具有层化涂覆的制程室组件及方法

文档序号:3403430阅读:220来源:国知局
专利名称:具有层化涂覆的制程室组件及方法
技术领域
本发明是有关于用于基板制程室的组件。
背景技术
在基板(如,半导体晶圆及显示器)制程中,一基板会置放于一制程室中,且曝露于一高能气体中,以将材料沉积于基板上或对基板上的材料进行蚀刻。在这样的制程期间,会产生制程残余物,且这些制程残余物会沉积在该室的内表面上。例如,在溅镀沉积过程中,由一标靶溅镀而用于沉积在一基板上的材料,亦会沉积在室中其他组件的表面上,如沈积于沉积环上、阴影环上、内壁衬垫上、及聚焦环上。在后续的制程中,所沉积的制程残余物会由室壁表面剥落,而掉在该基板上,造成污染。
为了减少基板因制程残余物所造成的污染,该室内组件的表面应具有特殊结构。制程残余物较易附着在曝露的特殊结构表面,且可避免因剥落而污染了室内的基板。通过在一组件上涂布一粗糙表面,可形成具有特殊结构的组件表面,如以下范例中所描述般美国专利案第6,777,045号(颁证日2004/08/17,发明人Shyh-Nung Lin等人,共同受让人是AppliedMaterials公司)及美国专利申请案序号10/833,975(申请日2004/04/27,发明人Lin等人,共同受让人是Applied Materials公司),该等文献是以引用的方式并入本文中。表面较粗糙的涂层较能累积且留住基板制程的制程残余物,以降低基板在室内处理时的污染。
然而,涂布于涂层上的表面粗糙度会受限于涂层与下衬组件结构的黏合特质。例如,因目前制程所造成的两难状况是,令表面粗糙度增加,且因此而提升制程残余物的附着力的涂层,典型上亦较不易黏着于下衬的结构上。对于组件上具有不相似成分的涂层(例如,陶瓷或不锈钢组件上的铝涂层)而言,如此的状况尤是。具有较弱附着力涂层的基板的制程,会造成涂层由下衬结构的脱层、破裂、及剥落。该室中的电浆会穿透涂层的受损区,而腐蚀下衬结构的表面,最后导致该组件的失效。因此,具有涂层的组件典型上无法同时提供合适的黏着力及良好的残余物附着特质。
因此,我们期望能够拥有一种具有涂层的组件及方法,其可令制程残余物对组件表面具有改良的附着力,使实质上,涂层不由组件脱层。我们更期望可拥有一种具有涂层的组件及方法,其可提供表面较为粗糙的良好黏着涂层,而可改良制程残余物的附着力。

发明内容
在一态样中,在一制程室中,能够曝露于一高能化气体的基板处理室组件,具有一下衬结构及第一及第二涂覆层。该第一涂覆层形成于该下衬结构上方,且具有一第一表面,其平均表面粗糙度低于约25微米。该第二涂覆层形成于该第一涂覆层上方,且具有一第二表面,其平均表面粗糙度至少为约50微米。制程残余物可附着于该第二涂覆层的表面,以降低经处理的基板的污染。
在另一态样中,基板处理室组件具有一下衬结构,该下衬结构是由不锈钢、铝与钛的至少一个所形成。该组件具有一铝的第一喷涂涂覆层位在该下衬结构上方,该第一喷涂涂覆层具有(1)低于约10%的孔隙度;以及(2)一第一表面,其平均表面粗糙度低于约25微米。该组件也具有一铝的第二喷涂涂覆层位在该第一喷涂涂覆层上方,该第二喷涂涂覆层具有(1)至少约12%的孔隙度;以及(2)一第二表面,其平均表面粗糙度至少约50微米。制程残余物会附着于该第二表面,而减少经处理的基板的污染。
在一态样中,一种制备基板处理室组件的方法包括提供一下衬结构,以及喷涂一第一涂覆层至该下衬结构上。第一喷涂参数被维持以在该第一涂覆层上形成一第一表面,其中该第一表面的平均表面粗糙度低于约25微米。一第二涂覆层被喷涂在该第一涂覆层上方,同时维持第二喷涂参数以在该第二涂覆层上形成一第二表面,其中该第二表面的平均表面粗糙度至少约50微米。
在另一态样中,提供一种能够在一结构上形成一涂层的双线弧形喷涂器。该喷涂器具有第一及第二电极,其能够承受偏压而在其间产生一电弧,至少一电极具有自耗电极。该喷涂器亦可具有一压缩气体的供应器,其可引导压缩气体通过该等电极,及一压缩气体所流通经过的喷嘴。该喷嘴具有可接收压缩气体的导管,及具有一入口的圆锥部份,其附着于该导管及释放压缩气体的出口之处。该圆锥部份具有倾斜的导管侧壁,由入口向出口往外扩大。该入口具有一第一直径,及该出口具有一第二直径,该第二直径为该第一直径的1.5倍大小,藉以可选择流过该喷嘴的压缩气体的压力,以提供一预设平均表面粗糙度的涂层。该自耗电极至少部份会因电弧而熔化,形成熔化的材料,及该熔化材料会通过压缩气体推进,而通过该喷嘴,涂布于该结构上,形成涂层。该喷嘴可选择压缩气体的压力,以提供一预设平均表面粗糙度的涂层。


经由上文叙述、所附权利要求及绘示本发明范例的附加图式,可更了解本发明的特征、观点及优点。然而,应了解,各特制件可普遍用在本发明中,而非仅用于特定图式内容,且本发明包含该等特制件的任何组合,其中图1具有第一及第二涂覆层的制程室组件的实施例的部份侧剖面图;图2能够在一组件上形成一涂层的热喷涂器的实施例的部份示意图;图3a及图3b分别为热喷涂器喷嘴的实施例的部份侧剖面图及偏移俯视图,该热喷涂器喷嘴能够形成具有不同平均表面粗糙度的范围的涂覆层;及图4是一基板制程室的实施例的部份侧剖面图。
主要元件符号说明20 组件 22 涂层24 结构 25 曝露的特殊材料表面26 表面 30a,b 层32 表面 32a,b 第一层表面32 表面 104基板
105 表面 106 制程室109 制程区 112 分送系统114 基板支架 116 气体激发器118 密封壁 118 制程室密封壁120 遮罩 120a,b 下遮罩部份122 排气口 124 标靶126 遮盖环 128 沉积环130 支架 132 绝缘环133 活动遮片 134 上表面135 高能化线圈 137 线圈支架141 夹钳遮罩 164 包含侧壁166 底壁 168 顶罩170 电极 172 电源供应174 气体来源 176 导管178 控制阀 180 气体分布器182 气体出口 184 排气门186 排气管 188 节流阀190 排气泵 192 电源供应194 控制器 400 热喷涂器402 喷嘴 403 入口404 导管 405 入口406 圆锥部份 407 出口408 圆锥侧壁 409 中央轴450 起弧区 452 电源供应454 气体供应 456 压缩空气源458 导管 490,499 自耗电极具体实施方式
图1显示适用于一基板制程室的组件20。该组件20包含一涂层22,其具有制程残余物可附着的特殊结构的表面25,且亦可避免下衬组件的腐蚀。具有涂层22的组件20可以是该室106中的组件,其易受腐蚀及/或累积制程残余物,该等组件是(例如)以下至少一个的部份气体分送系统(其提供该室106中的处理气体)112、支持该室106中的基板104的基板支架114、令该处理气体高能化的气体激发器116、舱室密封壁118及遮罩120、及将气体由该室106排出的排气口122,在图4中显示其示范实施例。例如,在一物理气相沉积室106中,该涂层组件包含以下任一者舱室密封壁118、一舱室遮罩120、一标靶124、一遮盖环126、一沉积环128、一支持环130、绝缘环132、一线圈135、线圈支架137、溅镀板133、夹钳遮罩141、及一基板支架114的表面134。
该舱室组件20包含一下衬结构24,其具有覆盖至少部份该结构24的上覆涂层22,如图1所示般。该下衬结构24包含抗高能气体腐蚀的材料,该高能气体(例如)形成于基板制程环境中。例如,该结构24包含一金属,例如以下至少一个铝、钛、钽、不锈钢、铜及铬。在一态样中,包含改良的抗腐蚀緎的结构24包含以下至少一个铝、钽、及不锈钢。该结构24亦包含一陶瓷材料,例如以下至少一个矾土、硅土、氧化锆、氮化硅及氮化铝。该结构24表面26与该涂层22接触,且其表面较佳为具有表面粗糙性,这可改良上覆涂层22对该结构24的附着力。例如,该结构26的表面粗糙度至少约为2.0微米(80微英寸)。
可通过提供包含至少二涂层材料的涂覆层30a,b的涂层22,来改良基板制程。该多层涂层22包含二涂覆层30a,b,其特征可选择以提供该涂层22对该下衬结构24的良好黏着力,且亦可改良该制程残余物的附着力。我们希望该涂层22包含一第一层30a及一第二层30b,该第一层30a形成于该下衬结构24的至少部份表面26上方,该第二层30b形成于该第一层的至少部份上方。用于该第一及第二层30a,b中至少一个的合适材料包含(例如)一金属材料,例如以下至少一个铝、铜、不锈钢、钨、钽及镍。该第一及第二层30a,b中至少一个亦包含一陶瓷材料,例如以下至少一个氧化铝、氧化硅、碳化硅、碳化硼、及氮化铝。在一态样中,该涂层22包含至少一铝层30a,b,其形成在一下衬结构24的上方,该下衬结构24包含以下至少一个不锈钢及氧化铝。虽该涂层22仅由二层30a,b组成,然而该涂层22亦可包含多层可提供改良特征的材料。
该涂层22较佳包含一第一层30a,其特征为提供对下衬结构24的表面26的强化黏着力。在一态样,具有特殊结构表面32的第一层30a可提供改良的结果,该表面32具有一第一平均表面粗糙度,其够低而足以提供该第一层30a对该下衬结构24的良好黏着力。该表面的平均粗糙度是沿着表面的粗糙特制件的尖端与低凹处的平均线位移量的绝对值平均数。具有较低表面粗糙度的该第一层30s,会展现良好的黏着特征,例如,在该层30与该下衬表面26之间的较佳接触区。具有较低表面粗糙度的第一层30a,典型上亦具有较低的孔隙度,而通过降低黏合介面的孔洞数,即可增进下衬表面26的黏着力。合适的第一层30a包含平均表面粗糙度(例如)低于约25微米(1000微英寸)的表面32,例如,由约15微米(600微英寸)至约23微米(900微英寸),及甚至约20微米(800微英寸)。该第一层30a适宜的孔隙度低于约体积的10%,如,由占体积的约5%至约9%。该第一层30a的厚度可选择,以提供对下衬表面26的良好附着力,而提供良好的抗腐蚀性,且该厚度可以为(例如)由约0.10厘米至约0.25厘米,例如,由约0.15厘米至约0.20厘米。
该涂层22更包含一第二涂覆层30b,其形成于至少部份的该第一层30a的上方,该第一层30a具有可提供对制程残余物的改良附着力的特殊结构曝露表面25。例如,该第二涂覆层30b包含一特殊结构曝露表面25,其平均表面粗糙度大于该第一层30b。第二层曝露表面30b的较高表面粗糙平均值,可强化制程残余物对该曝露表面的附着力,降低材料由特殊结构曝露表面25剥落或碎裂的发生机会,并避免处理中的基板104与组件20的污染。适合提供改良的制程残余物附着力的特殊结构曝露表面25的平均表面粗糙度,其平均表面粗糙度至少约50微米(2000微英寸),及甚至至少约56微米(2200微英寸),例如,由约56微米(2200微英寸)至约66微米(2600微英寸)。表面较粗糙的第二层30b亦具有较高的孔隙度程度,其高于该第一涂覆层30a,例如,至少约12%体积的孔隙度,例如由约12%至约25%的体积,及甚至至少约15%的体积。足以提供该第二层30b对该第一层30a的表面32的良好附着力的第二层30b的厚度,在维持对高能化气体的良好抗腐蚀性之时,是由约0.15厘米至约0.30厘米,例如由约0.20厘米至约0.25厘米。
包含该第一层及第二层30a,b的该涂层22,可提供涂层22对下衬结构24的黏着力及残余物对涂层22的附着力的本质改良。包含该第一较低表面粗糙度平均值的第一层30a,能够形成与下衬结构24的表面26的强黏着力,及因此可将该涂层22固定于下衬结构24。包含该第二较高表面粗糙度平均值的第二层30b,相较于具有较低粗糙度平均值的表面,更能够累积及维持更大体积的制程残余物,及因此可改良具有涂层22的组件20的制程耐受力。因此,具有该第一及第二涂覆层22的涂层22,可提供基板制程中改良的效能,同时亦减少了涂层22由该结构24碎裂,且降低了经处理的基板104的污染。
在一态样中,该第一及第二涂覆层30a,b较佳包含可强化该二层30a,b间的黏合的材料成分。例如,该第一及第二涂覆层30a,b可由本质上具有相似热膨胀系数(例如,差异低于约5%的热膨胀系数)的材料所组成,以减少该等层30a,b因热膨胀不相匹配而造成的碎裂。在较佳态样中,该第一及第二层30a,b包含相同的组成,以提供该第一及第二层30a,b的最理想的附着力及热匹配度。例如,该第一及第二层30a,b可由铝所组成。因为包含相同材料的第一及第二层所具有的性质会彼此良好匹配,且对制程环境中的不同应力会有相似的回应,故可设置具有较高平均表面粗糙度的第二层,而仍维持该第二层对该第一层的良好附着力。
通过一轮廓检测仪或通过一扫描电子显微镜,即可判定该第一及第二层30a,b的平均表面粗糙度,该轮廓检测仪将一针分别通过表面32,25,且在该等表面上产生表面粗糙高度的变动的图形记录,该扫描电影显微镜使用由该等表面所反射的电子束来产生该等表面的影像。在量测如粗糙度平均值或其他特征等的表面性质时,可使用详细说明了合适切断长及评估长度的国际标准ANSI/ASME B.46.1-1995。以下的表格I显示依该标准所界定的粗糙度平均值,合适切断长,与最小评估长度与典型评估长度间的对应关是
表格I

包含该第一及第二层30a,b的涂层22,可提供仅单一层的涂层改良的结果,而该涂层会展现对制程残余物较强的附着力,且可更强黏合于下衬的结构。例如,包含一第一层30a及一第二层30b的涂层22,可用以处理基板104至少约200RF小时,且实质上不污染该基板,该第一层30a的平均表面粗糙度低于约25微米(1000微英寸),及该第二层30b的平均表面粗糙度是大于约51微米(2000微英寸)。相对的,习用的单层涂层必须清洁组件以避免污染基板之前,仅可处理基板104少于约100RF小时。
可通过一方法涂敷该等涂覆层30a,b,该方法即在该涂层22与该下衬结构24之间提供强力黏合,以保护该下衬结构24。例如,至少一涂覆层30a,b的涂敷,可通过一热喷涂程序,例如以下至少一个双线弧形喷涂程序、火焰喷涂程序、电浆电弧喷涂程序、及氢氧焰喷涂程序。除了热喷涂程序以外,可通过化学或物理沉积程序来形成至少一涂覆层。在一态样中,下衬结构24的表面26在该等层30a,b沉积之前,会先进行液滴撞击,以通过从该表面26移除任何的松散粒子,而提升后续涂敷的涂层22的附着力,且提供黏着至该第一层30a的最适表面质地。经液滴撞击的表面26会进行移除液滴粒子的清除工作,且令该表面26干燥,以令任何残留在该表面26上的湿气蒸发,而提供该等涂覆层30a,b的良好附着力。
在一态样中,该第一及第二涂覆层30a,b会通过一双线弧形喷涂程序而涂敷于该组件20,例如描述于下者美国专利案第6,227,435 B1号(颁证日2001/03/08,发明人Lazarz等人)及美国专利案第5,695,825号(颁证日1997/12/09,发明人Scruggs),该等文献是以引用的方式并入本文中。如图2的范例所示,在该双线弧形喷涂程序中,一热喷涂器400包含二自耗电极490,499,其形状及角度皆可令电弧形成于该等电极490,499间的起弧区450。例如,该等自耗电极490,499包含一双电线,其由涂层的金属形成于该组件20的表面22上,且其角度朝向彼此,以允许在最靠近的点之处产生放电。当来自(例如)一电源供应452的电压施加至该等自耗电极490,499,而同时一载流气体在该等电极490,499之间流动时,在该等自耗电极490,499之间可产生一电弧放电,该载流气体是例如氮气或氩气中至少一个。该载流气体可通过一气体供应454而提供,该气体供应454包含一压缩空气源456及一导管458或其他导引构件,以引导该压缩气体通过该等电极490,499。该等电极490,499间的起弧,可令该等电极490,499上的金属原子化及至少部份液化,且通过该等起弧电极490,499高能化的载流气体,会将熔化的粒子由该热喷涂器400推挤,且到达该组件20的表面26。该等熔化粒子撞击在该组件的表面上,在此处冷却且凝聚而形成一保形涂覆层30a,b。该等自耗电极490,499(例如,自耗电线)可连续地馈入该热喷涂器,以提供连续供应的金属材料。
在热喷涂期间的操作参数可为了适用于调整该涂层材料涂敷的特征而选择,例如,涂层材料由该热喷涂器到达该组件时的温度及速度。例如,由该热喷涂器往该表面26的载流气体流速、载流气体压力、功率位准、电线馈入速率、相隔距离、及涂层材料相对于该表面26的沉积角度,皆可为了增进该涂层材料的涂敷及该涂层22对下衬结构表面26的后续黏附而加以选择。例如,该等自耗电极490,499间的电压可在由约10伏特至约50伏特之间选择,例如,约30伏特。此外,在该等自耗电极490,499之间流动的电流可在由约100安培至约1000安培之间选择,例如,约200安培。该热喷涂器的功率位准的范围通常为由约6至80千瓦特,例如,约10千瓦特。
亦可为了调整该表面26上的涂层材料的沉积物特征,而选择该沉积物的相隔距离及角度。例如,可调整沉积物的相隔距离及角度,以修正溶化的涂层材料冲击该表面时溅镀的型态,以形成(例如)「薄饼式」及「薄片状」型态。亦可调整该沉积物的相隔距离及角度,以修正该涂层材料撞击该表面26时的相位、速度、或液滴尺寸。在一实施例中,该热喷涂器400与该表面间的相隔距离是约15cm,及该涂层材料在该表面26上的沉积物角度是约90°。
可调整该涂层材料的速度,以该涂层材料使适当地沉积于该表面26上。在一实施例中,该粉未式涂层材料的速度是由约100至约30米/秒。亦,可调适该热喷涂器400,是故当该涂层材料撞击该表面时,该涂层材料的温度是至低为约熔点。高于熔点的温度会产生高密度及黏合强度的涂层。例如,接近放电的高能化载流气体的温度会超过5000℃。然而,接近放电的高能化载流气体的温度亦可设定为够低,以致于该涂层材料在撞击该表面26时,仍维持熔化态一段时间。例如,一段合适的时间应至少约数秒钟。
该等热喷涂处理参数依期望而选择,以提供具有期望的结构及表面特征的含该二层30a,b的涂层22,例如,期望的涂层厚度、涂层表面粗糙度、及涂层的孔隙度,而这可促成该涂层组件20的改良效能。在一态样中,通过在形成第一层30a的第一步骤期间,维持该等第一热喷涂处理参数,及在形成具有较高平均表面粗糙度的第二层30b的第二步骤期间,将该等热喷涂处理参数改成一第二参数组,可形成一涂层22。例如,该等第一热喷涂处理参数适合形成平均表面粗糙度较低的表面32的第一层30a,而该等第二热喷涂参数适合形成平均表面粗糙度较高的表面32的第二层30b。
在一态样中,用以沉积该第一层30a的第一热喷涂处理参数包含较高第一气压的载流气体,及用以沉积该第二层30b的第二热喷涂处理参数包含低于该第一气压的较低第二气压的载流气体。例如,在该第一层30a沉积期间所维持的载流气体的第一气压,应至少约200千巴(30磅/平方英寸),例如,由约275千巴(40PSI)至约415千巴(60PSI)。较高气压的载流气体会令该结构表面26上喷涂涂层材料成为更致密的压塞,因而提供具有较低的平均表面粗糙度的结果层。在该第二层30b沉积期间所维持的载流气体的第二气压,应低于200千巴(30PSI),且甚至低于175千巴(25PSI),例如由约100千巴(15PSI)至约175千巴(25PSI)。在该第一与该第二层30A,B的沉积之间,亦可改变其他参数,以提供该层所欲的性质。
在一态样中,沉积一第一铝层30a的第一热喷涂程序,包含维持该载流气体的第一气压于约415千巴(60PSI),同时施加约10瓦特的功率位准于该等电极490,499。由该下衬结构24表面26的相隔距离会维持在约15公分(6英寸),及对该表面26的沉积角度会维持在约90°。沉积一第二铝层30b的第二热喷涂程序,包含维持该载流气体的第一气压于约175千巴(25PSI)的低气压,同时施加约10瓦特的功率位准于该等电极490,499。由该第一铝层30a表面32的相隔距离会维持在约15公分(6英寸),及对该表面32的沉积角度会维持在约90°。
根据本发明的原理,改良的热喷涂器400已发展为可供形成该第一及第二层30a,b两者所用,该第一及第二层30a,b是使用相同热喷涂器400,而具有较高及较低的平均表面粗糙度。在一态样中,该改良的热喷涂器400包含一改良喷嘴402,其实施例显示于图3a及图3b。该改良喷嘴402包含一导管404及一圆锥部份406,该导管404可接收压缩气体及熔化涂层粒子,及该圆锥部份406可将该压缩气体及熔化粒子由该热喷涂器400释放,以令该熔化的涂层材料喷涂于该组件结构上。该导管404包含一入口403,其可接收由该电弧区流入该导管的该压缩气体及涂层粒子。该圆锥部份406包含一入口405及一出口407,该入口405可接收来自该导管的该压缩气体及涂层粒子,及该出口407可由该喷嘴402释放该气体及熔化的涂层粒子。
该圆锥部份406的内壁包含多个斜锥侧壁408,其关于该圆锥部份406的中央轴409,而由距该圆锥部份入口405第一距离d1处向外延展,至距该圆锥部份出口407的第二距离d2处。该等斜锥侧壁408可提供流经该部份的锥状流径,由该入口405处的较窄流径逐渐增加至该出口407处的较宽流径。例如,该等圆锥侧壁408包含由约5厘米至约23厘米的第一直径,例如由约10厘米至约23厘米,及甚至由约10厘米至约15厘米。一第二直径是由约20厘米至约35厘米,例如由约23厘米至约25厘米。该出口407的较佳第二直径可以是(例如)至少约该入口405的第一直径大小的1.5倍,例如,由约1.5倍至约2倍的入口直径大小。该等斜锥侧壁408关于另一者会形成由约60°至约120°的角度α,例如,约90°。
该改良喷嘴402可使压缩气体及熔化的涂层粒子通过,以供沉积具有一范围的平均表面粗糙度的涂覆层30a,b所用。根据期望的第一及第二层30a,b的最小及最大表面粗糙度,可选择该圆锥部份入口405的第一直径d1,较小的第一直径利于形成较低范围的平均表面粗糙度,及较大的第一直径可促进形成较高范围的平均表面粗糙度。可依该喷涂涂层材料的期望扩展及分布范围来决定该第二直径d2的大小,以提供期望的涂层性质。接着,可为了提供期望的平均表面粗糙度,而加以选择该等喷涂处理参数。例如,可提供较高的载流气体气压,以形成平均表面粗糙度较低的层30a,反之,可提供较低的载流气体气压,以形成平均表面粗糙度较高的层30b。较高气压的气体可令该熔化的涂层材料较致密且同质地一起压塞在该组件结构的表面上,以产出较低表面粗糙度的结构,其至少部份导因于较高馈给速率的涂层材料。较低的气压导致较低的馈给速率,且因此产生较高的孔隙度及较高对平均表面粗糙度的涂层结构。该改良喷嘴402可允许有效率地制造该组件20上具有不同平均表面粗糙度的层30a,b,亦可同时虑及期望的喷涂性质,例如,该涂层粒子的扩展及分布,且实质上各层30a,b不需要分离的装置或再设定为数众多的喷涂参数。
一旦该涂层22已涂敷,该涂层22表面25的疏松涂层粒子或其他污染物就应清除。可使用干净的液体清洁该表面25,该干净液体例如下列中至少一个水、酸性清洁剂、及碱性清洁剂,且可随机地通过超声波振动该组件20。在一态样中,该表面25的清洁可通过去离子水进行冲洗。
亦可在处理至少一基板104之后,才清洁及刷新该涂层组件20,以由该组件20除去该涂层22累积的制程残余物及腐蚀部份。在一态样中,该组件20的刷新可通过除去该涂层22及制程残余物,及通过执行多样清洁处理,以在再涂敷该涂覆层30a,b之前,先行对该下衬表面26进行清洁。该下衬表面26的清洁可提供该下衬结构24与后续再形成的涂层22间的强化黏合。一旦完成该下衬结构的清洁,例如,通过一种描述于美国专利申请案第10/833,975号(发明人Lin等人,申请日2004/04/27,共同受让人为Applied Materials公司)的清洁方法,其以引用的方式并入本文中,该涂层22可再形成于该下衬结构24的表面26上方。
图4显示具有含涂覆层30a,b的组件的合适制程室的范例。该室106可以是多室平台(未示)的一部份,该平台具有一群互相连通的室,其通过将该等基板104在该等室106之间传送的机械臂构造而连接。在显示的态样中,该制程室106包含一溅镀沉积室,其亦称为物理气相沉积或PVD室,可令沉积材料溅镀在一基板104上,该沉积材料是例如以下至少一个钽、氮化钽、钛、氮化钛、铜、钨、氮化钨及铝。该室106包含密封一制程区109的多个密封壁118,及该制程区109包含多个侧壁164、一底壁166、及一顶罩168。一支持环130配置在该等侧壁164与该顶罩168之间,以支持该顶罩168。其他室壁包含至少一遮罩120,其使该等密封壁118由该溅镀环境得到庇护。
该室106包含一基板支架130,以支持位于该溅镀沉积室106中的基板。该基板支架130可以是电浮动的,或包含一电极170,其通过一电源供应172(例如,RF电源供应)而产生偏压。该基板支架130亦包含一活动遮片133,其在无该基板时,可保护该支架130的上表面134。在操作时,该基板104会经由该室106的侧壁164的基板装载入口(未示)送入该室106,且置放于该支架130上。该支架130会通过下方的支架升降机上升或下降,且在该基板104送入及送出该室106之时,可使用一指状升降装备(未示)来升起或降低该支架130上的基板。
该支架130亦包含至少一环,例如,一遮盖环126及一沉积环128,其覆盖至少部份的该支架130的上表面134,以避免该支架130的腐蚀。在一态样中,该沉积环128至少部份环绕该基板104,以保护部份该支架130免于为该基板104所覆盖。该遮盖环126环绕及覆盖了至少部份的沉积环128,且减少沉积在该沉积环128及该下衬支架130两者的上的粒子。
例如溅镀气体的制程气体会经由一气体分送系统注入该室106,该气体分送系统112包含一制程气体供应,其包含各馈入一导管176的至少一气体来源174,该导管176具有一气体流动控制阀178,例如质流控制器,以使固定流速的气体通过。该导管176可将该等气体馈入一混合歧管(未示),其中该等气体会混合而形成一期望的制程气体组成。该混合歧管会馈入该室106中的气体分布器180,其具有至少一气体出口182。该处理气体包含一不反应气体,例如,氩气或氙气,其可以高能量由一标靶冲撞于溅镀材料上。该制程气体亦包含一反应性气体,例如以下至少一个含氧气体及含氮气体,其可与该溅镀材料反应,而在该基板104上形成一个层。用过的制程气体及副产品会由经由一排气口122而由该室106排出,该排气口122包含至少一排气门184,其可接收用过的制程气体及令用过的气体通过一排气管186,其含有一节流阀,可控制该室106中的气体压力。该排气管186可馈入至少一排气泵190。典型上,该室106中溅镀气体的气压的大小可设定为低于大气压力。
该溅镀室106更包含一溅镀标靶124,其面对该基板104表面105,及包含待溅镀于该基板104上的材料。该标靶124通过一环状绝缘环132而电隔离于该室106,且连接至一电源供应192。该溅镀室106亦具有一遮罩120,以将该室106的壁118与溅镀材料隔离。该遮罩120包含一似障壁的圆柱状的形状,具有上及下遮罩部份120a,120b,其可庇护该室106的上部及下部。在图4显示的态样中,该遮罩120具有架设于该支持环130的上方部份120a,及吻合于该遮盖环126的下方部份120b。亦可设置包含一夹钳环的夹钳遮罩141,以将该上遮罩与下遮罩部份120a,b夹在一起。亦可设置其他的遮罩结构,例如,内及外遮罩。在一态样中,电源供应192、标靶124、及遮罩120中至少一个可作用如同一气体激发器116,其可令该溅镀气体高能化,以由该标靶124溅镀材料。该电源供应192可供应一关于该遮罩120的偏压至该标靶124。在该室106中因施加电压所产生的电场,可令该溅镀气体高能化而形成一电浆,其以高能量冲撞在该标靶124上,以将该标靶124上的材料溅镀至该基板104上。具有该电极170及该支架电极电源供应172的支架130,亦可通过令由该标靶124溅镀的该离子化材料产生高能化,且朝向该基板104加速,而操作如同部份的气体激发器116。此外,可设置一气体高能化线圈135,其通过一电源供应192供能且设置于该室106内,以提供增强的高能气体特征,例如,改良的高能气体密度。该气体高能化线圈135的支持是通过一线圈支架137,其附着于一遮罩120或该室106中的其他壁上。
通过包含程式码的控制器194可控制该室106,该程式码具有可操作该室106的组件的指令组,以处理该室106中的基板104。例如,该控制器194包含一基板定位指令组,以操作至少一基板支架130及基板运输系统,以令一基板104定位于该室106中;一气体流量控制指令组,以操作该流控阀178,而固定流向该室106的溅镀气体的流量,来维持该室106中的压力;一气体激发器控制指令组,其操作该气体激发器116,以设定一气体激发功率位准;一温控指令组,以控制该室106中的温度;及一制程监控指令组,以监控该室106中的制程。
虽然本发明的示范实施例皆已显示及描述,熟习该项技艺者可设计其他并入本发明的实施例,且其亦在本发明的范围内。例如,除了上文教示的示范组件以外,亦可清洁其他的室中组件。亦可使用其他的热喷涂器400的结构及实施例,及除了上文教示的涂层及结构组成以外,亦可使用其他的涂层及结构组成。除了所教示的清洁步骤以外,亦可执行额外的清洁步骤,及除了所教示的该等清洁步骤的次序的外,亦可执行其他次序。此外,关于示范实施例所示的相对或位置形容词是可互相交换的。因此,后附的申请专利范围不应受限于本文为了绘示本发明而教示的较佳态样,材料,或空间配置的叙述。
权利要求
1.一种基板制程室组件,其可曝露于一制程室中的高能化气体中,该组件至少包含(a)下衬结构;(b)位于该下衬结构上方的第一涂覆层,该第一涂覆层包含第一表面,其平均表面粗糙度低于约25微米;及(c)位于该第一涂覆层上方的第二涂覆层,该第二涂覆层包含第二表面,其平均表面粗糙度至少约50微米,由此,制程残余物会附着于该第二表面,而减少经处理的基板的污染。
2.如权利要求1所述的组件,其至少包含以下至少一个(1)该第一及第二涂层至少包含经喷涂的铝涂覆层;及(2)该下衬结构至少包含以下至少一个铝、钛、钽、不锈钢、铜及铬。
3.如权利要求1所述的组件,其至少包含以下至少一个(1)该第一涂覆层至少包含低于约10%的孔隙度;(2)该第二涂覆层至少包含至少约12%的孔隙度;或(3)该第二涂覆层至少包含至少约15%的孔隙度。
4.如权利要求1所述的组件,其中该第一涂覆层至少包含由约0.1厘米至约0.25厘米的厚度,及该第二涂覆层至少包含由约0.15厘米至约0.3厘米的厚度。
5.如权利要求1所述的组件,其中该组件至少包含至少部份的制程室密封壁、遮罩、制程配套工具、基板支架、气体分送系统、气体激发器、及排气孔。
6.一种至少包含有权利要求1所述组件的基板制程室,其中该制程室至少包含一基板支架、气体分送系统、气体激发器、及排气孔。
7.一种制备一基板处理室组件的方法,该方法至少包含(a)提供下衬结构;(b)喷涂第一涂覆层至该下衬结构上,同时维持第一喷涂参数以在该第一涂覆层上形成第一表面,其中该第一表面的平均表面粗糙度低于约25微米;及(c)喷涂第二涂覆层于该第一涂覆层上方,同时维持第二喷涂参数以在该第二涂覆层上形成第二表面,其中该第二表面的平均表面粗糙度至少约50微米。
8.如权利要求7所述的方法,其中步骤(b)与(c)包含以一压缩气体推挤涂覆材料而通过一喷嘴,该喷嘴包含一锥状流径,该锥状流径在一喷嘴出口的直径为该在一喷嘴入口的直径的至少1.5倍。
9.如权利要求8所述的方法,其中步骤(b)包含推挤涂覆材料而通过该喷嘴于至少约200千巴的第一压力,并且其中步骤(c)包含推挤涂覆材料而通过相同喷嘴于低于该第一压力的第二压力,该第二压力低于约175千巴。
10.一种双线弧形喷涂器,其可在一结构上形成一涂层,该喷涂器至少包含(a)第一及第二电极,可偏压而在其之间产生一电弧,该等电极中至少一个包含自耗电极;(b)压缩气体的供应源,引导压缩气体通过该等电极;(c)喷嘴,该压缩气体流经该喷嘴,其中该喷嘴至少包含(1)导管,以接收该压缩气体;及(2)圆锥部份,其具有附着至该导管的入口及可释放该压缩气体的出口,该圆锥部份至少包含多个斜锥侧壁,该些斜锥侧壁是由该入口向外延展至该出口,该入口具有第一直径及该出口具有第二直径,该第二直径为该第一直径的尺寸的至少1.5倍,由此,可选择流经该喷嘴的该压缩气体的压力,以提供该涂层的预设平均表面粗糙度,由此,该自耗电极会因该电弧而至少部份熔化以形成熔化的材料,及通过该压缩气体推挤该熔化材料而通过该喷嘴且到达该结构上以形成该涂层。
11.如权利要求10所述的双线弧形喷涂器,其中该等斜锥侧壁所形成的角度是由约60°至约120°。
12.如权利要求10所述的双线弧形喷涂器,其中该第一直径是由约5分厘至约23厘米,及该第二直径是由约20厘米至约35厘米。
全文摘要
一种基板制程室组件(20),其可曝露于一制程室中的高能化气体中。该组件具有下衬结构(24)及第一(30a)及第二涂覆层(30b)。该第一涂覆层(30a)形成于该下衬结构上方,及具有低于约25微米的平均表面粗糙度的第一表面(32)。该第二涂覆层(30b)形成于该第一涂覆层上方,及具有至少约50微米的平均表面粗糙度的第二表面(25)。制程残余物会附着于该第二涂覆层(30b)的表面,以减少经处理的基板的污染。
文档编号C23C30/00GK101065510SQ200580040050
公开日2007年10月31日 申请日期2005年11月18日 优先权日2004年11月24日
发明者林益兴, 许大江, 克利福德·斯托 申请人:应用材料股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1