高强度多相钢、生产方法和用途与流程

文档序号:12165843阅读:330来源:国知局
随着高强度钢在汽车应用中的使用增加,对强度增加而不牺牲可成形性的钢的需求增加。日益增加的对重量节省和安全要求的需求激发了对汽车钢的新概念的深入阐述:与现有先进高强度钢(AHSS)相比,汽车钢可同时实现更高的延展性和更高的强度。因此,提出了如下文提及的提供多个强度水平的多种钢。在那些概念中,已开发了通过析出同时通过晶粒尺寸的细化而获得硬化的具有微合金元素的钢。继这样的高强度低合金(HSLA)钢的开发之后,开发了更高强度的称为先进高强度钢的那些,其保持着良好的强度水平和良好的冷成形性。然而,这些等级所达到的拉伸水平通常是低的。为了应对同时具有高抗性和高可成形性的钢的需求,进行了大量开发。然而,众所周知,对于高强度钢,试图增加极限拉伸强度通常导致更低的延展性水平。尽管如此,汽车制造商不断开发越来越复杂的部件,其需要更好的延展性而不牺牲抗性需求。此外,目前在生产中需要钢的屈服强度和扩孔性能改善的钢,例如经热浸涂覆的钢板。本发明涉及制造高强度经热浸涂覆的钢的方法、其生产方法以及所述高强度钢用于生产车辆的部件的用途。已知美国申请US2013008570,该申请涉及拉伸强度为至少1100MPa的超高强度钢板及其生产方法,所述钢板兼具优异的强度-拉伸平衡和优异的可弯曲加工性。所述钢板的金属组织具有马氏体以及贝氏体铁素体和多边形铁素体的软相。上述马氏体区域构成50%或更多,上述贝氏体铁素体区域构成15%或更多,并且前述多边形铁素体区域构成5%或更少(包括0%)。当测量前述软相的圆等效直径时,变差系数(标准差/平均值)小于或等于1.0。所述超高强度钢板的拉伸强度为至少1100MPa。该申请未记载关于不同的可成形性问题,例如对使用特性具有重要影响的扩孔率和屈服强度。还已知申请WO2012153016,涉及拉伸强度大于1000MPa且均匀延伸率大于12%以及V形可弯曲性大于90°的冷轧钢。以重量百分比计,该申请的化学组成包含:0.15%≤C≤0.25%、1.8%≤Mn≤3.0%、1.2%≤Si≤2%、0%≤Al≤0.10%、0%≤Cr≤0.50%、0%≤Cu≤1%、0%≤Ni≤1%、0%≤S≤0.005%、0%≤P≤0.020%、Nb≤0.015%、Ti≤0.020%、V≤0.015%、Co≤1%、N≤0.008%、B≤0.001%并且Mn+Ni+Cu≤3%,剩余部分为Fe和来自铸造的不可避免的杂质。以面积百分比计,所述钢的显微组织包含5%至20%的多边形铁素体、10%至15%的残余奥氏体、5%至15%的马氏体,其余为板条型贝氏体。该申请需要通过连续退火过程来使奥氏体稳定。本发明的目的为解决上述问题,即,带来同时具有以下特性的经热浸涂覆的高强度钢:拉伸强度大于或等于980MPa,或甚至1180MPa;总延伸率大于或等于8%;扩孔率值大于或等于20%,或甚至40%;屈服强度值大于500MPa,或甚至780MPa。本发明的另一个目的为提供用于制备这种经热浸涂覆的多相钢,同时与常规连续退火镀锌线相容的方法。为此,本发明主要目标为经热浸涂覆的钢板,其拉伸强度为至少980MPa,屈服强度大于或等于500MPa,总延伸率大于或等于8%,以重量百分比计,其组成由以下组成:0.05%≤C≤0.15%2%≤Mn≤3%Al≤0.1%0.3%≤Si≤1.5%0.01%≤Nb≤0.05%N≤0.02%0.1%≤Cr+Mo≤1%0.0001%≤B<0.0025%Ti≤0.5%V<0.01%S≤0.01%P≤0.05%所述组成的剩余部分为铁和由熔炼产生的不可避免的杂质,并且以面积分数计,所述钢板的显微组织由50%至95%的马氏体和总和为5%至50%的铁素体和贝氏体组成,其中铁素体的晶粒尺寸小于10μm,并且其中铁素体晶粒尺寸的纵横比为1至3。在一个优选实施方案中,钢的化学组成中碳含量为使得0.09%≤C≤0.14%。在另一个优选实施方案中,钢的锰含量为使得2.2%≤Mn≤2.7%。在另一个优选实施方案中,钢的铝含量为使得Al≤0.05%。在另一个优选实施方案中,钢的硅含量为使得0.6%≤Si≤1.3%。在另一个优选实施方案中,钢的化学组成中铌含量为使得Nb≤0.03%。在另一个优选实施方案中,钢的化学组成中铬和钼的总和为使得0.1%≤Cr+Mo≤0.7%。在另一个优选实施方案中,钢的化学组成中硼含量为使得0.001%≤B≤0.0022%。在另一个优选实施方案中,钢的化学组成中钛含量为使得0.02%≤Ti≤0.05%。在另一个优选实施方案中,钢板的内部氧化深度为至少200nm且小于100μm,在热浸涂层下包含含Si氧化物、含Mn氧化物、含Al氧化物、含Ti氧化物中的一种或更多种。在一个优选实施方案中,铁素体和贝氏体的总和的面积分数为20%至40%,并且平均铁素体晶粒尺寸小于3μm。优选地,本发明的经热浸涂覆的钢的拉伸强度为至少980MPa,屈服强度为至少500MPa,总延伸率为至少8%,并且扩孔率为至少20%。优选地,本发明的经热浸涂覆的钢的拉伸强度为至少1180MPa,屈服强度为至少780MPa,总延伸率为至少8%,并且扩孔率为至少20%。优选地,根据本发明的钢是镀锌的或经镀锌扩散退火处理的。此外,本发明的第二目标为用于生产高强度钢经热浸涂覆的板的方法,包括依次进行的以下步骤:-对组成为根据本发明如上限定的钢进行铸造以获得板坯,-在高于1180℃的温度T再加热下对所述板坯进行再加热,-在高于800℃的温度下对经再加热的板坯进行热轧以获得热轧钢,-以常规冷却速率将所述热轧钢冷却至500℃至800℃之间的卷取温度T卷取,然后-在T卷取下卷取冷却的所述热轧钢,-去除所述热轧钢的氧化皮,-任选地,在高于300℃的温度TIA下在长于20分钟期间对所述热轧钢进行退火,-任选地,在进入覆盖物之前所述热轧钢的温度应高于400℃,所述热轧钢的冷却速率应低于或等于1℃/分钟且高于或等于0.01℃/分钟,-对所述钢进行冷轧以获得冷轧钢板,-对所述冷轧钢板进行退火,包括以下步骤:-在直接加热炉(directfirefurnace)中加热所述冷轧钢板,所述直接加热炉具有包含0.2%至4%的过量氧体积百分比的气氛,其中氧化步骤在500℃至750℃之间进行,-在辐射管式炉(radiationtubefurnace)中从所述直接加热炉温度加热至退火温度,加热速率为0.5℃/秒至2.5℃/秒,所述辐射管式炉中气氛的露点低于或等于25℃,-所述退火温度T退火为750℃至950℃,-将所述钢在所述退火温度T退火下保持至少30秒且小于或等于300秒的持续时间,-将所述冷轧钢冷却至440℃至470℃之间的温度TOA。-将所述冷轧钢在TOA下保持大于30秒且小于180秒,-以及在所述加热、在T退火下保持和冷却步骤期间,使所述冷轧钢的表面氧化以及随后还原以获得包含含Si氧化物、含Mn氧化物、含Al氧化物、含Ti氧化物中的一种或更多种的至少200nm且小于100μm的内部氧化深度,-对所述冷轧钢进行热浸涂覆以获得经涂覆的冷轧钢,-任选地,对经热浸涂覆的冷轧钢进行镀锌扩散退火处理以使所述冷轧钢涂层中的铁含量达到7%至15%,-将所述经热浸涂覆的冷轧钢以至少1℃/秒的冷却速率冷却至室温。优选地,卷取温度为如此:500℃≤T卷取≤750℃。在一个优选实施方案中,任选的退火温度TIA为使得500℃≤TIA≤650℃,持续30小时至100小时的时间。优选地,冷轧压下率为40%至60%。在一个优选实施方案中,冷轧钢的表面在具有露点低于0℃的混合气体气氛的辐射管式炉中被还原。优选地,在液体Zn合金浴中进行热浸涂覆以获得镀锌的或经镀锌扩散退火处理的冷轧热浸高强度钢。根据本发明的钢可用于生产机动车辆的部件。现在将描述本发明的主要方面:图1示出了根据本发明的钢的显微组织,其中白色为马氏体,黑色为铁素体和贝氏体。为了获得本发明的钢,化学组成和生产参数对达到所有目的而言非常重要。以重量百分比给出以下化学组成元素。碳是用于强化马氏体的元素,如果碳含量低于0.05%,则在本发明中无法达到最小980MPa的拉伸强度。如果碳高于0.15%,则马氏体将是硬的并且在本发明的钢中将无法达到8%的总延伸率。此外,碳是强奥氏体形成元素。从0.15%降低碳含量使得对于给定的退火温度具有更少的奥氏体和足够的铁素体以改善可成形性并且达到总延伸率目标。此外,根据本发明的钢的低退火温度显著地限制了铁素体晶粒生长;因此,最终的铁素体的晶粒尺寸小于10微米。这种结合有助于在根据本发明的钢中获得的机械特性的巨大折衷。优选地,碳含量为使得0.09%≤C≤0.14%。锰是硬化元素。如果Mn含量低于2%,则拉伸强度将低于980MPa。如果Mn含量高于3%,则与其在中间厚度处发生Mn的中心偏析,并且这将对使用特性不利。优选地,锰含量为使得2.2%≤Mn≤2.7%。硅具有强化作用,其提高总延伸率和扩孔率以及耐延迟断裂性。如果Si含量低于0.3%,则总延伸率将低于8%并且上述特性将受损。如果Si含量高于1.5%,则轧制负荷增加太多并且冷轧过程变难。另外均热处理温度将太高,这将导致可制造性问题。此外,通过热浸涂覆的可涂覆性可能由于板表面上形成二氧化硅而受损。出于上述原因,优选地,Si含量为0.6≤Si≤1.3。就像钛一样,铝可以形成AlN以保护硼。然而,其含量限于0.1%,原因是在所有其他参数相同的情况下,更高的Al含量将导致更高的退火温度以具有相同的显微组织平衡。因此,出于节约成本和能量的目的,其含量限于0.1%。优选地,Al含量为使得Al≤0.05%。铌可以形成析出物,其具有晶粒细化作用,已知增加拉伸强度。此外,其提高扩孔率和耐延迟断裂性。如果Nb含量高于0.05%,则延展性将降低并且总延伸率将降至低于8%。Nb含量必须高于0.01%以获得足够的晶粒细化和拉伸强度。优选地,Nb含量为使得Nb≤0.03%。Mo和Cr将提高淬透性和拉伸强度。如果这些元素的总和低于0.1%,则除了在退火期间形成的先共晶铁素体晶粒的生长以外,将形成大部分铁素体,而这将使强度降低。如果在本发明的钢中这些元素的总和高于1%,则其将使热带变硬并且难以冷轧。优选地,这些元素的总和为使得0.1%≤Cr+Mo≤0.7%。添加钛以使其与氮结合形成TiN并以此保护固溶体中的B,如果Ti和Al均不存在,则可形成氮化硼。在那种情况下,硼将不在固溶体中并且无法发挥其如下所限定的作用。此外,TiN形成改善了本发明的钢的可成形性和可焊接性以及耐延迟断裂性。在所有其他参数相同的情况下,Ti高于0.5%将导致较高的退火温度以具有相同的显微组织平衡。因此,出于节约成本和能量的目的,其含量优选地限于0.05%。优选地,Ti含量为使得0.02%≤Ti≤0.05%。在一个优选实施方案中,Ti含量为氮含量的至少3.4倍,以确保其与氮结合并且获得有效的晶粒细化。硼可在冷轧带退火的冷却步骤期间抑制铁素体形成。因此,其避免强度降至低于980MPa。如果硼含量大于或等于0.0025%(25ppm),则过量的硼将在奥氏体晶界处析出为氮化硼,并且这些将充当形成铁素体的成核位点,对机械特性的影响同样为拉伸降低。低于0.0001%(1ppm),其在拉伸强度方面的更高等级更难达到。理想地,硼必须为0.001%≤B≤0.0022%以获得大于1180MPa的机械特性和最小8%的总延伸率。至于钒,如果含量高于0.01%,则钒将通过形成碳化物和/或硝基碳化物而消耗碳,并且这将使马氏体软化。此外,根据本发明的钢的延展性将受损并降至低于8%。至于氮,如果氮含量高于0.02%,则由于存在低含量的游离硼而形成氮化硼并且降低钢的淬透性。其还将形成大部分AIN,这对总延伸率和扩孔率是不利的。因此,氮含量限于0.02%而不降至低于8%的延伸率和/或20%的扩孔率。至于磷,在含量超过0.050重量%时,磷沿着钢的晶界偏析并导致钢板的耐延迟断裂性和可焊接性劣化。因此,磷含量应限于0.050重量%。至于硫,含量超过0.01重量%导致大量非金属夹杂物(MnS),并且这导致钢板的耐延迟断裂性和延展性劣化。因此,硫含量应限于0.01重量%。根据本发明的钢的其余部分由铁和不可避免的杂质组成。生产根据本发明的钢的方法意指以本发明的化学组成铸造钢。在高于1180℃对铸钢进行再加热。当板坯的再加热温度低于1180℃时,钢将不均匀并且析出物将无法完全溶解。然后对板坯进行热轧,最后的热轧道次在至少800℃的温度Tlp下进行。如果Tlp低于800℃,则可热加工性降低并且将出现裂纹并且轧制力将增加。-以本领域技术人员已知的典型冷却速率将钢冷却至卷取温度T卷取。-T卷取必须低于最后道次温度Tlp℃。该温度优选地低于800℃。优选地,卷取温度为使得500℃≤T卷取≤750℃。-在卷取之后,去除热轧钢的氧化皮。-然后,任选地,在高于300℃的温度下在大于20分钟期间对热轧钢进行退火。如果热处理在低于300℃下进行,则冷轧的力将太高并且获得相同结果小于20分钟,材料将太硬而不容易进行冷轧。此外,本发明人已发现,这种热中间处理以出人意料的方式极大地改善了板厚度均匀性。优选地,热处理在500℃至650℃进行30小时至100小时。-任选地,将热轧钢置于覆盖物(必要时为绝缘的)下,以覆盖一个或更多个卷以促进热轧产品的均匀冷却。此外,本发明人发现这种覆盖物处理还可改善板厚度均匀性。-在一个优选实施方案中,在进入覆盖物之前热轧钢的温度应高于400℃。钢的冷却速率应低于或等于1℃/分钟且高于或等于0.01℃/分钟。如果冷却速率高于1℃/分钟,则对于随后的冷轧而言热带将太硬。冷却速率低于0.01℃/分钟,将不利于生产率。-以将取决于最终目标厚度的冷轧比对钢进行冷轧。冷轧比定义为:(冷轧前厚度)-(冷轧后厚度)/(冷轧前厚度),优选地冷轧压下率为40%至60%。因此,存储的应变能足以确保在退火期间进一步再结晶。-将钢加热至必须为750℃至950℃之间的退火温度T退火。对冷轧钢板进行进一步连续退火以获得再结晶以及通过转变获得期望的显微组织。所述退火包括以下步骤:在直接加热炉(或“DFF”)中在过量体积氧百分比为0.2%至4%的气氛内对冷轧板进行加热。过量氧体积是指以超过与用于加热该炉的燃料结合所必需的氧气量存在的氧,即:过量体积氧百分比=(总氧体积-燃烧所需氧体积)/(总氧体积)。因此,当过量氧以本发明的比例存在于燃烧气氛中时,其可与钢带反应。在500℃至750℃的范围内,发生氧化,即,在钢板的表面上形成铁氧化物层,同时在该铁氧化物下面发生内部氧化:由此产生可包含Si、Mn、Al、Ti中一者或更多者的深度在100μm内的内部氧化物。如果氧化深度大于100μm,则钢表面将被严重氧化,将难以使其还原,并且将使涂覆质量劣化。-在辐射管式炉中将钢板从该氧化温度范围进一步加热至退火温度T退火,加热速率为0.5℃/秒至2.5℃/秒。如果加热速率低于0.5℃/秒,则过度的晶粒生长将使最终屈服强度降低。如果加热速率高于2.5℃/秒,则将消耗太多能量。辐射管式炉中的气氛为露点低于25℃的混合气体气氛。高于25℃将引起过度的钢表面氧化,这将影响涂覆质量。在一个优选实施方案中,露点低于0℃而获得非常好的表面质量。-在辐射炉中在相同气氛条件下于750℃至950℃之间的温度T退火下对钢进行进一步连续退火,并且在所述温度下保持30秒至300秒。控制退火温度是该方法的重要特征,因为其使得能够控制初始奥氏体和铁素体分数及其化学组成。退火温度低于750℃,铁素体将不充分再结晶并且延伸率将低于8%,而高于950℃对能量和成本节约动机无用。优选地,退火在775℃至860℃的温度下进行。然后将钢板进一步冷却至温度TOA。-在该加热、退火和冷却步骤期间,钢被氧化然后还原,即,上述钢板表面的铁氧化层被充分还原,同时存在包含含Si氧化物、含Mn氧化物、含Al氧化物、含Ti氧化物中的一种或更多种的深度为200nm至100μm的内部氧化区。在该氧化之后进行还原步骤是必要的,以使钢表面适用于热浸涂覆。-在冷却之后,使钢在440℃至470℃的温度下保持大于30秒且小于180秒。低于440℃,将形成大部分贝氏体或马氏体并且无论拉伸强度还是总延伸率都将分别低于本发明的预期:980MPa和8%。高于470℃,将随着熔融物的蒸发而出现热浸问题并且熔融物与带之间的反应将不受控制。-然后对钢进行热浸涂覆以获得经涂覆的冷轧钢,优选地在Zn或Zn合金浴中进行热浸涂覆以获得镀锌冷轧高强度钢。-任选地,将经热浸涂覆的冷轧钢合金化成基底以获得经镀锌扩散退火处理的冷轧高强度钢,Zn或Zn合金涂层包含7%至15%的铁。内部氧化区存在于Zn或Zn合金涂层下面。-然后将经热浸涂覆的冷轧钢以至少1℃/秒的冷却速率冷却至室温。本发明的框架中的铁素体定义为晶粒尺寸小于10微米(μm)的立方中心组织。在本发明的框架中,铁素体和贝氏体的含量的总和必须为5%至50%以具有至少8%的总延伸率;当铁素体和贝氏体的总和低于5%时,这样的延伸率水平将无法达到。铁素体和贝氏体的总和高于50%,拉伸强度目标980MPa将无法达到。优选地,铁素体和贝氏体含量总和为5%至30%。在另一个实施方案中,铁素体和贝氏体含量总和为20%至40%。在一个优选实施方案中,铁素体的晶粒尺寸小于10μm,优选地,其低于5μm,并且甚至更优选地其低于3μm。低晶粒尺寸铁素体(即,低于10μm)提高了屈服强度。由于以下因素的组合获得了具有限制尺寸的铁素体含量范围:低退火温度;化学组成元素,例如抑制铁素体晶粒尺寸并限制其生长的Nb和Ti,以及在退火之后冷却时限制铁素体形成的Cr和Mo的存在。高于10μm,屈服强度将太低并且低于500MPa的目标。在一个甚至更优选的实施方案中,铁素体晶粒尺寸的纵横比,即各个铁素体晶粒的长度与高度之比的平均值为1至3。出于均一性目的,对至少3种铁素体晶粒群体进行所述测量,所分析的样品用光学或扫描电子显微镜在材料的第三厚度处进行观察。铁素体晶粒的该纵横比改善了特性的均一性,如果铁素体晶粒尺寸为针型,即纵横比高于3或低于1,则纵向与横向之间的特性差异将太高,并且材料特性将不均匀,并且太多取决于应变方向。马氏体是由退火期间形成的不稳定奥氏体在均热处理后的冷却期间形成的组织。其含量必须在50%至95%的范围内。小于50%,980MPa的拉伸强度目标无法达到;大于95%,总延伸率将低于8%。本发明中良好的扩孔率结果是由于相分数平衡和相(铁素体和马氏体)的硬度差异小。缩写UTS(MPa)是指通过在相对于轧制方向的横向方向上进行拉伸测试测量的极限拉伸强度。YS(MPa)是指通过在相对于轧制方向的横向方向上进行拉伸测试测量的屈服强度。TEl(%)是指总延伸率。UTS、YS和Tel可按照多种测试来测量。用于实施例的测试根据JIS-T标准进行。HE(%)是指扩孔率。该测试可借助锥形冲头来进行,所述锥形冲头由顶部为锥形部分和直径为45mm的柱状部分制成。将该冲头置于预先设置有初始直径Do为10mm的孔的钢板下面以测试。然后将锥形冲头向上移动进入该孔并使其增大直至出现第一条横向裂纹。然后测量孔的最终直径D并使用以下关系式计算扩孔率:使用SEM在四分之一厚度处观察显微组织,使用2%奈塔尔硝酸乙醇腐蚀液进行蚀刻并通过图像分析进行定量。在阅读以下实施例时将更好地理解根据本发明的钢,给出这些实施例不是出于限制范围目的,而是为了举例说明。已经由钢铸件生产出半成品。以重量百分比表示的半成品的化学组成在下表1中示出。表1:钢的化学组成(重量%)加下划线的值:本发明之外钢CMnSiNbTiCr+MoBAlPSNV10.122.30.30.0150.0250.60.00100.030.0110.0030.008<0.0120.122.30.70.0150.0250.60.00100.040.0100.0030.007<0.0130.122.31.20.0160.0260.50.00130.040.0120.0030.008<0.0140.12270.70.01<0.010.2<0.0010.040.0090.0020.005<0.0150.142.50.70.01<0.010.2<0.0010.040.0100.0020.006<0.0160.122.70.70.010.0280.10.00210.040.0090.0020.005<0.0170.122.71.20.01<0.010.1<0.0010.040.0100.0020.005<0.0180.122.70.70.010.020.30.00190.050.0100.0020.005<0.0190.132.50.70.010.030.30.00200.050.0100.0020.008<0.01100.132.70.70.010.030.30.00200.060.0200.0020.009<0.01110.142.70.70.010.030.30.00200.050.0200.0020.010<0.01120.092.20.30.0150.030.50.00150.050.0100.0020.007<0.01130.091.80.30.002<0.010.3<0.0010.050.0100.0020.007<0.01140.22.2>1.50.015<0.010.15<0.001>0.10.0100.0020.007<0.01表1中钢组成的剩余部分由铁和来自熔炼的不可避免的杂质组成,杂质水平低于0.0005mill.%但高于0.0001mill.%。首先对具有组成1至14的铸锭进行再加热和热轧。然后对所述热轧钢板进行冷轧并退火。所经历的工艺参数在下面示出:再加热温度(HR再加热):℃精轧温度(HRFT):℃卷取温度(CT):℃中间退火温度(IAT):℃和时间(IAt):小时热带缓慢冷却,覆盖物的入口温度(℃),和冷却速率(℃/分钟)施加的冷轧(CR):直接加热炉中的氧化温度(DFF温度):℃DFF中的过量氧体积百分比,达到退火温度之前的加热速率(℃/秒)退火炉中的露点(℃)退火期间的均热处理温度(AT):℃退火期间的均热处理持续时间(At):秒过时效温度范围OAT过时效时间OAt涂层类型:GI为在465℃下进行镀锌,GA为在变化的温度下进行镀锌扩散退火处理使钢1至14经历表2中所述的工艺参数。表2从再加热至冷轧的工艺参数对最终产品(即,在冷轧、退火和最后涂覆之后)的中间退火TIA和覆盖物处理的效果进行评估。与未经历中间退火的实施例DD相比,对实施例EE进行中间退火;其显微组织在该过程期间均化。在冷轧和最后涂覆过程之后,实施例EE沿卷取长度的厚度变化低于5%,而实施例DD中沿卷取长度的厚度变化明显更大。在覆盖装置内部对实施例GG进行处理使热轧钢更加缓慢地冷却,还改善了钢内部的显微组织均一性。因此,其最终产物厚度变化也低于5%。在下表3中,根据本发明,使所有钢在使用直接加热炉加热期间经历氧化,随后在辐射管式炉中还原。结果,钢板适用于接受GI或GA涂覆,原因是其表面不包含铁氧化物层,但是包含含Si氧化物、含Mn氧化物、含Al氧化物、含Ti氧化物中的一种或更多种的深度为200nm至100μm的内部氧化区,相当于将涂层合金化成基底。在镀锌扩散退火处理之后从GA温度至室温的冷却以5℃/秒进行。表3:生产经热浸涂覆的非常高强度钢的退火参数n.m:未测量。加下划线:本发明的范围之外关于显微组织,表3中选择的实施例的平均值具有以下显微组织特征:表4:显微组织特征加下划线的值:本发明之外至于机械特性,上表4示出屈服强度、拉伸强度、总延伸率和扩孔率的结果。BOG表示在测量中断裂,该值未获得。表5:机械特性n.m.:未测量。加下划线:本发明之外钢编号制造条件YS(MPa)TS(MPa)TE(%)HE(%)1A686119312.2n.m.2B697119312.9n.m.3C596116711.7n.m.8H770113312.6n.m.1L68111479.7n.m.2J79512628.3n.m.3K723124913.8n.m.4L654114710.6n.m.7M71912739.7n.m.8N83311818.9n.m.1O69811118.9n.m2P783125310.1n.m.3Q826129412.3374R626106611.7n.m.6S6091066BOGn.m.7T868131510.7n.m.8U661117710.5n.m.1V73311388.8n.m.2W84212668.7573X877126411.7n.m.4Y641108412.6n.m.5Z6241101BOGn.m.6AA96013578.2n.m.7BB64010859.6n.m.9DD770121910.7219EE83612599.1219FF89212369.9209GG85111808.0n.m.10HH949131610.2n.m.10II82712388.5n.m.11JJ876124610.12511KK84212488.6n.m.12XA65297716.52013XB35159927.3n.m.14XC65112694.1<10根据本发明的钢显示出良好的可涂覆性。此外,大量实施例显示拉伸强度高于980MPa并且甚至高于1180MPa(参见实施例W)。此外在对应于本发明的所有情况下延展性水平也高于8%,屈服强度高于500MPa并且在一些实施例中甚至高于780MPa(见实施例W),以及扩孔率值明显高于20%并且在最佳情况下高于40%(见实施例W)。在高于25℃的露点28℃下处理实施例XA。由于炉中露点太高所引起的过度脱碳而导致钢拉伸强度低于980MPa。实施例XB的钢具有1.8%Mn,这低于2%。在过程最终获得的经涂覆的板包含65%的铁素体和贝氏体,这因此导致拉伸强度远低于980MPa。实施例XC具有大于0.15%C,大于1.5%Si和大于0.1%的Al,这使所述钢中的马氏体非常硬。因此,总延伸率远低于8%并且扩孔率远低于20%。根据本发明的钢可用于机动车辆的汽车车体的白部件。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1