一种具有极微负热膨胀特性的粉体材料的制作方法

文档序号:3415002阅读:453来源:国知局
专利名称:一种具有极微负热膨胀特性的粉体材料的制作方法
技术领域
本发明涉及一种极微负热膨胀材料,特指Mn3(CuxSrvx)N粉体材料,其中χ = 0. 5, 且经过本发明所阐述方法获得平均负热膨胀系数达到io_7°c数量级的粉体材料;该材料各向同性,具有良好的导电导热性能,因此在航空航天,光学元件,微电子器件,光纤通讯等领域具有很高的应用前景。
背景技术
材料热膨胀性能对提高航空航天结构和电子设备等的热几何稳定性有重要意义。 卫星天线和电子器件等工作环境复杂,不均勻温度分布和大的温度变化引起较大的热变形,造成信号失真;大的温度变化往往引起大的温度应力,造成结构破坏,因此,(近)零膨胀材料的研制备受关注。2005年,具有负热膨胀特性的磁性材料(Mnci96Fqci4)3(Zna5Gea5)N的发现,为制备新型高导电高导热近零膨胀材料提供了可能[1],其基本结构是具有“反钙钛矿”结构的锰氮化物Mn3XN,利用Ge取代部分X,其具有各向同性的负热膨胀性能,体积变化不仅平缓,而且连续,因此即使反复升降温,也不易生产缺陷和变形,化学性能稳定,可当作负热膨胀材料来使用,通过调整元素及其比例来组合X,可调配出负热膨胀系数为-25 X KT6IT1的材料, 这是目前公开报道负热膨胀特性最为显著的材料,此外,他们还预测该材料具有如下特点 (1)以前发现的负热膨胀材料全部为绝缘体,而此次的新材料具备高导电性和导热性等金属特性,因此可作为散热片来使用;(2)具有与铁和铝等金属材料匹敌的机械强度;(3)其合成主要原料不仅价格便宜,而且具有良好环保性;(4)可用于精密光学和微电子器部件领域。目前利用Al,Ga, Zn, In, Sn取代Mn3XN中的X组元,以获得新型反钙钛矿结构的化合物得到了国内外相关科研机构的广泛研究,我们通过对该类材料的研究,发现了一种粉体材料,在一定温度范围区间具有极微负热膨胀系数,其负热膨胀系数达到io_7°c,根据光学器件著名制造商肖特(SCHOTT)集团的产品介绍显示,其生产的零膨胀微晶玻璃其线性热膨胀系数在(0 2) XlO-V0C [3];此外,目前所发现的新型负热膨胀材料,其负热膨胀系数都在10-5/oC -10_6/°c数量级[4],而我们所获得的材料,在温度区间为250. 7°C < T < 435. 8°C,其平均线负热膨胀系数为-3. 1433X10_7°C,较其小近1_2个数量级,由此,我们所获得的粉体材料也可以称为(近)零膨胀材料,因其在此温度区间范围内具有负热膨胀特性,所以,我们称所获得的材料为极微负热膨胀材料。参考文献K.Takenaka,H. Takagi, Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides, Applied Physics Letters, 2005, 87:261902 ;陈广乐,范仕刚,彭珍珍,反钙钛结构负热膨胀Mn3XN材料的研究进展,硅酸盐通报, 2009,28 (5),1013-1017 ;ZERODURe零膨胀微晶玻璃简介http//www.schott.com/advanced_optics/chinese/our_products/zerodur/ zerodur. html/so=china&lang=chinese ;J. S. 0. Evans, Negative thermal expansion materials, J. Chem. Soc. , Dalton Trans, 1999,3317-33洸。

发明内容
本发明的目的在于提供一种在一定温度范围区间具有极微负热膨胀系数,其负热膨胀系数达到10_7°C数量级的Mn3 (Cua5Sna5)N粉体材料,该材料可用于航空航天,微电子器件,光信息传播器件和建筑材料等领域。一种具有极微负热膨胀特性的粉体材料,其分子式为Mn3(Cua5Sna5)N,由Mn,Cu, Sn,N组成,其原子比为Mn =Cu =Sn :N=6 :1:1 :2,其晶体结构为反钙钛矿立方结构。本发明中的Mn3 (Cu0.5Sn0.5) N粉体材料,在250. 7 °C < T < 435. 8 °C,根据平均线热膨胀系数的计算公式α = AL/(LAT), Δ L为温度T1和T2间试样长度的变化(T1 < T2) ;L为试样的原始长度;Δ T为温度T2和T1间的温度差,其平均线负热膨胀系数为-3. 1433X10_7°C,较已发现的负热膨胀材料的负热膨胀系数小近1-2个数量级,如图1 所示。本发明发现的极微负热膨胀行为为各向同性,温度高于室温,区间达185°C左右。本发明一种具有极微负热膨胀特性的Mn3 (Cua5Sna5)N粉体材料的制备方法,它包括以下步骤
(1)称取纯度为99.9%的锰粉,然后将其放入管式炉中,在流动的高纯(99. 99%)氮气的气氛下,以10°C /分钟的速率升温至750°C,保温20小时,随炉冷却,合成Mn2N ;
(2)按照摩尔比Mn2N=Cu :Sn=3 :1 :1,称取Mn2N, Cu粉和Sn粉,混合均勻,在玛瑙研钵中研磨20分钟;
(3)将粉末样品均勻倒入小瓷舟中,再将小瓷舟放入石英管中并同时抽真空至10_5Pa, 然后密封石英管;
(4)将石英管放进管式炉中,升温至800°C,保温20小时,冷却至室温,关闭电源,随炉冷却至室温,即得到目标产物Mn3 (Cu0.5Sn0.5) N。本发明具有如下优点本发明一种具有极微负热膨胀特性的反钙钛矿结构粉体材料,它在250.7°C< T < 435. 8°C,其平均线负热膨胀系数为-3. 1433X 10_7°C,较已发现的负热膨胀材料的负热膨胀系数小近1-2个数量级;该类材料的负热膨胀是各向同性的,结构很稳定。其负热膨胀性能温度高于室温,区间达185°C左右,这种材料还具有良好的导电导热性能;较高的机械强度;原料来源丰富,且制备条件易实现。


图1为Mn3(Cua5Sna5)N粉体材料经TMA测试的试样长度随温度变化曲线。 具体实施方案本发明一种具有极微负热膨胀特性的具有反钙钛矿结构的粉体材料,其分子式为 Mn3(Cua5Sna5) N,由Mn,Cu,Sn,N组成,其原子比为Mn =Cu =Sn :N=6 :1:1 :2,其晶体结构为反钙钛矿立方结构。本发明中的Mn3(Cua5Sna5)N粉体材料,在250. 7°C < T < 435. 8°C,其平均线负热膨胀系数为-3. 143297X10_7°C,较已发现的负热膨胀材料的负热膨胀系数小近1_2个数量级,本发明发现的负热膨胀行为为各向同性,其负热膨胀性能温度高于室温,区间达 185 °C左右。本发明一种具有负热膨胀特性的Mn3(Cua5Sna5)N粉体材料的制备方法,它包括以下步骤
(1)称取纯度为99. 9%的锰粉,然后将其放入管式炉中,在流动的高纯(99. 99%)氮气的气氛下,以10°C /分钟的速率升温至750°C,保温20小时,随炉冷却,合成Mn2N ;
(2 )按照摩尔比Mn2N =Cu =Sn= 3 1 1,称取Mn2N, Cu粉和Sn粉,混合均勻,在玛瑙研钵中研磨20分钟;
(3)将粉末样品均勻倒入小瓷舟中,再将小瓷舟放入石英管中并同时抽真空至10_5Pa, 然后密封石英管;
(4)将石英管放进管式炉中,升温至800°C,保温20小时,冷却至室温,关闭电源,随炉冷却至室温,即得到目标产物Mn3 (Cu0.5Sn0.5) N。
权利要求
1.一种具有极微负热膨胀特性的粉体材料,其晶体结构为反钙钛矿立方结构,其特征在于所述粉体材料分子式为Mn3(Cua5Sna5) N,由Mn,Cu,Sn和N组成,其原子比为Mn =Cu Sn :N=6 :1 :1 :2,在 250. 7°C < T < 435. 8°C,其平均线负热膨胀系数为 _3. 1433X10_7°C。
2.如权利要求1所述的一种具有极微负热膨胀特性的粉体材料的制备方法,它包括以下步骤(1)称取纯度为99.9%的锰粉,然后将其放入管式炉中,在纯度为99. 99%流动氮气的气氛下,以10°C /分钟的速率升温至750°C,保温20小时,随炉冷却,合成Mn2N ;(2)按照摩尔比Mn2N=Cu :Sn=3 :1 :1,称取Mn2N, Cu粉和Sn粉,混合均勻,在玛瑙研钵中研磨20分钟;(3)将粉末样品均勻倒入小瓷舟中,再将小瓷舟放入石英管中并同时抽真空至10_5Pa, 然后密封石英管;(4)将石英管放进管式炉中,升温至800°C,保温20小时,冷却至室温,关闭电源,随炉冷却至室温,即得到目标产物Mn3 (Cu0.5Sn0.5) N。
全文摘要
一种具有极微负热膨胀特性的粉体材料,其晶体结构为反钙钛矿立方结构,其特征在于所述粉体材料分子式为Mn3(Cu0.5Sn0.5)N,其原子比为Mn∶CuSn∶N=6∶1∶1∶2,在250.7℃﹤T﹤435.8℃,其平均线负热膨胀系数为-3.1433×10-7/℃。其制备方法如下(1)称取纯度为99.9%的锰粉,在纯度为99.99%流动氮气的气氛下,以10℃/分钟的速率升温至750℃,保温20小时,随炉冷却,合成Mn2N;(2)按照摩尔比Mn2N∶Cu∶Sn=3∶1∶1,称取Mn2N,Cu粉和Sn粉,混合均匀,在玛瑙研钵中研磨20分钟;(3)将粉末样品均匀倒入小瓷舟中,再将小瓷舟放入石英管中并同时抽真空至10-5Pa,然后密封石英管;(4)将石英管放进管式炉中,升温至800℃,保温20小时,冷却至室温,关闭电源,随炉冷却至室温,即得到目标产物Mn3(Cu0.5Sn0.5)N。
文档编号C22C29/16GK102220536SQ20111015088
公开日2011年10月19日 申请日期2011年6月7日 优先权日2011年6月7日
发明者严学华, 刘佳琪, 华祝元, 李军, 李炳云, 程晓农 申请人:江苏大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1