金属氧化物纳米纤维电极和方法与流程

文档序号:15299782发布日期:2018-08-31 20:05阅读:300来源:国知局
本申请要求美国临时专利申请号62/255,827的优先权权益,所述美国临时专利申请通过引用以其全文结合在此。本发明涉及基于金属氧化物的材料微结构和方法。在一个实例中,本发明涉及锂离子电池的基于金属氧化物纳米纤维的阳极。
背景技术
:期望经改进的电池如锂离子电池。可以改进的电池结构的一个实例是阳极结构。附图说明图1示出根据本发明的实例的制作方法的一部分。图2示出根据本发明的实例的纤维的显微照片。图3示出根据本发明的实例的纤维的tem图像。图4示出根据本发明的实例的纤维的x射线数据。图5示出根据本发明的实例的材料的电数据。图6示出根据的本发明的实例的材料的额外电数据。图7示出根据本发明的实例的纤维的显微照片。图8示出根据的本发明的实例的材料的额外电数据。图9示出根据本发明的实例形成的装置的实例电路。图10示出根据本发明的实例的电池。图11示出根据本发明的实例的形成材料的方法。具体实施方式在如下详细描述中,参考附图,附图形成详细说明的一部分,并且在附图中,通过说明的方式示出了可以实践本发明的具体实施例。在附图中,贯穿若干个视图,相似的附图标记描述基本上类似的部件。足够详细地描述这些实施例以使本领域技术人员能够实践本发明。在不脱离本发明范围的情况下,可以利用其它实施例并且可以做出结构或逻辑上的改变等。以下公开内容示出了低成本、独立式、大容量、稳定且环境友好的金属氧化物纤维布。在一个实例中,金属氧化物是氧化镍。在一个实例中,镍-氧化镍(ni-nio)纳米纤维布用于形成锂离子电池的阳极。ni-nio纳米纤维是通过生成独立式芯-壳纳米纤维结构的静电纺丝和热氧化工艺制造的。由于在锂化/去锂化期间重复的体积变化,镍基体缓解了在锂离子阳极观察到的导电性差的问题。与浆料铸造电极的表面积相比,ni-nio纳米纤维阳极拥有高表面积,这有助于促进锂离子扩散到活性材料中。电化学阻抗谱指示集流金属(在这一情况下为镍)经受独立式结构的体积变化的经改进的能力。此外,扫描电子显微镜指示,在超过400个充电/放电循环内ni-nio纳米纤维布阳极的稳定性,所述稳定性部分地通过固体电解质中间相的稳定演变来证明。作为阳极,ni-nio纳米纤维布示出了令人难忘的结果:在2154mag-1或3c(1c=718mag-1)的电流密度下1054mahg-1的重量容量、超过1500个循环的长循环寿命、以及在其整个循环寿命期间具有>99%的库伦效率的优异稳定性。性能评价使ni-nio布材料能够用于下一代大容量、高速率、稳定且环境友好的锂离子电池。稳定的高速率、大容量且环境安全的锂离子电池(lib)电极处于能量存储研究兴趣的中心。lib目前在市场上以便携式电子设备超越了其它具有竞争力的电池技术并且正在成为用于向下一代电动车辆供电的技术选择。研究试图通过调查拥有各种纳米结构的新型材料来满足对低成本、安全且高性能的lib的市场需求。lib电极常常由导电剂、粘结剂、集流器和活性材料组成。一种增大lib电池的整体重量容量的方法是消除在系统中使用导电剂和粘结剂。可以通过利用具有嵌入式集流器的独立式电极来代替粘结剂和导电剂。独立式电极将集流器合并到电极架构中。这减少了对粘结剂和导电剂的使用需要。然而,所使用的活性材料中的许多既不具有足够的导电性又不能够将自身粘附到集流器上。已经示出了基于碳织物或碳基纸、碳基纳米支架以及静电纺丝纤维的一些独立式电极。这些独立式电极展现出大容量、快速循环速率和长循环寿命,但是具有很长的热氧化稳定、碳化和机械脆性。代替石墨用作阳极-具有372mahg-1的理论容量-的候选物包括硅、锡基材料、各种过渡金属氧化物和锂金属。这些材料展现出比石墨更大的容量,但具有从体积膨胀跨到差库伦效率的潜在缺点。硅、锡基材料和过渡金属氧化物具有锂化/去锂化期间的体积变化或具有差导电性。循环期间的体积变化导致电极的形态在其循环寿命过程中发生降解。因此,活性材料与导电网络失去接触,并且固体电解质界面(sei)层降解。sei层的降解导致持续较厚地重新形成消耗电解质和锂的sei层。与导电网络失去接触以及sei层降解导致容量和库伦效率降低。基于其大容量、高导电性以及其无需扩散/插层,锂金属是理想的阳极材料。锂金属作为阳极所面临的挑战包括锂化/去锂化期间锂枝状晶体的重复形成、低库伦效率和安全问题。金属氧化物在缓和下一代锂离子电池所面临的问题中的许多问题方面显示出了前景,但在没有正确的电极设计的情况下并非如此。氧化镍(ii)(nio)正新兴成为用于大容量、长循环寿命、低成本且环境友好的锂离子电池的有前景的阳极材料。这个材料系统展现出718mahg-1的高理论容量以及易于转化成各种3d结构以用于创新型电极的能力。然而,nio的电化学性能受限于锂化/去锂化期间大的体积变化以及差导电性。为对抗这一问题,已经采用了各种纳米结构来改进电化学性能,比如纳米纤维、芯-壳纳米线和涂覆在氧化镍中的碳结构。这些结构中的许多展现出了高达数千个循环的长循环寿命、高达10c的优异循环速率或高达800mahg-1的大容量。尽管这些结构各具优势,但没有一个结构将出色的循环寿命、高充电电流密度以及优异的容量与独立式电极组合起来。这里,我们呈现了通过静电纺丝合成并且通过解决上述问题的简单热处理加工的新型独立式ni-nio纳米纤维布阳极。独立式ni-nio纳米纤维布阳极展现出超过1500个循环的长循环寿命、在相对快的循环速率3c(1c=718mag-1)下1054mahg-1的大容量、以及>99%的库伦效率。不过,最令人难忘的是,ni-nio纳米纤维布阳极在超过1500个循环内在3c下维持了1108mahg-1的大容量,其中形态在循环后发生最小变化。就我们的知识所及,之前并未报道过将静电纺丝纳米结构金属嵌入活性材料中用作具有这种出色性能的集流器的独立式ni-nio纳米纤维布阳极。关于ni-nio纤维的制备,将132mgml-1的ni(ococh3)24h2o和66mgml-1的聚乙烯吡咯烷酮(pvp,1300000gmol-1)混合在乙醇中在70℃下30分钟。待溶液完全混合后,将溶液转移到5ml的注射器中并使用inovensone300纳米纺丝机(nanospinner)来进行静电纺丝。溶液的进给速率为0.6mlhr-1并且纺丝电位为6kv,而针收集器距离为11cm。纤维被纺丝之后,将所述纤维在氧化铝管中、在400℃下、在空气中、以0.66℃min-1的加热速率煅烧6小时、在200℃下热氧化稳定2小时以获得纯氧化镍纤维。热氧化总共花费16h完成。然后,通过在ar/h2(体积比为1∶2)的恒流下、以13℃min-1的加热速率、在20托和400℃下氢还原90分钟来将氧化镍纤维还原成镍纤维。以20℃min-1的冷却速率来冷却镍纤维。最后,以20℃min-1的冷却速率将镍纤维在350℃下、在空气中再次煅烧30分钟以得到ni芯、nio壳纤维。通过扫描电子显微镜(philipsxl-30)和透射电子显微镜(feitecanai12)来观察所编织纤维的形态。所合成纤维的主要组成被表征为使用cu-k辐射和eds(电子衍射光谱)的x射线粉末衍射(pananalyticalempyrean)。结构的组成是通过能量色散光谱(novananosem50系列)来确定的。使用具有充当集流器的锂箔的2032型硬币电池以及celgard(卡尔格德)25um3501pp隔膜来实施电化学测量。工作电极是通过切割多件ni-nio布来制备的。然后将所得布放置在2032型硬币电池内部。电池的组装在氩填充的手套箱(h2o<0.5ppm,o2<0.2ppm,vac)中发生。将由1mlipf6组成的电解质溶解在含有1%wt.碳酸乙烯酯(vc)添加剂的碳酸乙烯酯(ec)与碳酸二甲酯(dmc)(1∶1wt.)的混合物中。电池中nio的负载为0.4mgcm-2到0.6mgcm-2,不包括镍芯的重量。这个负载是通过质量变化计算算出的,假设重量变化仅仅是由于氧。2032型硬币电池是使用arbin(埃尔宾)恒电位器、以0.01v到3.0v对li/li+的电压范围、以恒电流方式进行放电和充电的。使用0.5mvs-1的扫描速率在0.0lv到3.0v之间对bio-logicvmp3实施cv测试。eis(bio-logicvmp3)是以10mv的ac信号振幅、在从10mhz到100khz变化的频率范围下实施的。电流循环、cv和eis测量都是在室温(23℃)下实施的。ni-nio纤维是通过对溶解在乙醇中的由乙酸镍(ni(ch3co2)2)和聚乙烯吡咯烷酮(pvp)组成的胶溶液进行静电纺丝而合成的。通过在空气中在400℃下进行煅烧来将氧气引入到纳米纤维结构中。氧气的引入导致氧化镍(nio)纳米纤维形成。nio纤维通过20托的氢气流在400℃下还原,从而产生哑灰色镍纳米纤维布。nio壳是通过在350下、在空气中部分煅烧半小时形成的。图1中展示了工艺的详细示意图以及经加工的材料的图像。利用低温热处理来保持小的晶粒尺寸。小晶粒充当促进在循环期间形成的有利聚合物/类凝胶涂层的形成的贡献因素。图1示出了a)静电纺丝工艺。b)纺成纳米纤维蒙版(matte)。c)经煅烧的nio纳米纤维。d)还原后的ni纳米纤维。e)部分煅烧的ni-nio纳米纤维。f)热氧化/还原过程的示意图。使用图2所示出的sem来研究由于热处理造成的形态变化。图2a中的作为纺丝纳米纤维示出了直径为大约400nm的光滑纳米纤维。图2b所示出的纳米纤维直径在煅烧后大约减少一半到200nm。这是由热处理期间乙酸酯基团和聚合物的丢失引起的。如图2c所示,在氢还原后,由于从nio到ni的体积变化而因此失去了光滑形态。图2d示出了在部分煅烧后在ni纳米纤维的表面上形成nio层。图2示出了a)煅烧前的纤维的sem图像。b)煅烧后nio纤维的sem图像。c)氢还原后ni纤维的sem图像。d)具有纤维表面的嵌入图像的ni-nio纤维的sem图像。图3所示出的代表性透射电子显微镜(tem)图像揭露了属于ni-nio纤维上的氧化镍的不同氧化层,厚度为约20nm。saed确认存在非晶氧化层和晶体镍芯。镍芯的不均匀表面形态是由nio还原成ni引起的。还原产生了紧密结合在一起的镍纳米晶体,所述镍纳米晶体充当ni-nio布纤维的基体。图3所示出的晶体镍和非晶氧化层tem结果与图4所示出的xrd和eds结果相一致。图3示出了a)ni-nio布纤维的tem图像。b)用嵌入的saed示出nio厚度的ni-nio布纤维tem图像。ni-nio纳米纤维的化学组成是通过xrd和eds确认的。图4a示出了纤维在不同加工阶段的xrd图案。这三个xrd图案分别对应于煅烧、还原和部分煅烧后的nio、ni和ni-nio纳米纤维。在图4a中,37.1°、43.1°和162.6°处的峰值表示nio面心立方晶体结构的(111)、(200)、(220)平面。44.5°、51.8°和76.4°处的峰值与镍的xrd图案重合。[35]这些峰值分别对应于面心立方ni晶体的(111)、(200)和(220)平面。ni-nio纳米纤维的xrd图案示出了来自前两个xrd图案的所有峰值。虽然nio在37.1°、43.1°和62.6°处的峰值由于非晶特性而因此较弱,但是ni在44.5°、51.8°和76.4°处的峰值由于其高结晶度而因此较强。在ni-nio布纳米纤维的xrd分析期间,未检测到碳峰值。这表明ni-nio纤维仅由ni和nio晶体组成并且所有过量碳被燃尽。[22,36]xrd结果是通过图4b、图3所示出的eds和tem两者来确认的。图4b中的eds光谱示出了结构内仅存在镍和氧。eds映射示出了镍和氧在整个结构中的分布。氧在整个结构中的分布用图4c中的嵌入图像来表示,从而给予跨ni-nio纳米纤维的表面均匀分布的总共2.28wt%的氧。图4示出了a)nio纤维、ni纤维和ni-nio纤维的x射线粉末衍射。b)具有示出部分煅烧后的重量百分比的嵌入显示的ni-nio纤维的eds光谱。c)具有主要映射的嵌入图像的eds映射区域的sem图像。使用恒电流循环、循环伏安法(cv)和电化学阻抗光谱法(eis)来评价ni-nio纳米纤维阳极的电化学特性。nio的重量是通过质量变化测量来计算的,假设从纯ni纤维到部分煅烧的ni-nio纤维的变化质量完全是由于氧气的引入。计算的重量被用来确定容量和c速率。在循环1到10以及循环161到170内以0.5mvs-1的扫描速率来执行cv。图5a和图5b分别示出了针对循环1到10、161到170的cv分布图。如图5a所示,针对循环2到10的cv分布图展现出类似的峰值,从而指示在前几个循环内的稳定循环性能。[26]最显著的是,循环1和循环2的cv分布图的大差异是0.5v处的大峰值。0.5v左右的大阴极峰值归因于固体电解质界面(sei)层的形成、氧化镍到镍的还原、以及非晶li20(nio+2li++2e-→ni+li2o)的形成。[12,26]0.5v的阴极峰值之后是2.25v的阳极峰值。阳极峰值表示聚合物/类凝胶层的分解以及ni0到ni2+的可逆还原。对于第一循环之后的剩余循环,阳极峰值转变到1v。虽然存在电流差异,但是循环161到170的cv分布图非常类似于循环2到10。电流差异归因于暗示更大容量和反应性的峰值电流变化。[37]这与图6所示出的在160个循环之后见到的容量的增加重合。曲线的相似性指示非常稳定的循环性能和在10个循环之后1sei层的稳定形成。稳定循环性能归因于镍基体能够在nio的锂化/去锂化期间防止由95.68%的体积膨胀/收缩产生的机械应力和应变而造成的损坏。[38]因此,耐粉碎结构为在锂化/去锂化期间不易于降解的nio提供了稳定的导电网络。[37]这是通过针对所有循环恒定的等效串联电阻(esr)2.7来证明的,从而产生令人难忘的可循环性。图5示出了a)在0.5mvs-1扫描速率下循环1到10的cv。b)在0.5mvs-1扫描速率下循环160到169的cv。c)ni-nio纤维在所选循环内在1c下的galvonastic电压分布图。d)ni-nio纤维在所选c速率下的galvonastic电压分布图。图5中示出了ni-nio纳米纤维阳极在0.01v到3.0v之间的充电-放电分布图。图5c示出了1c速率下的充电-放电分布图。图5c中电极在其第一次放电期间的电位展现了0.85v的长稳定水平(plateau)。长稳定水平归因于sei层的形成、nio到ni的初始还原以及非晶li2o的形成。[12]根据图5c的电压分布图,聚合物/类凝胶层在约0.85v在第一次放电循环期间开始形成,通常,nio为为0.7v并且其它循环为1.3v。这与文献中报道的nio的cv分布图是一致的。[27,32,34,39]第一循环从0.7v到0.85v增加的电压稳定水平是由易于反应的nio与li+容易反应形成ni和li2o引起的°[33,34]nio与li+容易反应的主要原因是促进聚合物/类凝胶层生长的小晶粒尺寸。当锂离子与电解液形成烷基碳酸锂而非与nio反应时,聚合物/类凝胶层形成,烷基碳酸锂然后在电极的表面上聚集,从而形成聚合物/类凝胶层。形成这些聚合物/类凝胶层的优势是促进了更大的容量和更好的稳定性。首先,聚合物/类凝胶层产生赝电容行为。已知赝电容反应是高度可逆的并且是过量容量源。其次,聚合物/类凝胶层将活性材料紧密地固持到镍基体,从而不仅提高了结构导电性,还将材料紧密地固持在一起来帮助维持其原始形态。如图7所示,ni-nio纳米纤维电极在400个循环之后在3c下保持其原始形态,从而允许电极保持其容量中的较大部分。在剩余放电期间,这个聚合物/类凝胶层保持粘结到电极的表面。在充电循环期间,在电压超过2v时,聚合物/类凝胶层溶解,从而有助于充电稳定水平从2v变化到2.3v。图5c中循环2和循环30的充电-放电分布图展现出类似的曲线,从而暗示电极在1c循环速率下的稳定性。增加ni-nio纳米纤维电池的循环速率导致了图5d所示出的较高的充电稳定水平和较低的放电稳定水平。稳定水平变化是电流密度增加的结果,从而导致电池的过电位上升。尽管这样,针对不同循环速率的充电-放电曲线展现出了类似的曲线,图5d所示出的在1.4v到0.7v之间的稳定水平。稳定水平的相似性与ni-nio纳米纤维电池优异的速率性能相关,所述优异的速率性能归因于镍作为导电网络在较高循环速率期间的刚性以及sei层稳定形成。稳定的导电网络通过改进电子传递来增强电化学活性。稳定的sei层防止降低离子导电性并对倍率性能(ratecapability)产生巨大影响的较厚sei层的持续重新形成。图6示出了a)在3c下在超过1000个循环内的深度恒电流循环。b)在1c、1.5c、2c和5c下在120个循环内的恒电流循环。使用锂金属晶圆作为反电极在0.01v到3.0v的电位窗中实施恒电流循环。如图6a所示,针对所有循环,在3c的充电速率下测量熔炼炉。ni-nio电池示出了优异的稳定性和>99%的库伦效率。初始容量被记录为1801mahg-1,在接下来的160个循环内,容量降到626mahg-1,随后在接下来的840个循环内再次增大。容量降低归因于前160个循环的高电荷转移电阻。在160个循环之后,容量由于较低的电荷转移电阻而开始增大。这暗示在锂化/去锂化期间更多的nio表面积正在变得活性化。循环100到1000的波状波动是由在进行恒电流循环的房间内部发生的温度变化引起的。容量增大超过718mahg-1时可以归因于多个可能的解释。do等人提出,容量的增大是由于减小的晶粒尺寸造成的,从而促进氧化镍形成镍基体上的表面积的数量,同时也促进了聚合物/类凝胶层的形成。其它小组提出,聚合物/类凝胶层的可逆生长归因于电解质的动力学降解。我们将容量的增大归因于镍基体充当电解质分解的有效催化剂,从而促进聚合物/类凝胶层的持续生长。这导致电池在保持其所有原始容量的同时持续1500个循环。图7示出了a)在3c下、在400个循环后的sem图像。b)具有放大纤维结构的嵌入图像的在3c下、在400个循环后的sem图像。倍率性能正在变成下一代lib的重要因素。基于120个循环内nio的量来评价各个充电-放电速率内ni-nio电极的倍率性能。如图6b所示,第一循环展现出2240mahg-1的容量并且以c/10的速率被充电-放电以确保sei层的正确形成。在718mag-1的循环速率下,ni-nio电极展现出很好地维持了60个循环的1084mahg-1t的容量。与前60个循环相比,在二十个周期内将循环速率增大到1.5c、2c、5c分别产生了2.5%6.5%和16.2%的容量损失。在循环率返回到1c时,实现了原始容量的完全恢复。ni-nio优异的倍率性能归因于电极架构在较高电流密度下的稳定性,所述稳定性维持了系统的导电性。图7中的循环后图像确认了ni-nio在3c下在400个循环之后维持其初始形态的能力,从而示出了非常少到无降解。这些结果表明,与浆料铸造电极相比,独立式ni-nio示纳米纤维在不危害电极的情况下具有更长的寿命、更大的容量、更好的稳定性和更好的倍率性能。这是由于消除了会以其它方式减小整体恒电流容量的粘结剂和导电剂以及形成了会以其它方式降低离子导电性的稳定sei层。图8a)示出了ni-nio纳米纤维阳极在所选循环内的复阻抗绘图。b)示出了绘图的高频率区域。通过运行恒电位电化学阻抗光谱(peis)来获得前十个循环、将近170个循环以及将近500个循环的复阻抗绘图。电化学阻抗光谱(els)是应用不同频率的小正弦并测量所得复阻抗的技术。对于当前的调查,应用了频率在10mhz到100khz的范围内的10mv正弦信号。绘图包含以下不同特征:高频拦截、在较高频率端半圆类似的两个曲线、以及低频尾。图8a示出了在所选循环内的复阻抗绘图并且其模型根据图9所示出的等效电路的阻抗拟合。高频拦截结合电解质的离子电阻表示电极内导电材料的电阻,常常呈现为等效串联电阻(esr)。ni-nio阳极具有相对低的esr。更显著的是,如表1所示,这个欧姆电阻未与循环一起增大,而是在整个170个循环内保持其初始值。这支撑了以下声明:镍基体为可以在不降解的情况下在锂化/去锂化期间经受住体积变化的ni-nio阳极提供了稳健的导电网络。另外要注意的是在图8b中见到的第一循环内的拟合的轻微不匹配。等效电路由用于预测lib电池内的电化学的模型参数设计组成。虽然电池行为在后来的循环期间变得更加可预测,但是所述电池行为有时可以示出仅在第一循环期间存在的电化学步骤的证据(不用等效电路模型来表示)。图9示出了用于拟合复阻抗绘图的等效电路。esr的低稳定值指示如galvanostic循环期间观察到的优异倍率性能。第一个半圆形表示由于涉及锂离子和溶液分子的不可逆反应而形成在活性材料的表面上的固体电解质中间相的频率相关的复阻抗。半圆的直径表示由于固体电解质中间相(sei)层而造成的电阻,这里被列为rsei。第二个半圆形包含关于在电极-电解质截面处形成的电化学双层的阻抗信息。允许电池存储能量的反应动力学在这个电化学活性区域中发生。这个半圆的直径表示涉及电极处的锂离子交换的氧化还原反应的电荷-转移电阻或反应电阻(rct)。循环esrrseirct12.758822.77.56532.77.56242.786052.7953102.710561702.710275013.560150表1(上方)列出了从ni-nio阳极的eis分析获得的相关参数。表1示出了在我们的ni-nio阳极循环的情况下rsei和rct的演变。sei电阻在初始的十个循环期间增大,同时电化学惰性层形成在活性材料表面上。rsei此后稳定下来并且在170个循环内维持相同值。sei层的稳定形成对于良好的倍率性能和循环稳定性而言的强制性的并且就图6b所演示的优异循环寿命而言是一致的。[45]在500个循环之后观察到的sei的急剧增大可能是由于形成在nio表面上物的凝胶/聚合层的去溶剂化,所述去溶剂化导致新sei形成。rct在初始循环期间急剧减小并且在170个循环内继续减小。期望rct与高表面积电极中的循环一起减小,因为更多的活性材料表面经由电极的重复锂化/去锂化活化。eis结果确认了镍基体在增强独立式ni-nio布阳极的稳定性和sei层的稳定形成方面的决定性作用。总之,在此我们呈现了通过静电纺丝工艺随后通过热氧化/还原过程合成的新型独立式ni-nio布阳极。作为下一代lib的阳极材料,独立式ni-nio布阳极展现出出色1054mahg-1大容量、在3c或2154mag-1下1000个循环的长寿命、以及高达5c或3590mag-1的极好的倍率性能。这项工作演示了用于将ni-nio布用作阳极来实现令人难忘的性能的简易方法。这里呈现的结果表明,独立式ni-nio布电极能够代替石墨阳极并且提供下一代便携式柔性电子设备的lib所需的性能。图10示出了根据本发明的实施例的电池1000的实例。电池1000被示出为包括阳极1010和阴极1012。电解质1014示出在阳极1010与阴极1012之间。在一个实例中,电池1000是锂离子电池。在一个实例中,如以上实例所描述的,阳极1010是由金属氧化物纤维布形成的。在一个实例中,尽管本发明未这样限制,电池1010被形成为符合2032硬币型形状因子。图11示出了根据本发明的实施例的形成方法的实例。在操作1102中,例如通过静电纺丝将多个金属氧化物纤维形成为布。在操作1104中,将金属氧化物纤维还原以形成金属纤维布。在操作1106中,将金属纤维布氧化以与金属芯和金属氧化物表面形成纤维。尽管上文中列出了本文所描述的实施例的多个优势,但是列表并不是详尽的。阅读了本公开,上文所描述的实施例的其它优势对本领域普通技术人员而言将会是显而易见的。虽然本文中已经展示和描述了具体实施例,但本领域的普通技术人员应了解,打算实现相同目的的任何安排都可以取代示出的具体实施例。本申请旨在涵盖对本发明的任何改编或变化。应理解,以上描述旨在是说明性的且并非是限制性的。在查阅以上描述后,以上实施例的组合以及其它实施例对本领域技术人员而言将会是显而易见的。本发明的范围包括使用以上结构和制造方法的任何其它应用。本发明的范围应该参照所附权利要求书连同这样的权利要求书有权获得的等效物的全部范围来确定。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1