镀膜件及其制备方法

文档序号:3412147阅读:322来源:国知局
专利名称:镀膜件及其制备方法
技术领域
本发明涉及一种镀膜件及其制备方法。
背景技术
模具钢可广泛用于锻造、冲压、切型、压铸等工艺,由于模具的工作条件苛刻,在高温下使用时,表面很容易被氧化,形成的不均勻氧化层不仅会降低产品的表面质量,而且模具钢在重复使用的过程中,形成的氧化物锈皮易剥落,暴露的基体在高温下将会继续被腐蚀。因此要求模具钢具有抗高温氧化的性能。物理气相沉积制备各种涂层已成功地应用于工业。过渡金属氮化物和碳化物涂层由于具有较高的硬度、良好的化学稳定性,是各类模具钢表面强化薄膜中的首选材料。但它们同时具有高脆性、高残余应力、与基体结合力差等缺陷;且当应用温度较高时,该类膜层容易被氧化而失去功效,导致镀膜件使用寿命缩短。

发明内容
有鉴于此,有必要提供一种有效解决上述问题的镀膜件。另外,还有必要提供一种制备上述镀膜件的方法。一种镀膜件,其包括基体、形成于基体表面的打底层、形成于打底层表面的氮氧化镍层及形成于氮氧化镍层表面的氮化硅层。—种镀膜件的制备方法,其包括如下步骤提供一基体;采用磁控溅射法,在该基体表面形成打底层;采用磁控溅射法,在打底层的表面形成氮氧化镍层,使用金属镍靶,以氧气和氮气为反应气体;采用磁控溅射法,在氮氧化镍层的表面形成氮化硅层,使用硅靶,以氮气为反应气体。本发明镀膜件在基体的表面依次沉积打底层、氮氧化镍层及氮化硅层,膜系逐层过渡较好,膜层内部没有明显的应力产生,这样在施加外力的情况下,所镀的膜层不会因为内部的应力缺陷导致失效;所述氮氧化镍层膜层致密,可有效延缓外界的氧气朝膜层内渗透;同时所述氮化硅层具有较高的硬度和耐磨性,可有效避免所述氮氧化镍层的磨损刮擦;通过所述氮氧化镍层和氮化硅层的共同作用,可保护基体在高温时仍不被氧化,有效提高镀膜件的使用寿命。


图1为本发明一较佳实施例镀膜件的剖视图;图2为本发明一较佳实施例真空镀膜机的示意图。主要元件符号说明
镀膜件10
基体11
打底层13
氮氧化镍层15
氮化硅层17
真空镀膜机20
镀膜室21
镍靶23
硅靶24
轨迹25
真空泵30
具体实施例方式请参阅图1,本发明一较佳实施方式的镀膜件10包括基体11、形成于基体11表面的打底层13、形成于打底层13表面的氮氧化镍(NiON)层15及形成于氮氧化镍层15表面的氮化硅(SiN)层17。该基体11的材质为不锈钢或模具钢。该打底层13可以磁控溅射的方式形成。该打底层13为金属镍(Ni)层。该打底层13的厚度为0. 1 0.2 μ m。该氮氧化镍层15可以磁控溅射的方式形成。该氮氧化镍层15由细小的纳米晶粒组成,晶间间隙比较小,膜层非常致密。该氮氧化镍层15中镍的原子百分比为45 70%,氧的原子百分比为20 45%,氮的原子百分比为10 15%。该氮氧化镍层15的厚度为
0.6 1. 2 μ m0 该氮化硅层17可以磁控溅射的方式形成。所述氮化硅层17具有高熔点、高硬度以及良好的耐磨性,可有效保护氮氧化镍层15,防止其刮伤。该氮化硅层17的厚度为0. 5
1.0 μ m。本发明一较佳实施方式的镀膜件10的制备方法,其包括以下步骤(a)提供一基体11,该基体11的材质为不锈钢或模具钢。(b)将基体11放入无水乙醇中进行超声波清洗,以去除基体11表面的污渍,清洗时间为20 40min。(c)对经上述处理后的基体11的表面进行氩气等离子体清洗,以进一步去除基体11表面的油污,以及改善基体11表面与后续镀层的结合力。结合参阅图2,提供一真空镀膜机20,该真空镀膜机20包括一镀膜室21及连接于镀膜室21的一真空泵30,真空泵30用以对镀膜室21抽真空。该镀膜室21内设有转架(未图示)、相对设置的二镍靶23和相对设置的二硅靶24。转架带动基体11沿圆形的轨迹25公转,且基体11在沿轨迹25公转时亦自转。该等离子体清洗的具体操作及工艺参数为如图2所示,将基体11固定于真空镀膜机20的镀膜室21的转架上,将该镀膜室21抽真空至3. OX 10_5Pa,然后向镀膜室21内通入流量为500sCCm(标准状态毫升/分钟)的氩气(纯度为99. 999%),并施加-200 -500V的偏压于基体11,对基体11表面进行氩气等离子体清洗,清洗时间为3 lOmin。(d)采用磁控溅射法在经氩气等离子体清洗后的基体11上溅镀一打底层13,该打底层13为金属镍层。溅镀该打底层13在所述真空镀膜机20中进行,抽真空使该镀膜室21的本底真空度为8.0 X 10_3Pa,加热该镀膜室21至温度为100 150°C ;开启二镍靶23,设置镍靶23的功率为8 10kw,设定施加于基体11的偏压为-100 -300V,占空比为50%;通入工作气体氩气,氩气的流量为150 300SCCm,镀膜时间为5 lOmin。该打底层13的厚度为0. 1 0. 2 μ m。(e)继续采用磁控溅射法在所述打底层13的表面溅镀一氮氧化镍层15。溅镀该氮氧化镍层15时通入氧气和氮气为反应气体,氧气流量为40 lOOsccm,氮气流量为30 70sCCm,其他工艺参数与沉积所述打底层13的相同,镀膜时间为30 60min。该氮氧化镍层15的厚度为0.6 1.2 μ m。(f)继续采用磁控溅射法在所述氮氧化镍层15的表面形成一氮化硅层17。关闭二镍靶23,开启二硅靶24,设置硅靶M的功率为4 6kw,设定施加于基体11的偏压为-30 -50V,占空比为50% ;通入氮气为反应气体,氮气流量为40 120SCCm,通入工作气体氩气,氩气的流量为150 200sCCm,镀膜时间为1 池。该氮化硅层17的厚度为0. 5 1. 0 μ m0下面通过实施例来对本发明进行具体说明。实施例1本实施例所使用的真空镀膜机20为中频磁控溅射镀膜机,为深圳南方创新真空技术有限公司生产,型号为SM-1100H。本实施例所使用的基体11的材质为316不锈钢。等离子体清洗氩气流量为500sCCm,基体11的偏压为-500V,等离子体清洗时间为 IOmin0溅镀打底层13 氩气流量为150SCCm,镍靶23的功率为8kw,基体11的偏压为-200V,占空比为50%,溅镀温度为120,镀膜时间为5min,该打底层13的厚度为0.1ymo溅镀氮氧化镍层15 氧气流量为SOsccm,氮气流量为60sCCm,其他工艺参数与沉积所述打底层13的相同,镀膜时间为30min,该氮氧化镍层15的厚度为0. 6 μ m。溅镀氮化硅层17 氩气流量为150SCCm,氮气流量为120sCCm,硅靶M的功率为5kw,基体11的偏压为-50V,占空比为50%,镀膜时间为60min,该氮化硅层17的厚度为0. 5 μ m0实施例2本实施例所使用的真空镀膜机20和基体11与实施例1中的相同。等离子体清洗氩气流量为500sCCm,基体11的偏压为-500V,等离子体清洗时间为 IOmin0溅镀打底层13 氩气流量为150SCCm,镍靶23的功率为8kw,基体11的偏压为-200V,溅镀温度为120°C,镀膜时间为lOmin。该打底层13的厚度为0. 2 μ m。溅镀氮氧化镍层15 氧气流量为40sCCm,氮气流量为30sCCm,其他工艺参数与沉积所述打底层13的相同,镀膜时间为60min。该氮氧化镍层15的厚度为1. 2μπι。溅镀氮化硅层17 氩气流量为150SCCm,氮气流量为80sCCm,硅靶M的功率为4kw,基体11的偏压为-50V,占空比为50%,镀膜时间为120min,该氮化硅层17的厚度为1. 0 μ m。将上述制得的镀膜件10进行高温抗氧化测试和耐磨性测试,具体测试方法及结果如下(1)高温抗氧化测试采用的测试仪器为管式热处理炉,测试条件为升温速率为10°C /min,热处理温度为800°C,保温时间为IOh。测试结果显示,由本发明实施例1和实施例2所制备的镀膜件10经800°C热处理IOh后均未见氧化、脱落等不良。(2)耐磨性测试采用线性耐磨耗测试仪,测试条件为载荷为1kg,行程长度为2. Oinch,磨耗速率为 25 次/min。测试结果显示,由本发明实施例1和2所制备的镀膜件10经磨耗15次均未见脱落。本发明较佳实施方式镀膜件10在基体11的表面依次沉积打底层13、氮氧化镍层15及氮化硅层17,膜系逐层过渡较好,膜层内部没有明显的应力产生,这样在施加外力的情况下,所镀的膜层不会因为内部的应力缺陷导致失效;所述氮氧化镍层15膜层致密,可有效延缓外界的氧气朝膜层内渗透;同时所述氮化硅层17具有较高的硬度和耐磨性,可有效避免所述氮氧化镍层15的磨损刮擦;通过所述氮氧化镍层15和氮化硅层17的共同作用,可保护基体11在高温时仍不被氧化,有效提高镀膜件10的使用寿命。
权利要求
1.一种镀膜件,其包括基体及形成于基体表面的打底层,其特征在于该镀膜件还包括形成于打底层表面的氮氧化镍层及形成于氮氧化镍层表面的氮化硅层。
2.如权利要求1所述的镀膜件,其特征在于所述基体的材质为不锈钢或模具钢。
3.如权利要求1所述的镀膜件,其特征在于所述打底层为镍层,其以磁控溅射的方式形成,该打底层的厚度为0. 1 0. 2 μ m。
4.如权利要求1所述的镀膜件,其特征在于该氮氧化镍层中镍的原子百分比为45 70%,氧的原子百分比为20 45%,氮的原子百分比为10 15%。
5.如权利要求4所述的镀膜件,其特征在于所述氮氧化镍层以磁控溅射的方式形成,该氮氧化镍层的厚度为0. 5 1. 5 μ m。
6.如权利要求1所述的镀膜件,其特征在于所述氮化硅层以磁控溅射的方式形成,该氮化硅层的厚度为0. 5 1. 0 μ m。
7.一种镀膜件的制备方法,其包括如下步骤提供一基体;采用磁控溅射法,在该基体表面形成打底层;采用磁控溅射法,在打底层的表面形成氮氧化镍层,使用金属镍靶,以氧气和氮气为反应气体;采用磁控溅射法,在氮氧化镍层的表面形成氮化硅层,使用硅靶,以氮气为反应气体。
8.如权利要求7所述的镀膜件的制备方法,其特征在于所述打底层为镍层,形成打底层的步骤的具体工艺参数使用金属镍靶,镍靶的功率为8 10kw,以氩气为工作气体,氩气流量为150 300SCCm,基体偏压为-100 -300V,占空比为50%,镀膜温度为100 150°C,镀膜时间为5 IOmin0
9.如权利要求7所述的镀膜件的制备方法,其特征在于所述形成氮氧化镍层的步骤的具体工艺参数镍靶的功率为8 10kw,氧气流量为40 lOOsccm,氮气流量为30 70sccm,以氩气为工作气体,氩气流量为150 300sccm,基体偏压为-100 -300V,占空比为50%,镀膜温度为100 150°C,镀膜时间为30 60min。
10.如权利要求7所述的镀膜件的制备方法,其特征在于所述形成氮化硅层的步骤的具体工艺参数硅靶的功率为4 6kw,氮气流量为40 120sCCm,以氩气为工作气体,氩气流量为150 200SCCm,基体的偏压为-30 -50V,占空比为50%,镀膜温度为100 150°C,镀膜时间为1 2h。
全文摘要
本发明提供一种镀膜件,其包括基体、形成于基体表面的打底层、形成于打底层表面的氮氧化镍层及形成于氮氧化镍层表面的氮化硅层。本发明镀膜件膜系逐层过渡较好,膜层内部没有明显的应力产生;所述氮氧化镍层膜层致密,可有效延缓外界的氧气朝膜层内渗透;同时所述氮化硅层可有效避免所述氮氧化镍层的磨损刮擦;通过所述氮氧化镍层和氮化硅层的共同作用,可保护基体在高温时仍不被氧化,从而有效提高镀膜件的使用寿命。此外,本发明还提供一种上述镀膜件的制备方法。
文档编号C23C14/06GK102586729SQ201110009229
公开日2012年7月18日 申请日期2011年1月17日 优先权日2011年1月17日
发明者廖高宇, 张新倍, 熊小庆, 蒋焕梧, 陈文荣, 陈正士 申请人:鸿富锦精密工业(深圳)有限公司, 鸿海精密工业股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1