高效散热大模场面积中红外光子晶体光纤及其激光器的制造方法

文档序号:8486967阅读:559来源:国知局
高效散热大模场面积中红外光子晶体光纤及其激光器的制造方法
【技术领域】
[0001] 本发明涉及一种新型光纤激光器,特别是涉及一种高效散热大模场面积中红外光 子晶体光纤及其激光器。 技术背景
[0002] 中红外光纤是中红外光纤激光器和光纤放大器的主要构成部分。光纤的性质在很 大程度上决定了激光器或放大器可达到的性能。对于大功率的光纤激光器,要求光纤具有 双包层结构,且内外包层间折射率相差大以利于耦合。为了有好的光束质量,要求纤芯为单 模。为了获得高的功率,要求纤芯模场面积大。对于连续输出的光纤激光器,还要求布里渊 等非线性小,此外,还要求光纤能承受高的激光功率,稳定性和耐久性好。
[0003] 内外包层的折射率差增大已经可以做到。对于大模场单模光纤的要求,根据单模 光纤的工作条件,ν€=^?·ΝΑ<2··5,其中d为纤芯的直径,Vc是归一化频率,λ为工作 波长,NA为内包层与纤芯的数值孔径,在单模的条件下,增大纤芯模场面积需要减小内包层 与纤芯的数值孔径。而内包层材料与纤芯材料折射率差难以做到很小,往往内包层材料与 纤芯材料的数值孔径较大。以Fiberlabs的产品为例[http://www.fiberlabs_inc.com/ fiber_REdcff. htm],内包层为相对高折射率的氟化物玻璃。芯为更高折射率的氟化物玻 璃。内外包层间的数值孔径可达0. 4,基本满足高功率光纤激光器的泵浦要求,但是模场直 径只有不到20微米。受损伤阈值和非线性效应的限制,单位面积材料所能承受的泵浦功率 密度是有极限的,要提高光纤激光器的输出功率,必须增加模场面积。
[0004] 铒离子的高浓度对实现高效率的2. 7微米激光至关重要。把铒离子掺入到氟化物 玻璃中,会引起折射率的提高。高浓度掺铒离子时,折射率的提高会很大。为了实现单模, 包层玻璃的折射率也必须提高到与之相接近。而氟化物玻璃是一种很容易析晶的玻璃,不 容易调整包层玻璃的配方去匹配包层玻璃折射率。因此,高铒浓度、单模的氟化物光纤,其 芯径难于做到很大。目前Fiberlabs公司的双包层的单模光纤,芯径最大只有约18微米, 大于此芯径的为多模双包层光纤。为了实现更大的模场面积,必须寻找新的解决方案。
[0005] 要实现高功率激光输出,光纤需要能承受高的激光功率,稳定性和耐久性好。对 于低功率、采用小芯径细光纤的激光器,高比例的热损耗不是太大问题,但是对于大功率、 采用大芯径粗光纤的激光器,热损耗带来的困扰就成了一个主要难题。大量的热量集中光 纤泵浦端附近一段长度内,将使得光纤端面温度急剧升高。氟化物玻璃的转变温度仅为 260°C,这是光纤能承受的理论极限温度。如果要获得上百瓦的激光功率,由于量子效率低, 光纤耦合端需要承受数百瓦的泵浦功率,大纤径光纤的纤芯温度肯定会突破极限温度,因 此光纤会迅速崩溃。光纤的散热问题需要急切的解决。
[0006] 本发明根据以上分析,所要解决的是以上提出的两个技术问题,一是扩大单模光 纤的模场直径;二是解决大芯径粗光纤的散热问题,为实现掺铒氟化物光纤百瓦量级的 2. 7微米单模激光输出提供可能。

【发明内容】

[0007] 本发明为解决以上两个问题提出了一种高效散热大模场面积中红外光子晶体光 纤及其激光器。
[0008] 本发明的技术解决方案如下:
[0009] -种大模场面积中红外玻璃光子晶体光纤,包括光纤外包层、光纤内包层和纤芯, 其特征在于,所述的纤芯上设有多个空气孔,该空气孔的直径为d,且各空气孔间的节距为 Λ。
[0010] 所述的空气孔直径d落在25~35 μ m范围内,所述的空气孔直径与空气孔节距比 率d/ Λ落在为0. 7~0. 8范围内。
[0011] -种含有上述的高效散热大模场面积中红外玻璃光子晶体光纤的激光器,所述的 光子晶体光纤的泵浦端端面有镀膜,该泵浦端镀膜外设有泵浦端端帽。所述的光子晶体光 纤输出端端面有镀膜,所述的输出端镀膜外设有输出端端帽。惰性气体导流管的一端与所 述的泵浦端端帽相连,另一端与光纤输出端端帽相连,该惰性气体导流管的中部设置有磁 力泵,且磁力泵与光纤泵浦端端帽之间的惰性气体导流管、磁力泵与光纤输出端端帽之间 的惰性气体导流管分别置于冷却液中,所述的惰性气体导流管、磁力泵、光纤泵浦端帽、光 纤输出端帽与所述的空气孔形成闭合回路。根据权利要求3所述的激光器,其特征在于,所 述的磁力泵的流量在〇. 6~100m3/h范围内。
[0012] 与现有技术相比,本发明的有益效果是:
[0013] 1)大模场面积中红外玻璃光子晶体光纤,减小了内包层与纤芯的折射率差Λη, 使Δη达到KT 5量级。在单模的条件下,模场直径达到60μπι左右。纤芯直径可以做到 140 μ m左右,光纤激光器的对尚栗浦功率的承受力提尚。
[0014] 2)采样由惰性气体导流管、磁力泵、惰性气体、冷却液构成的散热装置,可将光纤 纤芯温度维持在l〇〇°C~200°C范围之内,有效解决大功率光纤激光器短时间内集中产生 大量的热而带来热损耗的问题。
[0015] 3)在纤芯中设有的空气孔可以提供散热通道,散热比表面积大大增加,可实现纤 芯的直接高效散热。
[0016] 4)纤芯中设有的空气孔兼具双重功能,一方面通过调节空气孔的结构,降低纤芯 玻璃的等效折射率,减小纤芯与内包层的折射率差,扩大光纤的模场直径;另一方面,可在 空气孔中通以干燥洁净的惰性气体流,实现光纤纤芯的散热。
【附图说明】
[0017] 图1为本发明大模场面积中红外光子晶体光纤的断面图。
[0018] 1-1.氟树脂外包层1-2.空气孔1-3.高掺铒玻璃纤芯1-4.氟化物玻璃内包层
[0019] 图2为本发明高效散热大模场面积中红外光子晶体光纤激光器的示意图。
[0020] 1.光纤,光纤端面有镀膜2.泵浦端端帽3.输出端端帽4.惰性气体导流管5.磁 力泵6.泵浦光7.输出的激光
【具体实施方式】
[0021] 图1是大模场面积中红外光子晶体光纤的横截面图,如图所示,光纤外包层1-1为 氟树脂,所述的光纤内包层1-4为氟化物玻璃,所述的纤芯1-3材料为高掺铒氟化物玻璃, 纤芯设有多个空气孔1-2。空气孔具有直径d,并且由节距Λ隔开。所述的空气孔兼具双 重功能,一方面通过调节空气孔的结构,降低纤芯玻璃的等效折射率,减小纤芯与内包层的 折射率差,扩大光纤的模场直径;另一方面,可在空气孔中通以干燥洁净的惰性气体流,实 现光纤纤芯的散热。
[0022] 增大光子晶体光纤模场的工作原理如下:氟化物玻璃与掺铒氟化物玻璃的折射率 差较大,在纤芯中加入空气孔,减小内包层1-4与纤芯1-3的折射率差Λ η,使Λ η达到KT5 量级。因此单模光纤的纤芯1-3可以做的很大,在单模的条件下,模场直径达到60 μπι左右。 纤芯直径可以做到140 μπι左右,光纤激光器的对高泵浦功率的承受力提高。同时在纤芯中 增加空气孔可以提供散热通道,实现纤芯的直接散热。
[0023] 图2是高效散热大模场面积中红外光子晶体光纤激光器的示意图。所述光纤激光 器的散热装置工作过程如下:
[0024] 将惰性气体导流管4、泵浦端端帽2、输出端端帽3,惰性气体导流管4、磁力泵5串 联。惰性气体导流管4放在冷却液中。
[0025] 使用百瓦级980nm激光器作为泵浦光6,泵浦光进入大模场面积中红外光子晶体 光纤1中,在光纤1内反复增益产生输出激光7。产生的输出激光7就会从光纤输出端端帽 3处导出。在泵浦光6耦合到光纤1的纤芯1-3内,激发铒离子产生输出激光7的过程中, 在光纤1短时间(0.1 s)内产生巨大热量,导致纤芯1-3温度到达600K左右。磁力泵5使 用无接触方式带动惰性气体在回路中流通。磁力泵5与光纤泵浦端端帽2之间的惰性气体 导流管4、磁力泵5与光纤输出端端帽3之间的惰性气体导流管4分别置于冷却液中,冷却 液的温度为〇°C (273K)。磁力泵5与光纤泵浦端端帽2之间的惰性气体导流管4中的冷气 体将会进入光纤1中,补偿光纤1所产生的热量,直接冷却光纤1的纤芯1-3。光纤1的纤 芯1-3有多个空气孔1-2,散热比表面积大大增加,可以达到高效散热的目的。从光纤1中 流出的惰性气体将在磁力泵5与光纤输出端端帽3之间的惰性气体导流管4内重新冷却。 将磁力泵5的流量设为10~40m 3/h,可以将光纤1纤芯1-3温度维持在100°C (373K)~ 200°C (473K)左右。
【主权项】
1. 一种大模场面积中红外玻璃光子晶体光纤,包括光纤外包层、光纤内包层和纤芯, 其特征在于,所述的纤芯上设有多个空气孔,该空气孔的直径为d,且各空气孔间的节距为 A0
2. 根据权利要求1所述的高效散热大模场面积中红外玻璃光子晶体光纤,其特征在 于,所述的空气孔直径d落在25~35 y m范围内,所述的空气孔直径与空气孔节距比率d/ A落在为0. 7~0. 8范围内。
3. -种含有权利要求1所述的高效散热大模场面积中红外玻璃光子晶体光纤的激光 器,其特征在于,所述的光子晶体光纤的泵浦端端面有镀膜,该泵浦端镀膜外设有泵浦端端 帽。所述的光子晶体光纤输出端端面有镀膜,所述的输出端镀膜外设有输出端端帽。惰性 气体导流管的一端与所述的泵浦端端帽相连,另一端与光纤输出端端帽相连,该惰性气体 导流管的中部设置有磁力泵,且磁力泵与光纤泵浦端端帽之间的惰性气体导流管、磁力泵 与光纤输出端端帽之间的惰性气体导流管分别置于冷却液中,所述的惰性气体导流管、磁 力泵、光纤泵浦端帽、光纤输出端帽与所述的空气孔形成闭合回路。
4. 根据权利要求3所述的激光器,其特征在于,所述的磁力泵的流量在0. 6~100m3/h 范围内。
【专利摘要】一种高效散热大模场面积中红外光子晶体光纤激光器:采用双包层光子晶体光纤结构设计,内包层为氟化物玻璃,纤芯材料为高掺铒氟化物玻璃,在纤芯中有多个空气孔,空气孔具有直径d,并且由节距Λ隔开。本发明通过调节光子晶体光纤空气孔的结构,减小纤芯与内包层的折射率差,扩大光纤的模场直径。光纤激光器设有高效散热装置,在空气孔中导入惰性气体,空气孔可以提供散热通道,增加散热的比表面积,以此将光子晶体光纤内特别是纤芯内,产生的热量快速导入光纤之外。以此可以有效地解决大芯径粗光纤的散热问题,为实现百瓦量级的2.7微米单模激光输出提供可能。
【IPC分类】H01S3-067, G02B6-02, G02B6-036, H01S3-042
【公开号】CN104808288
【申请号】CN201510173601
【发明人】廖梅松, 岳静, 毕婉君
【申请人】中国科学院上海光学精密机械研究所
【公开日】2015年7月29日
【申请日】2015年4月14日
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1