一种LED照明装置及其制备方法与流程

文档序号:12435115阅读:198来源:国知局

本发明涉及一种LED照明装置及其制备方法。



背景技术:

从人类发展至今,照明光源经历了火光、油灯、白炽灯、荧光灯,直到目前的(LED)半导体照明。但这些照明光源,在照明的光谱方面均存在缺陷,这种存在缺陷的照明光不能满足人类健康照明的需求;我们都知道,最好的照明光是自然光,因此,追求自然光照明一直是照明行业的愿景。

LED节能灯在许多方面具有传统光源无可比拟的优越性,主要表现在发光效率高、使用寿命长、耐用、采用低电压和低电流驱动、工作安全可靠、节能省电、环保、防震、防水、体积小、光控制方便,发光色彩丰富、色域宽、光束集中,响应速度快,可以智能化、网络化控制与调节等。它的特殊优势符合现代社会的“绿色”标准,也适应新兴科学技术快速发展的进程。

白光产业化实现方式为芯片上涂覆荧光粉实现白光,即为荧光转换型的白光。荧光粉则是白光中重要的关键技术和原料之一。荧光粉的选择有两个必须满足的条件,第一是荧光粉的激发光谱必须与所选的芯片发射光谱相匹配,这样可以确保获得更高的光转换效率第二荧光粉的发射光谱在紫外或近紫外激发下发出白光,或者在蓝光芯片激发下与芯片发射的蓝光能够复合成白光。因此,荧光粉的发展则由较不稳定的硫化物与卤化物,演变至化学稳定、高的热碎灭温度或热稳定性较佳的铝酸盐、硅酸盐、钨酸盐、铂酸盐、磷酸盐,、氮氧化物荧光材料。目前,市场白光灯主流仍是蓝光芯片黄色荧光粉复合形成的白光为主。但是由于其发射光谱中缺少红光成分,显色指数中的值太低,如色温为4000K左右正向驱动电流的产品,光效高达120lm/W以上,但因缺乏红光,其显色指数仅为80左右,其中R9值在10左右,因而所得到的白光照明效果不够真实。为了弥补红光不足的缺陷通过利用红光芯片补偿红光或加入红色荧光粉,改善光谱性能是近年来国内外研究人员研究重点。相对而言,硫化物、硫氧化物、卤化物荧光粉存在发光效率低、稳定性差等缺陷,因此,效率高,稳定性好,使用时间长,自然光照明一直是照明行业的愿景。



技术实现要素:

本发明专利的目的在于提供一种LED照明装置及其制备方法,该方法制备的LED器件能够提供近似的自然光。

本发明采用如下技术方案:

一种LED照明装置,其特征在于:该装置包括LED器件(101)、LED红光光源(102)、LED电路板(100)、散热器(200)以及电源控制器(400),所述LED器件(101)和LED红光光源(102)设置在所述LED电路板上,所述LED电路板设置在所述散热器上方,所述电源控制器通过导线(300)与所述LED电路板相连。

2、如权利要求1所述的LED照明装置,其特征在于,所述LED器件用于提供LED白光光源。

3、如权利要求1所述的LED照明装置,其特征在于,所述电路板通过导线(300)与所述LED电路板相连,所述电路板还与外部的电源输入线相连。

4、一种如权利要求1-3任一项所述的LED照明装置的制作方法,其特征在于,该方法包括以下步骤:

步骤一:采用蓝宝石作为LED电路板基板,并制作成LED电路板(100);

步骤二:在LED器件上沉积均匀的多层LED荧光薄膜;

步骤三:根据LED照明装置的光谱设计需要,确定LED照明装置的功率;

步骤四:根据所需要的LED照明装置,计算所选用的LED器件的数量和LED红光光源的数量。

5、如权利要求4所述的LED照明装置的制作方法,其特征在于所述步骤一中蓝宝石的制备方法包括以下步骤:

a)原料制备,首先以α-Al2O3原料为主原料,加入立方结构的BN、纳米ZrO2和纳米TiO2,将上述材料在混合机中混合15-30min,其中α-Al2O3、立方结构的BN和纳米ZrO2和纳米TiO2的质量比为10-25:2-5:2-3:1-4;

b)将原料放入晶体生长炉抽真空并通入氦气保护气,升温至2000-2100℃将原料融化为熔融状态的熔体,熔融后保温4-5h;

c)该晶体生长炉上部具有一模具,该模具的截面为圆形,中心具有一个小孔,通过小孔的毛细作用使得熔体导入模具顶端,选用C向的定向籽晶对该熔体进行提拉从而促进晶体生长,期间控制熔体表面温度为2089℃,该提拉的速度为10-20mm/h,待晶体生长结束后,降温至1480-1570℃,保温15-30min之后再对晶体进行降温处理,控制温度以30-60℃/h的速度降温得到晶体;

d)切割设备对晶棒进行切割,得到所需要形状的晶片;

e)研磨,采用研磨机对晶片进行研磨;研磨时,加入自制的研磨液,研磨盘对晶片加压至0.025~0.027Mpa,研磨盘的转速为1000~1200rpm/min,研磨完成后用无水乙醇清洗;

f)退火,将晶片放入退火炉内,首先升温至500℃保温1-2h,升温至800℃时保温2-4h,升温至1600℃分别保温2~4h,然后以210-220℃的温度进行降温,降温至1300℃时保温0.5-1h,降温至1000℃时保温1-2h,降温至600℃时候保温1-3h,之后温度以20-40℃/h的速度降温至室温取出;

g)抛光,先用无水乙醇对晶体进行清洗3-5遍,将清洗后的晶体放入抛光机中固定;抛光时,加入抛光液,抛光盘的转速为1000~1500rpm/min、将抛光好的晶片用无水乙醇清洗后,在室温下进行自然冷却。

6、如权利要求5所述LED照明装置的制作方法,其特征在于所述步骤a)中所述α-Al2O3原料的粒径为0.5-5μm,密度为3.98g/cm3;步骤e)中所述研磨液由0.1-2μm的金刚砂颗粒,1-μm的Al2O3颗粒,聚α-烯烃,N,N-乙撑双酯酰胺和去离子水,所述金刚砂颗粒,Al2O3颗粒,聚α-烯烃,N,N-乙撑双酯酰胺和去离子水的质量比为1-5:1-5:5-10:3-6:30-50;步骤g)中所述抛光液组分由氧化铈微米颗粒,烷基糖苷,羟甲基纤维素钠,丙三醇,羟乙基二胺和离子水组成,所述氧化铈颗粒,烷基糖苷,羟甲基纤维素钠,丙三醇和离子水的质量比为:1-5:10-15:6-8:5-10:30-50,所述羟乙基二胺用于控制抛光液的pH,使得抛光液pH值为8-10的碱性溶液。

7、如权利要求4所述的LED照明装置的制作方法,其特征在于所述步骤二,在LED器件上沉积均匀的多层LED荧光薄膜包括以下步骤:

(1)红色荧光材料的制备:

将原料Gd(NO3)3·6H2O,Li2CO3,MgCO3,Nb2O5,H3BO3,Sm2O3,Na2CO3和去离子水,所述Gd(NO3)3·6H2O,Li2CO3,MgCO3,Nb2O5,H3BO3,Sm2O3和Na2CO3的摩尔比为(1-x-y):1-2:1-2:1-2:1-2:x:y,其中0.01≤x≤0.08,x/y=1-2,所述Gd(NO3)3·6H2O与去离子水的质量比为1:1-2;将Gd(NO3)3·6H2O,Li2CO3,MgCO3,Nb2O5,Sm2O3和Na2CO3加入至去离子水中,配置成悬浊液,将悬浊液在50-60℃条件下搅拌30-45min后开始滴加H3BO3,滴加完毕后,将沉淀物采用去离子水清洗3-5次后放于烘干箱中烘干,将烘干后的材料进行球磨混合均匀,放入坩埚中并在高温室中于450℃下烧结4-5h,升温至1000-1200℃烧15-20h,之后自然降温至室温,对焙烧后的产物进行研磨获得即可制得Gd1-x-yLi3Mg2(NbO6)(BO3):xSm3+,yNa1+

(2)绿色荧光材料的制备

a、称取BaCO3、SiO2和Tb2O3,加入至容器中添加乙醇,经混合、充分研磨后放于坩埚中,将坩埚置于烧结炉中,在氮气的作用下,升温至1200~1300℃,烧结3-6h,所述氮气的气流量衡量为30ml/min,降温至900℃温度烧结2小时后冷却得到中间体Ba1.94SiO4:0.06Tb3+;所述BaCO3、SiO2和Tb2O3的摩尔比为1-2:1-2:0.01-0.1,所述BaCO3与乙醇的质量比为1:2-3,;

b、将中间体Ba1.94SiO4:0.06Tb3+、α-Si3N4和Ce2O3混合并添加H3BO3,将上述各成份研磨后放入钼坩埚中,将钼坩埚移入高温炉中,在N2∶H2=95∶5气氛下1400℃烧结3-6小时,气体流量计控制气体在25ml/min以内,之后冷却至室温取出,合成粉体Ba0.92Si2O2N2:0.06Tb3+,0.02Ce3+,将粉体置于异丙醇中,所述粉体和异丙醇的质量比为1:1-2,经过超声波破碎仪进行分散,超声时间为1-2h,经过分散后的粉体干燥后即得到氮氧化物绿色荧光粉Ba0.92Si2O2N2:0.06Tb3+,0.02Ce3+;所述Ba1.94SiO4:0.06Tb3+、α-Si3N4和H3BO3的质量比为2-4:1-2:0.01-0.1,Tb元素与Ce元素的摩尔比为3:1;

(3)蓝色荧光材料的制备

a、将摩尔比为1-n:1:1:2:n的BaCO3,MgO,CaCO3,NH4H2PO4、Tm(NO3)3·5H2O在玛瑙研钵混合,添加复合助剂研磨40-60min,取出后放入坩埚中,首先在900℃预烧2-3h,自然冷却后,取出样品,进一步的研磨40-60min,将样品重新放入坩埚中,在N2∶H2=95∶5气氛下,再于1200℃烧结3-6h,而后自然冷却至室温,得到Ba1-nMgCa(PO4)2:nTm3+蓝色荧光粉;

b、蓝色荧光粉改性,将前面所制备的Ba1-nMgCa(PO4)2:nTm3+加入蒸馏水经充分分散后形成悬浊液,加入MgF2溶胶,混合后制成混合体,经过球磨分散30-60min后,在100℃下烘干,之后置于500℃下2-3h,得到改性的蓝色荧光材料,所述蓝色荧光粉、蒸馏水和MgF2溶胶的质量比为1-2:2-3:0.05-0.5;

(4)通过化学气相沉积法将第一层红色荧光材料,第二层绿色荧光材料,第三层蓝色荧光材料分别沉积在LED器件上,形成LED荧光薄膜。

8、如权利要求6中所述LED照明装置的制作方法,其特征在于所述步骤(1)红色荧光材料的制备中其中x=0.02,y=0.02,所得的红色荧光材料为Gd0.96Li3Mg2(NbO6)(BO3):0.02Sm3+,0.02Na1+,该材料的粒径小于10μm,其中1-6μm的占75%;步骤(3)蓝色荧光材料的制备中n=0.03,所得到的蓝色荧光粉为Ba0.97MgCa(PO4)2:0.03Tm3+,所述复合助剂由质量比为1:1的H3BO3+BaF2组成,该复合助剂为BaCO3质量的10%,所述蓝色荧光粉的粒径小于10μm,其中1-5μm的占70%。

9、如权利要求4所述的LED照明装置的制作方法,其特征在于,步骤二中在LED上沉积均匀的三层LED荧光薄膜。

有益效果:

(1)本发明的蓝宝石晶体制备方法,先切割、研磨、退火后再抛光,可以提高研磨、抛光的生产效率在抛光之前退火有利于消除线切割、研磨等机械加工工序所产生的内应力,使得晶片在抛光时不宜碎裂,有效提高成品率;

(2)严格控制晶体生长时的界面温度、拉升速度、旋转速度和退火参数,严格控制界面温度从而使得晶体的产能高,缺陷密度低,质量好,成品率高,可以大大地降低生产成本;

(3)该蓝宝石晶体外观透明,透光率高,内部无散射颗粒;采用立方结构的BN、纳米ZrO2和纳米TiO2进行掺杂后该晶体具有良好的断裂韧性,且具有高透光性、耐高温等优异性能;同时Ti离子在掺钛蓝宝石晶体生长过程中,钛离子部分以正三价的Ti3+进入基质晶格,从而发生Ti3+不等径取代基质的Al3+,引发晶格的畸变,能够极大的提高晶体断裂强度和硬度;

(4)所得到的蓝宝石晶体的密度(g/cm3)=6.2-7.0,硬度(HRA)为1300-1450,弯曲强度(MPa)为1300-1400,抗压强度(MPa)为3700-3950,热传导率(W(m k))=3.1-3.3,介电强度(V*103)=12-14,透光率=80-89%;

(5)红色荧光材料的制备步骤中,经过大量研究B3+掺杂对荧光材料的晶体结构无改变,但是B3+掺杂量的增加会造成该荧光材料点阵常数减小,使XRD谱中的衍射峰峰位出现右移的现象,适量的硼酸掺杂能够增强基质的吸收作用,提高荧光粉体的发射强度;本发明首次采用了Sm离子和Na离子同时进行掺杂该红色荧光材料,通过研究发现能够有效增强该材料的荧光强度和荧光寿命,并具有优异的抗热淬灭特性,温度从50K升到室温450K,荧光强度和荧光寿命变化小于2%;在紫外至蓝光区域内的光激发下,具有覆盖600~860nm区间和发光中心在677nm红色荧光,其中以Na+作为电荷补偿剂进入晶格,增强了Sm离子和Gd离子的键结合,通过实验发现Sm离子与Na离子的量一致时,材料发光强度提高的最多,约20%左右;

(6)绿色荧光材料的制备步骤中采取两个步骤进行绿色荧光粉材料的合成,其中对原材料和烧结过程进行了有效控制,形成的绿色荧光粉颗粒的可控性,所得到的颗粒的粒度小于10μm,其中30-50%为1-3μm,40-50%为3-6μm,10-15%为6-8μm,使其避免了后期的物理破碎过程,并且采取相比温和的超声分散和水沉淀法,既可以保持粉体颗粒的晶体完整性,同时使粉体粒径满足工业化LED灯的制作要求;其中第一步骤所得到的中间体Ba1.94SiO4:0.06Tb3+材料以360nm近紫外光作为激发源,经过检测中间体Ba1.94SiO4:0.06Tb3+材料的发射光谱分布并未发生变化,没有出现Tb3+的发射带,但发射强度明显得到了增强,说明Tb3+对Ba1.94SiO4:0.06Tb3+材料有很好的敏化作用,可以为其提供所需能量而不影响其发射光谱分布,监测中还发现加入了的Tb3+后主激发峰发生了明显的蓝移,主峰位于375nm,且在300—410nm间具有更宽的谱宽,说明材料在近紫外区的吸收得到了明显地增强.经过大量研究发现,当Tb3+的浓度增加,使得Tb3+对于该材料的敏化效果越佳,能够使得材料在近紫外区的吸收得到了明显地增强,但是超过一定值后反而材料的发射强度降低,经研究发现Ba1.94SiO4:0.06Tb3+的材料的配比为最佳配比,超过该值后材料的发射强度降低;第二步采用氮氧化物绿色荧光粉的合成,并采用Ce元素对其进一步的掺杂,该步骤中加入了5∶95(H2/N2)的还原条件下进,经过发现加入了Ce元素使得Tb元素和Ce元素进行组合进行掺杂后,相较于同等量的Tb或者Ce的单一元素敏化效果最佳,表明Ce离子能够将吸收的能量有效地传递给Eu离子,敏化Tb离子发光,当Tb元素与Ce元素的摩尔比为3:1时发光强度达到最强,增强的效果提升20%,使得主峰在290—430nm间具有更宽的谱宽,说明在近紫外区的吸收得到了明显地增强;

(7)蓝色荧光材料的制备过程中,该蓝色荧光材料在以340nm近紫外线作为激发源时,材料发射蓝色光,光谱覆盖390-670nm,主峰位于460nm.通过增大Tm3+掺杂量不仅可以红移材料的主发射峰,而且可以调控材料的发射强度,随着杂量的增加,表现为先增大后减小的变化趋势,当Tm3+掺杂量为0.03mol时,发射强度最大;采用复合助剂:H3BO3+BaF2,使用上述复合助剂的组合的效果,相较于采用单一复合助剂的发射光谱强度高,制得的材料颗粒更加均匀,平均粒径为4μm,且95%颗粒粒径小10μm;改性的蓝色荧光材料是在该材料的表面包覆了一层MgF2,由于MgF2的透光性很强因此对于蓝色荧光材料的亮度降低幅度可以忽略,但是由于MgF2包覆在了该材料的表面,能有效增强该材料的使用寿命,经试验发现相较于为采用改性的材料寿命提升30%;

(8)通过在LED器件上沉积荧光材料薄膜,能够有效的减少LED内部反射和散射的光效率损失,获得各向均匀的色温度,沉积红绿蓝三层荧光材料薄膜具有高光电转化率和高显色指数即近似自然光的LED器件,同时该方法简单能够用于工业生产。

附图说明

图1为LED照明装置的结构示意图。

具体实施方式

下面结合具体实施例,进一步阐述本发明。

一种LED照明装置,其特征在于:该装置包括LED器件(101)、LED红光光源(102)、LED电路板(100)、散热器(200)以及电源控制器(400),所述LED器件(101)和LED红光光源(102)设置在所述LED电路板上,所述LED电路板设置在所述散热器上方,所述电源控制器通过导线(300)与所述LED电路板相连;

所述LED器件用于提供LED白光光源;所述电路板通过导线(300)与所述LED电路板相连,所述电路板还与外部的电源输入线相连。

一种制备如前所述的LED照明装置的制作方法,该方法包括以下步骤:

步骤一:采用蓝宝石作为LED电路板基板,并制作成LED电路板(100);

步骤二:在LED器件上沉积均匀的三层LED荧光薄膜;

步骤三:根据LED照明装置的光谱设计需要,确定LED照明装置的功率;

步骤四:根据所需要的LED照明装置,计算所选用的LED器件的数量和LED红光光源的数量。

步骤一中蓝宝石的制备方法包括以下步骤:

a)原料制备,首先以α-Al2O3原料为主原料,加入立方结构的BN、纳米ZrO2和纳米TiO2,将上述材料在混合机中混合15-30min,其中α-Al2O3、立方结构的BN和纳米ZrO2和纳米TiO2的质量比为10-25:2-5:2-3:1-4;中所述α-Al2O3原料的粒径为0.5-5μm,密度为3.98g/cm3;步骤e)中所述研磨液由0.1-2μm的金刚砂颗粒,1-μm的Al2O3颗粒,聚α-烯烃,N,N-乙撑双酯酰胺和去离子水,所述金刚砂颗粒,Al2O3颗粒,聚α-烯烃,N,N-乙撑双酯酰胺和去离子水的质量比为1-5:1-5:5-10:3-6:30-50;其中纳米ZrO2和纳米TiO2粒子的粒径为1-50nm,其中TiO2粒子的粒径小于ZrO2粒子的粒径;

b)将原料放入晶体生长炉抽真空并通入氦气保护气,升温至2000-2100℃将原料融化为熔融状态的熔体,熔融后保温4-5h;

c)该晶体生长炉上部具有一模具,该模具的截面为圆形,中心具有一个小孔,通过小孔的毛细作用使得熔体导入模具顶端,选用C向的定向籽晶对该熔体进行提拉从而促进晶体生长,期间控制熔体表面温度为2089℃,该提拉的速度为10-20mm/h,待晶体生长结束后,降温至1480-1570℃,保温15-30min之后再对晶体进行降温处理,控制温度以30-60℃/h的速度降温得到晶体;

d)切割设备对晶棒进行切割,得到所需要形状的晶片;

e)研磨,采用研磨机对晶片进行研磨;研磨时,加入自制的研磨液,研磨盘对晶片加压至0.025~0.027Mpa,研磨盘的转速为1000~1200rpm/min,研磨完成后用无水乙醇清洗;

f)退火,将晶片放入退火炉内,首先升温至500℃保温1-2h,升温至800℃时保温2-4h,升温至1600℃分别保温2~4h,然后以210-220℃的温度进行降温,降温至1300℃时保温0.5-1h,降温至1000℃时保温1-2h,降温至600℃时候保温1-3h,之后温度以20-40℃/h的速度降温至室温取出;

g)抛光,先用无水乙醇对晶体进行清洗3-5遍,将清洗后的晶体放入抛光机中固定;抛光时,加入抛光液,抛光盘的转速为1000~1500rpm/min、将抛光好的晶片用无水乙醇清洗后,在室温下进行自然冷却;所述抛光液组分由氧化铈微米颗粒,烷基糖苷,羟甲基纤维素钠,丙三醇,羟乙基二胺和离子水组成,所述氧化铈颗粒,烷基糖苷,羟甲基纤维素钠,丙三醇和离子水的质量比为:1-5:10-15:6-8:5-10:30-50,所述羟乙基二胺用于控制抛光液的pH,使得抛光液pH值为8-10的碱性溶液。

步骤二中在LED器件上沉积均匀的多层LED荧光薄膜包括以下步骤:

(1)红色荧光材料的制备:

将原料Gd(NO3)3·6H2O,Li2CO3,MgCO3,Nb2O5,H3BO3,Sm2O3,Na2CO3和去离子水,所述Gd(NO3)3·6H2O,Li2CO3,MgCO3,Nb2O5,H3BO3,Sm2O3和Na2CO3的摩尔比为(1-x-y):1-2:1-2:1-2:1-2:x:y,其中0.01≤x≤0.08,x/y=1-2,所述Gd(NO3)3·6H2O与去离子水的质量比为1:1-2;将Gd(NO3)3·6H2O,Li2CO3,MgCO3,Nb2O5,Sm2O3和Na2CO3加入至去离子水中,配置成悬浊液,将悬浊液在50-60℃条件下搅拌30-45min后开始滴加H3BO3,滴加完毕后,将沉淀物采用去离子水清洗3-5次后放于烘干箱中烘干,将烘干后的材料进行球磨混合均匀,放入坩埚中并在高温室中于450℃下烧结4-5h,升温至1000-1200℃烧15-20h,之后自然降温至室温,对焙烧后的产物进行研磨获得即可制得Gd1-x-yLi3Mg2(NbO6)(BO3):xSm3+,yNa1+;其中x=0.02,y=0.02,所得的红色荧光材料为Gd0.96Li3Mg2(NbO6)(BO3):0.02Sm3+,0.02Na1+,该材料的粒径小于10μm,其中1-6μm的占75%;

(2)绿色荧光材料的制备

a、称取BaCO3、SiO2和Tb2O3,加入至容器中添加乙醇,经混合、充分研磨后放于坩埚中,将坩埚置于烧结炉中,在氮气的作用下,升温至1200~1300℃,烧结3-6h,所述氮气的气流量衡量为30ml/min,降温至900℃温度烧结2小时后冷却得到中间体Ba1.94SiO4:0.06Tb3+;所述BaCO3、SiO2和Tb2O3的摩尔比为1-2:1-2:0.01-0.1,所述BaCO3与乙醇的质量比为1:2-3,;

b、将中间体Ba1.94SiO4:0.06Tb3+、α-Si3N4和Ce2O3混合并添加H3BO3,将上述各成份研磨后放入钼坩埚中,将钼坩埚移入高温炉中,在N2∶H2=95∶5气氛下1400℃烧结3-6小时,气体流量计控制气体在25ml/min以内,之后冷却至室温取出,合成粉体Ba0.92Si2O2N2:0.06Tb3+,0.02Ce3+,将粉体置于异丙醇中,所述粉体和异丙醇的质量比为1:1-2,经过超声波破碎仪进行分散,超声时间为1-2h,经过分散后的粉体干燥后即得到氮氧化物绿色荧光粉Ba0.92Si2O2N2:0.06Tb3+,0.02Ce3+;所述Ba1.94SiO4:0.06Tb3+、α-Si3N4和H3BO3的质量比为2-4:1-2:0.01-0.1,Tb元素与Ce元素的摩尔比为3:1;

(3)蓝色荧光材料的制备

a、将摩尔比为1-n:1:1:2:n的BaCO3,MgO,CaCO3,NH4H2PO4、Tm(NO3)3·5H2O在玛瑙研钵混合,添加复合助剂研磨40-60min,取出后放入坩埚中,首先在900℃预烧2-3h,自然冷却后,取出样品,进一步的研磨40-60min,将样品重新放入坩埚中,在N2∶H2=95∶5气氛下,再于1200℃烧结3-6h,而后自然冷却至室温,得到Ba1-nMgCa(PO4)2:nTm3+蓝色荧光粉;

b、蓝色荧光粉改性,将前面所制备的Ba1-nMgCa(PO4)2:nTm3+加入蒸馏水经充分分散后形成悬浊液,加入MgF2溶胶,混合后制成混合体,经过球磨分散30-60min后,在100℃下烘干,之后置于500℃下2-3h,得到改性的蓝色荧光材料,所述蓝色荧光粉、蒸馏水和MgF2溶胶的质量比为1-2:2-3:0.05-0.5;所述n=0.03,所得到的蓝色荧光粉为Ba0.97MgCa(PO4)2:0.03Tm3+,所述复合助剂由质量比为1:1的H3BO3+BaF2组成,该复合助剂为BaCO3质量的10%,所述蓝色荧光粉的粒径小于10μm,其中1-5μm的占70%;

(4)通过化学气相沉积法将第一层红色荧光材料,第二层绿色荧光材料,第三层蓝色荧光材料分别沉积在LED器件上,形成LED荧光薄膜;

沉积过程中将红色荧光材料做为第一层,绿色荧光材料作为第二层,蓝色荧光材料作为第三层;首先红色荧光材料第一层的沉积:将红色荧光材料溶入混合溶剂中,分别形成浓度为0.1摩尔/升的第一溶液;所述混合溶剂是由四氢呋喃和2-乙基己酸按照摩尔比3:2.5的比例组成;将第一溶液加热至350℃保温30-60min之后送入气化室使其气化,形成第一混合气体;通过氩气将第一混合气体以4000sccm的流量,输送至反应器中的LED器件上,所述反应器中的温度300℃,输送完毕后静置30-45min,之后将该器件的温度升高至800℃,保温30-60min,得到在LED器件上形成第一层荧光薄膜;重复上述步骤将绿色荧光材料的第二层,蓝色荧光材料的第三层逐步沉积在LED器件上形成三层LED荧光薄膜;所述每层镀膜的厚度为0.2-1μm,优选0.5μm。

然后根据LED照明装置的光谱设计需要,确定LED照明装置的功率;最后根据所需要的LED照明装置,计算所选用的LED器件的数量和LED红光光源的数量。

利用一组以上LED白光光源和一组以上LED红光光源调出一种可见光谱范围可以达到370-720nm,已经非常接近接近自然光。

其中LED白光光源和LED红光光源具备以下属性:

(1)LED白光光源的显指特性CRI大于90,优选为95-100,R9大于80,优选85-90,且R12大于70,优选75。

(2)LED红光光源的波长大于620nm。

作为上述实施例的优选实施方式,LED白光光源101的功率与LED红光光源102的功率比为3-10:1;

作为上述实施例的优选实施方式,当单颗LED白光光源和单颗LED红光光源的功率相同时,LED白光光源的数量和LED红光光源的数量比例为3-10:1

作为上述实施例的优选实施方式,LED白光光源的光通量值与LED红光光源的光辐射功率值之比为:1-3:1

作为其中一个实施例

1)所制备得到的白光光源101,其CRI为95-100,R9为85-90,且R12为75,且额定工作电流150mA,工作电压:2.9-3.4V,LED白光光源的数量为12颗。

2)选用两组不同波长的LED红光光源102,单颗LED红光光源102的功率为0.5W,且额定工作电流为150mA,额定工作电压为2.0-2.6V,两组LED红光光源102的波长分别为650-660nm(数量2颗)和680-700nm(数量2颗)。

3)根据上述三种光源的安装要求及连接方式设计LED电路板和散热器;

上述三组LED器件的连接方式为:两并八串,即12颗LED白光光源灯珠两并六串与两组(4颗)LED红光光源灯珠两并两串后,串联在一起,即为两并八串。

所制得的LED照明装置的电光转换效率(1m/W)为90-125,显色指数为95-100,产品的使用寿命为(L70,h)为60000-115000(以L70代表当LED流明维持率为70%时的使用时间)。

应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1