例如0.5mm×1mm,红外发射器孔360可以为例如直径为0.7mm的孔。

相应地,图4示出了与图3中示出的位置相对应地在背光模组布置红外发射器的示意图。如图4所示,在背光模组中,红外发射器410与背光led420相邻地布置,例如,红外发射器410可以位于两个相邻的背光led420之间的间隙处。在图4中,通过电源v1对背光led420进行供电,通过另一电源v2对红外发射器410进行供电。在其他实施例中,可以通过同一电源对背光led420与红外发射器410进行供电。在背光模组上还布置有背光黑胶条430,以便遮挡背光led420和红外发射器410发射的光的衍射光。

具体地,红外发射器410的直径可以为例如0.5mm。

在一个实施例中,当通过不同的电源v1和v2分别对背光led420和红外发射器410进行供电时,对红外发射器410供电的电源v2以与红外接收器的涉及频率匹配的频率间断地发射红外光,间断时间为例如小于0.1ms。

在本公开的上述实施例的技术方案,将红外接收器集成在衬底基板上,能够减少其占用的设计空间,有利于窄边框的设计。此外,将红外发射器设置在背光模组中,与背光led相邻地布置,能够进行整体的供电设计和布局,并能够共用背光黑胶条来防止光的衍射。

图7示出了根据本公开实施例的显示面板的制作方法700的流程图。

在步骤s710中,布置衬底基板。

在步骤s720中,在衬底基板上形成红外接收器。

所述红外接收器形成于衬底基板的靠近出光面的一侧,并且能够接收从出光面入射的红外光。

在一个实施例中,如图8所示,步骤s720还可以包括以下子步骤:

s810,在衬底基板上的用于形成红外接收器的区域形成多晶硅层;

s820,在衬底基板上形成tft阵列中的至少一层,所述tft阵列中的至少一层覆盖所述多晶硅层;

s830,对与所述多晶硅层的第一半区相对应的区域进行刻蚀,以去除第一厚度的覆盖多晶硅层的膜层;

s840,向与所述多晶硅层的第一半区相对应的区域中注入空穴,以使得所注入的空穴进入所述多晶硅层的第一半区;

s850,对与所述多晶硅层的第二半区相对应的区域进行刻蚀,以去除第二厚度的覆盖多晶硅层的膜层;

s860,向与所述多晶硅层的第二半区相对应的区域中注入电子,以使得所注入的电子进入所述多晶硅层的第二半区。

应该理解的是,在本公开的其他实施例中步骤s720可以包括更多或更少的子步骤,只要能够在衬底基板上制作具有pn结结构的红外接收器即可。例如,由于以上子步骤中包括进行刻蚀的子步骤,因此其中还可包括涂覆光刻胶和光刻胶剥离的子步骤,本公开在此不再对光刻工艺加以赘述。

在一个实施例中,步骤s720的子步骤中的剩余tft阵列对应于栅极绝缘层。在这一实施例中,通过刻蚀将tft膜层中位于栅极绝缘层上方的层刻蚀掉,并通过栅极绝缘层向多晶硅中进行电子和空穴掺杂,以形成pn结结构。

在一个实施例中,所述第一厚度等于所述第二厚度。

在一个实施例中,制作方法700还包括:在tft阵列上布置盖板玻璃。

在一个实施例中,制作方法700还包括:布置红外发射器,其中红外发射器用于发射将从出光面射出的红外光。其中,在显示面板是液晶显示面板的情况下,所述红外发射器可以布置在显示面板的背光模组中。

在一个实施例中,制作方法700还包括:红外接收器到所述出光面之间的各个层中的至少一层中形成通光孔,所述通光孔在所述衬底基板上的正投影与所述红外接收器在所述衬底基板上的正投影至少部分地重合,以及在所述红外发射器到所述出光面之间的各个层中的至少一层中形成通光孔,所述通光孔在所述衬底基板上的正投影与所述红外发射器在所述衬底基板上的正投影至少部分地重合。

在一个实施例中,红外接收器形成在所述衬底基板上的单层区域中。

在一个实施例中,制作方法700还包括:在衬底基板上形成遮光层,其中,所述红外接收器形成于所述遮光层上。

在一个实施例中,制作方法700还包括:在衬底基板上形成缓冲层,其中,缓冲层覆盖遮光层,并且红外接收器形成于缓冲层上。

应该指出的是,本公开的上述各实施例中,主要参照显示面板为液晶显示(lcd)面板的情况进行描述。然而,在显示面板为有源矩阵有机发光二极管(amoled)面板的情况中,同样能够在amoled面板中的衬底基板上形成以上各实施例所示的红外接收器结构。本公开中的红外接收器形成在tft阵列基板中,不受显示面板的显示原理的限制和影响。不同之处在于,amoled面板中不存在背光模组,这使得红外反射器不能如上述实施例中那样布置在背光模组中。然而,如上文所述,本申请的技术方案并不限制红外接收器的位置,在amoled面板中,红外接收器可以位于任意合适位置,只要能够将红外光从出光面发出即可。举例来讲,在amoled面板中,红外接收器可以嵌入到衬底基板中或嵌入到盖板玻璃中。

虽然已参照几个典型实施例描述了本公开,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本公开能够以多种形式具体实施而不脱离公开的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1