金属和含硅部件的组件的扩散阻挡层及其形成方法

文档序号:3403855阅读:808来源:国知局
专利名称:金属和含硅部件的组件的扩散阻挡层及其形成方法
技术领域
本发明大体上涉及一种方法和涂层,用于减少部件之间的反应,如燃气轮机的汽轮机部分的支承结构上的部件之间的反应。具体地,本发明涉及一种方法和涂层,可阻止硅从含硅部件扩散到支承含硅部件的金属部件。
背景技术
正在开发含硅(含Si)单块陶瓷和陶瓷基体复合材料(CMC`s),以用于高温部件,如燃烧器、护罩、喷管(隔片),和工业和航空燃气轮机的其他高温阶段的部件。特别关注的材料包括连续纤维陶瓷复合材料(CFCC),以及单块氮化硅(Si3N4)和碳化硅(SiC)材料。General Electric公司开发出著名的CFCC材料,商标名为HiPerComp,在碳化硅和硅的基体中含有连续的碳化硅纤维。在考虑的应用中,背部的超合金支承结构一般要求支承单块陶瓷和CMC部件。所产生的陶瓷和超合金界面要能够长时间耐受高达1100℃的温度,同时保持陶瓷部件和超合金支承结构之间的物理紧密接触,以避免应力导致的振动。
超合金材料和含硅陶瓷材料,具体为SiC纤维增强的SiC基体复合材料,的化学相容性,在大约1400°F(约760℃)以上时,已经出现问题。许多镍基和钴基超合金在高温下(如大约900到1200℃)与含硅陶瓷接触时已经观察到其物理性能下降,这是由于硅(和少量的碳)扩散越过陶瓷和超合金的界面。都知道的哈司特镍合金Hastelloy X超合金,在900℃的高温下与含硅陶瓷接触500小时后,显示出了硅扩散,在超合金表面下形成了大约20微米厚的脆性硅化物。如果同样的合金暴露于大约1150℃温度下120小时,可观察到扩散和形成的硅化物厚度增加到超过40密耳(大约1毫米)。许多的复杂反应造成了超合金内的脆性硅化物(和碳化物)相的沉淀。无论如何,这些相可作为裂纹形成和扩展穿过超合金的起点。
考虑到上述情况,希望避免或至少阻止硅从含硅陶瓷部件扩散到与陶瓷部件接触的超合金部件,以阻止含硅陶瓷和超合金之间发生反应。

发明内容
因此,本发明提供了一种阻止硅从含硅材料形成的部件扩散到金属支承结构和其组件的方法。本发明具体涉及一种部件和支承结构组件,其将承受持续期间的非常高的温度,如同燃气轮机上的各组件。
在本发明的组件中,部件支承和接触于支承结构,在其间形成接触界面。阻挡涂层设置在部件和/或支承结构上,位于接触界面,防止含硅部件和支承结构的金属基体之间直接物理接触。阻挡涂层主要包括氧化物,其比二氧化硅更加热稳定,可阻止硅从含硅材料扩散到金属基体。
在本发明的方法中,阻挡涂层可沉积在部件和支承结构中的一个或二个上。然后将部件连接到支承结构,使得部件支承于和接触支承结构,在部件和支承结构的金属基体之间形成接触界面。由于形成了组件,阻挡涂层位于接触界面,可防止含硅材料和金属基体之间直接物理接触。
本发明的显著优点是阻挡涂层可有效地阻止并基本上防止硅从含硅材料,如单块陶瓷或CMC,在温度至少高达1200℃的情况下扩散到与含硅材料接触的超合金基体。具体地,阻挡涂层阻止在超合金表面区内形成脆性的硅化物相,其可作为裂纹在超合金中产生和扩散的起点。如所指出的,本发明有益于燃气轮机的汽轮机部分的部件和支承结构,如燃烧器,护罩,喷管(隔片),以及其他的工业和航空燃气轮机的高温阶段部件。
对本发明的其他目的和优点,通过下面的详细介绍可了解的更清楚。


图1显示了根据本发明的固定到超合金基体的CMC部件的截面图。
具体实施例方式
图1显示了组件10的截面图,组件包括陶瓷部件12,其用销16固定到支承结构14。部件12可以是燃气轮发动机的部件,比如燃烧器衬里或围绕燃气轮机的汽轮机部分的外叶片端部的护罩。特别适合的陶瓷材料包括硅,如含硅单块陶瓷和含有作为增强和/或基体材料的碳化硅的CMC材料,CMC材料的特别示例有General Electric公司开发的HiPerCompCFCC,其由碳化硅和硅基体中的连续碳化硅纤维组成。但是,其他含硅材料也在本发明的范围内,包括单块陶瓷,如氮化硅;和硅化物(金属间化合物),如硅化铌和硅化钼。在优选实施例中,支承结构14由耐高温超合金制成,尤其是含有铬的镍基或钴基超合金。尽管图1显示了陶瓷部件12和超合金支承结构14用销16固定到一起,在本发明的范围内,销16或其他类型的固定件不是陶瓷超合金组件的必要部件。
当加热到大约1400°F(大约760℃)或更高温度,部件12内的游离硅和碳倾向于从部件12迁移,如果允许,从部件12扩散到支承结构14的超合金,导致许多可能反应的发生,在支承结构14的表面区形成脆性的硅化物和碳化物。例如,硅渗透到含有铬的镍基超合金可导致形成稳定的硅化物,如NiSi,Ni2Si和Cr3Si。形成许多共晶相,共晶相可在温度低于燃烧器和汽轮机部件操作温度时熔化。在反应区,已经观察到显微硬度的明显增加,导致合金表面下的脆化。许多超合金中即使存在少量的硅杂质也能造成脆性拉夫斯相的沉淀。碳扩散到超合金基体也是有害的,造成碳化物的形成和合金中的碳含量过高,这可导致脆性的西格玛相沉淀。陶瓷部件12的硅和碳扩散到超合金支承结构14,及后续的扩散硅和碳在结构14中反应,可带来严重的问题。
为了避免上面提到的有害反应,本发明使用了阻挡层18,其能够阻止游离硅(和一定的碳)从含硅材料扩散。阻挡层18的适当材料至少是如氧化物般热稳定的,可存在于部件12或结构14,因此可与阻挡层18接触。如果沉积在部件12上,阻挡层18的适合材料是多铝红柱石(3Al2O3·2SiO2),其比部件12的含硅材料表面固有的二氧化硅更加热稳定。阻挡层18的其他适合材料包括稀土硅酸盐,如Y2Si2O7,Y2SiO5,Lu2SiO5;碱土金属硅酸盐,如硅酸钙,硅酸钡;和碱土金属铝硅酸盐,如铝硅酸钡-锶。直接沉积在部件12上的阻挡层18的厚度大约为25到150微米。如果沉积在超合金支承结构14,阻挡层18可以是氧化铝,稳定化的氧化锆,氧化钇,多铝红柱石,二氧化钛或氧化铬,这些材料比二氧化硅更加热稳定。如果阻挡层18沉积在支承结构14,形成氧化铝的金属涂层20,如MCrAlY(其中M是铁、钴和/或镍,Y是钇或另外的稀土或反应元素),最好首先沉积到支承结构14大约25到250微米的厚度,以减少氧化物阻挡层18和支承结构14的超合金之间的热膨胀失配。在这种情况下,阻挡涂层18的优选材料是钇稳定化的氧化锆,沉积厚度大约为25到250微米。
进行了导致本发明的研究,其建议氧化铝或氧化钇涂层可用于阻挡硅从含硅陶瓷扩散到接触陶瓷的超合金。在关注涂层作为扩散阻挡层的作用的同时,还发现涂层在热循环期间因为热失配未能很好地粘附到陶瓷材料,在某些情况下,可导致涂层在一个热循环后出现分离和开裂。
在后面的研究中,对多个超合金材料进行了不同类型氧化物涂层的评估,以评定涂层阻挡硅扩散越过温度大约为900℃到1200℃、持续时间为大约50到1600小时的含硅陶瓷和超合金组件的能力。为进行这个研究,超合金材料试样的大致尺寸为1×1/2×1/8英寸(大约为25×13×3毫米)。试样的表面用粒度600的SiC砂纸进行磨光,然后抛光到镜面光洁度。含硅陶瓷复合材料的类似尺寸的试样也进行了制备和抛光,含有硅和碳化硅的陶瓷复合材料通过硅熔浸形成。这样的陶瓷材料在文献中还可称为反应粘结碳化硅,或硅合成材料(Silcomp)。这些材料是熔浸法制成的SiC纤维增强的Si-SiC基体复合材料的代表(HiPerComp)。合金和陶瓷试样压接到一起,用铂铑丝紧紧地缠绕,得到的试样组件放置到氧化铝槽中,在空气中加热到选择的实验温度。在某些情况下,组件在流动的氦气中加热,以减少空气扩散到两个试样之间接触区导致的氧化。组件经受不同持续时间的实验温度,其后组件进行切片,通过标准的金相检验技术检测界面反应区。
基本上与上面介绍一致的其他试样组件也进行制备,但还进行了其他步骤,在试样结合形成试样组件之前,将氧化物涂层沉积到超合金试样。涂层是氧化锆(ZrO2),由大约8%重量的氧化钇(Y2O3)、氧化钛(TiO2)、氧化铬(Cr2O3)和氧化铝(Al2O3)稳定化;涂层通过低压等离子喷涂(LPPS)施加,厚度大约为4到5密耳(大约100到125微米)。在沉积氧化物涂层之前,NiCrAlY合金粘结层直接设置到超合金试样表面,厚度为大约1到2密耳(大约25到50微米)。如前面提到的,NiCrAlY粘结层的主要作用是减少氧化物涂层和超合金基片之间热膨胀的失配。
对于未施加氧化物涂层的试样,已发现完成高温暴露的超合金试样形成反应区。表一总结了进行评价的不同超合金,不同温度和持续时间,以及硅化物沉淀的大致渗透深度,其通过显微图象由视觉确定。在各种条件下,超合金和陶瓷试样接触区的切片和检测证实硅从陶瓷试样扩散到超合金试样,导致了陶瓷材料的陶瓷基体上形成空穴和在超合金中的沉淀。
表一

对于控制扩散的工艺,如在此实验中所进行的,渗透深度/时间1/2与相应温度的关系曲线显示出是直线,这可用来预测在中间体温度下硅大致的渗透深度。实验的结果显示出符合这个结论,扩散的表面活化能为大约62千卡/摩尔。观察到的硅迁移到进行评估的超合金导致了超合金机械性能的损失,如低和高循环疲劳寿命,断裂强度和延展性。尽管实验未能显示出硅扩散速率是合金成分的强函数,而性能下降程度可能是。例如,Hastelloy X是比René80和IN 718韧性更强的超合金,可预期Hastelloy X性能的下降相应地不那么严重。但是,即使是Hastelloy X,深度小到大约10密耳(大约250微米)的脆性区对于许多结构都是不能接受的。
在陶瓷材料和超合金基体之间界面进行的反应细节显示出以其复杂的方式取决于特定超合金的成分。例如,Ni-50Cr试样的半球形反应区的特征是较大的空穴,与进行相同实验步骤的IN 718试样出现的针状的西格玛相和细小硅化物颗粒的更均匀分布和渗透完全不同。Ni-Cr合金,熔化的硅化物相可在实验期间形成,而René80试样在温度1150℃并保持仅120小时后形成半球形反应区,并在1000小时实验后形成硅化物颗粒网络。三元合金Ni-20Cr-10Ti在温度1170℃保持140小时后形成更不好的反应区,其特征为超合金中出现大量的空穴和孔洞,可能是熔化的硅化物造成的。
对带有氧化物涂层的超合金试样的实验样品进行了类似上面介绍条件下的实验。特定的样品组合包括IN 738上的钇稳定化的氧化锆(YSZ)(在大约900℃保持大约1004小时,在大约1000℃保持大约600小时);René80上的YSZ(在大约1000℃保持552小时);Hastelloy X上的氧化铝(在大约1000℃保持大约672小时);HastelloyX上的氧化铬(在大约1000℃保持大约672小时);Hastelloy X上的氧化钛(在大约1000℃保持大约672小时);Hastelloy X上的氧化铝(在大约1100℃保持大约500小时)。各实验样品在完成高温评估后进行了切片和检测。对IN 738和René80试样的检测证明含硅陶瓷和超合金试样都未显示出硅渗透通过YSZ涂层进入超合金基体的证据。值得注意的是,YSZ涂层通过下面的NiCrAlY粘结层很好地粘附到超合金基体。
沉积在Hastelloy X试样上的氧化铝、氧化钛和氧化铬涂层在高温实验期间保持完整,但在金相固定和切片时分解。然而,所有三种氧化物涂层成分证明对于防止硅扩散到下面的超合金基体是有效的,证据是在涂层下未形成硅化物。能量色散谱仪(EDS)对TiO2涂复和Cr2O3涂复的Hastelloy X试样,其在900℃下保持1600小时,的界面进行元素扫描,证明硅未渗透任何的氧化物涂层。
根据上面的介绍,可假设,除了或代替陶瓷和超合金组件的超合金部件上的氧化物涂层,直接沉积在陶瓷部件的氧化物涂层可有效地阻止硅扩散。但是,不多的氧化物能够用于实现这个目的,因为大部分具有比碳化硅更高的热膨胀系数,从而不能在热循环期间保持粘附到含硅陶瓷。因为多铝红柱石的热膨胀性能很接近碳化硅,所以选择多铝红柱石(3Al2O3·2SiO2;α=5.1-5.4×10-6/℃,在25到1000℃之间)作为二次研究的扩散阻挡涂层材料。但是相信许多其他的氧化物材料也适合,包括稀土硅酸盐,如Y2Si2O7,Y2SiO5,Lu2Si2O7,和Lu2SiO5;碱土金属硅酸盐,如硅酸钙和硅酸钡;和碱土金属铝矽酸盐,如铝矽酸钡-锶。这些族中有许多氧化物的膨胀系数类似于含硅陶瓷,如理想配比的铝矽酸钡-锶((Ba0.75Sr0.25)O-Al2O3-SiO2)。
厚度在大约10密耳(大约250微米)的多铝红柱石涂层通过空气等离子喷涂直接施加到另外的含硅陶瓷成分试样的表面。在组装进行检测的陶瓷试样和Hastelloy X试样之前,不尝试对多铝红柱石涂层进行抛光。这些多铝红柱石涂层在减少游离硅从含硅陶瓷试样扩散的作用的确定是通过使组件经受热暴露,范围在大约900到大约1200℃,然后对组件切片进行金相检测和能量弥散X射线(EDXA)分析。
经受大约1100℃的温度并保持大约100小时的第一样品显示出铬扩散到Hastelloy X试样的表面区造成kirkendall空穴区。但是,EDS分析显示无硅渗透到超合金的证据。陶瓷试样上的多铝红柱石涂层在实验后仍保持完整。在大约1200℃保持大约100小时的第二样品表面下的EDS测试分析显示出试样表面存在少量的硅,但Hastelloy X超合金内无硅。
在独立的实验中,在另外的超合金试样上设置了铝化物涂层,然后进行测试。镍基超合金Inconel 718,Inconel 738,René80,Udimet 500和Udimet 700的矩形试样进行了抛光。使用扩散渗碳处理法进行铝化物涂层沉积,需将超合金试样置入成分为大约5.8%铝,0.2%NH4F和94%氧化铝的粉末混合物中。试样和粉末混合物在带盖的碳化炉内加热到大约1050℃并在氩气中保持大约2小时。在这个过程中,致密的铝化镍β-NiAl扩散层在试样的所有表面上形成,厚度大约为10到大约100微米。当从粉末混合物中取出后,涂复的试样进行轻度抛光,去除粘附的氧化铝颗粒,与含硅的Silcomp(Si-SiC)试样组装,在大约1150℃的温度下保持大约120小时。
测试结束时,发现铝化物涂层防止了脆性硅化物相在下面的超合金试样上形成。因为铝化物涂层在表面上形成致密的相干的氧化铝层,推断是氧化铝层防止了硅迁移越过超合金-陶瓷界面。因此,可以认为,除了沉积的氧化铝层,热生长的氧化铝层可有效地作为氧化物阻挡层,实现本发明的目的。
从上面的介绍,可以认为带有含硅陶瓷部件的超合金,其加热到900℃或以上,硅扩散越过超合金和陶瓷的界面,导致超合金中形成脆性的硅化物,渗透深度主要取决于温度和时间。在900℃暴露不算是长时间的500小时可导致硅渗透20微米,相信这对于超合金的性能是有害的,尤其是如果超合金用于工业燃气轮机和航空燃气轮机的热阶段的部件。当应用YSZ,氧化铝,氧化铬和氧化钛扩散阻挡层于超合金部件和/或将多铝红柱石应用于含硅陶瓷部件时可减少温度高达1200℃时的硅扩散,这些氧化物涂层位于超合金和陶瓷部件之间。
尽管已通过一个和多个具体实施例对本发明进行了介绍,很清楚所属领域的技术人员可采用其他形式。因此,本发明的范围仅由所附权利要求来限定。
权利要求
1.一种组件(10),具有支承和接触于支承结构(14)的部件(12),部件和支承结构之间形成接触界面,所述部件(12)由含硅材料形成,支承结构(14)具有超合金基体,其特征在于,所述组件(10)包括阻挡涂层(18),设置在部件(12)和支承结构(14)中至少一个上,所述阻挡涂层(18)主要包括氧化物,其比二氧化硅更加热稳定,所述阻挡层(18)位于接触界面,可防止所述含硅材料和所述超合金基体之间直接物理接触,阻止硅从含硅材料扩散到所述超合金基体。
2.根据权利要求1所述的组件(10),其特征在于,所述阻挡涂层(18)可从下面的一组材料中选择氧化铝、稳定化的氧化锆、氧化钇、富铝红柱石、稀土硅酸盐、碱土金属硅酸盐、碱土金属铝矽酸盐、二氧化钛和氧化铬。
3.根据权利要求1所述的组件(10),其特征在于,所述阻挡涂层(18)位于和粘结到支承结构(14),可由氧化铝、钇稳定化的氧化锆、或氧化钇形成。
4.根据权利要求3所述的组件(10),其特征在于,还包括MCrAlY涂层(20),位于所述阻挡涂层(18)和超合金基体之间。
5.根据权利要求1所述的组件(10),其特征在于,所述阻挡涂层(18)位于和粘结到部件(12),可由富铝红柱石、稀土硅酸盐、碱土金属硅酸盐、碱土金属铝矽酸盐形成。
6.根据权利要求1所述的组件(10),其特征在于,所述含硅材料可从下面的一组材料中选择氮化硅、碳化硅、硅酸铌、硅酸钼、碳化硅和硅基体中的碳化硅纤维。
7.根据权利要求1所述的组件(10),其特征在于,所述超合金基体由镍基超合金形成。
8.一种阻止硅从含硅材料形成的部件(12)扩散到支承结构(14)的方法,所述方法包括步骤在部件(12)和支承结构(14)中至少一个上沉积阻挡涂层(18),所述阻挡涂层(18)主要包括氧化物,其比二氧化硅更加热稳定;然后将所述部件(12)连接到所述支承结构(14),使所述部件(12)支承和接触于支承结构(14),在所述部件(12)和所述支承结构(14)的超合金基体之间形成接触界面,所述阻挡涂层(18)位于接触界面,可防止所述含硅材料和所述超合金基体之间直接物理接触。
9.根据权利要求8所述的方法,其特征在于,所述阻挡涂层(18)的材料可从下面一组材料中选择,包括氧化铝、稳定化的氧化锆、氧化钇、富铝红柱石、稀土硅酸盐、碱土金属硅酸盐、碱土金属铝矽酸盐、二氧化钛和氧化铬;所述含硅材料可从下面一组材料中选择氮化硅、碳化硅、硅酸铌、硅酸钼、碳化硅和硅基体中的碳化硅纤维。
10.根据权利要求8所述的方法,其特征在于,所述部件(12)是燃汽轮机部件,连接所述部件(12)到支承结构(14)的步骤包括安装所述部件(12)到燃汽轮机。
全文摘要
一种抑制硅从含硅材料的部件(12)扩散到支承结构(14)及其组件(10)的方法。部件(12)支承和接触于支承结构(14),其间形成接触界面。阻挡涂层(18)设置在元件(12)和/或支承结构(14)上,以便位于接触界面,防止含硅材料和超合金基体之间直接物理接触。
文档编号C23C14/08GK1821445SQ20061000907
公开日2006年8月23日 申请日期2006年2月17日 优先权日2005年2月18日
发明者K·L·卢思拉, D·W·麦基 申请人:通用电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1