一种抗热冲击的高温复合绝缘层及制备方法与流程

文档序号:11224519阅读:493来源:国知局
一种抗热冲击的高温复合绝缘层及制备方法与流程

本发明属于薄膜传感器技术领域,尤其是对航空发动机等异型热端部件表面状态参数测试用薄膜传感器,此类薄膜传感器可用于航空发动机燃烧室内壁、涡轮叶片等热端部件的表面温度、应变等状态参数的准确测试,为航空发动机的设计与优化提供技术支撑;具体提供一种抗热冲击的高温复合绝缘层及制备方法。



背景技术:

随着航空发动机不断向高马赫、高推重比、高可靠性的方向发展,因此需要长期工作于高温、高压、高气流冲刷等恶劣环境中,燃烧室以及涡轮叶片表面的温度分布及应变对涡轮发动机的性能与寿命的影响极大。因此,在现代航空发动机设计和试验研究中,准确测量工作状态下燃烧室以及涡轮叶片等热端部件表面的温度及应变等性能参数对发动机的设计至关重要。

采用薄膜技术与图形化工艺制备的薄膜传感器,具有体积小(厚度为μm量级)、质量轻、响应快、对待测部件与环境影响较小等优点,成为了目前航空发动机工作状况参数测量的先进测试技术。常用于涡轮叶片等热端部件表面状态参数测试用的薄膜传感器为多层膜结构,自下而上依次为ni基合金基底、nicraly过渡层、热生长al2o3层、电子束蒸发al2o3绝缘层、敏感功能层和保护层;作为具有“承上启下”作用的绝缘层,其性能的优劣直接关系到整个薄膜传感器性能的好坏。采用电子束蒸发制备的al2o3薄膜绝缘层,由于沉积的al2o3呈柱状生长,而柱间的阴影效应会产生较大的孔洞和间隙;并且,在后续高温退火过程中,由于非晶态al2o3结晶以及金属层与al2o3层之间的热膨胀系数存在差异,诱导al2o3薄膜产生微裂纹来释放应力,导致电子束蒸发al2o3薄膜层的致密性、绝缘性能较差。

为解决这一问题,申请号为201610524876.5、发明名称为:一种抗热冲击的高温复合绝缘层及制备工艺的专利文献中提出了一种复合薄膜绝缘层,在溅射制备的nicraly层热生长形成的al2o3层上,采用射频反应溅射生长一层非晶al-o-n薄膜,然后继续溅射一层al-o-n~al2o3的成分渐变过渡层,再采用电子束蒸发沉积al2o3薄膜层,最后放入真空环境中退火,在al2o3薄膜层表面形成一层al2o3微晶层,得到复合绝缘层,可有效阻挡金属原子扩散,提高薄膜绝缘性能,增强薄膜传感器的稳定性与可靠性。这一方法在金属平板上取得了良好的效果;然而,面对像涡轮叶片等异型精密结构件,其实际效果总是差强人意。在异型结构件的大角度弯曲、翻折等部位,采用溅射或蒸发技术无法形成均匀致密的绝缘层,在后续溅射制备金属敏感功能层时,溅射出的金属原子能量较高,容易贯穿绝缘层而产生导通现象,从而使薄膜传感器失效。为了改善异构件表面绝缘层的均匀性及高温绝缘性能,亟需新型绝缘层制备技术。



技术实现要素:

本发明的目的在于针对上述技术背景中存在的缺陷与不足,提出一种抗热冲击的高温复合绝缘层及其制备方法。本发明中复合绝缘层由自下而上的al2o3~al-o-n梯度层和微晶al2o3薄膜绝缘层组成,该复合薄膜绝缘层对异型精密构件平面、弯曲、翻折等不同部位均能形成均匀致密的覆盖,有效提高绝缘层的均匀性及高温绝缘性能,有效保证薄膜传感器在高温条件下的可靠性和稳定性。

为实现上述目的,本发明采用的技术方案为:

一种抗热冲击的高温复合绝缘层,包括两层结构,自下而上依次为al2o3~al-o-n梯度层及微晶al2o3薄膜绝缘层;其特征在于,所述al2o3~al-o-n梯度层的底层为al2o3层,顶层为非晶al-o-n薄膜层,且沿薄膜生长方向n元素含量递增。

进一步的,所述al2o3~al-o-n梯度层的厚度为2~5μm,所述微晶al2o3层的厚度为2~5μm。

上述抗热冲击的高温复合绝缘层的制备方法,包括以下步骤:

步骤1.al2o3~al-o-n梯度层的制备:在制备有al2o3热生长层的复合基板上,采用溶胶凝胶法制备一层酸性铝溶胶薄膜层,经加热台烘干,重复操作5~20次;然后将覆盖多层铝溶胶的复合基板置于n2气环境下,于800~1100℃高温热处理4~10h,得到al2o3~al-o-n梯度层;

步骤2.微晶al2o3薄膜绝缘层的制备:在制备有al2o3~al-o-n梯度层的复合基板上,采用溶胶凝胶法制备一层酸性铝溶胶薄膜层,经加热台烘干,重复操作5~20次;然后将覆盖多层铝溶胶的复合基板置于ar气环境下,升温到500~700℃中温热处理30min~60min;在然后将复合基板置于真空度为10-3pa以下的真空退火炉中,于900~1100℃高温下进行循环退火,得到微晶al2o3薄膜绝缘层。

进一步的,所述步骤1和步骤2中所述采用溶胶凝胶法制备一层酸性铝溶胶薄膜层的具体过程为:将复合基板固定于提拉机悬臂上,以100~600mm/min的下降速度使复合基板浸入酸性铝溶胶中,其中铝溶胶的粘度为1.0~8.0、质量分数为1~20%,浸滞10~120s后,以20~80mm/min的提拉速度将复合基板移出液面,取下复合基板置于加热台上,以150~400℃恒温处理1~20min,然后取出冷却至室温。

从原理上讲:本发明中复合绝缘层由由自下而上的al2o3~al-o-n梯度层和微晶al2o3薄膜绝缘层组成,如图1所示;应用该复合绝缘层的薄膜传感器包括了六层结构,如图2所示,自下而上依次合金基板1、nicraly合金过渡层2、热生长al2o3层3、复合绝缘层4、敏感功能层5及al2o3保护层6;复合绝缘层制备过程为:在溅射制备的nicraly层热生长形成的al2o3层上,先采用溶胶凝胶法制备出多层酸性铝溶胶,经烘干处理后,在氮气环境下进行高温热处理,氮原子扩散进入薄膜并形成浓度梯度,使得热处理后薄膜形成由表面的非晶al-o-n向内部al2o3的渐变过渡;然后,再采用溶胶凝胶法制备出多层酸性铝溶胶,在大气环境下热处理后,最后将其置于在高温条件下进行快速循环退火处理得到微晶al2o3层。热生长得到的al2o3层与本发明中的复合绝缘层牢固结合在一起,形成了具有夹心“三明治”结构的复合绝缘层。

本发明的有益效果在于:

1、在本发明中,复合绝缘层的al2o3~al-o-n梯度层顶层的al-o-n薄膜呈非晶态结构,消除了晶界,极大的阻碍了在高温高压下底层的金属基板以及上层的贵金属功能层中的金属原子互扩散现象,使得复合绝缘层的高温绝缘性能得到数量级的增长;同时,al2o3~al-o-n梯度层底层的al2o3与下层热生长al2o3化学成分相同,因此能够形成牢固的键合;同时,表面的微晶al2o3薄膜绝缘层与梯度层表层的al-o-n之间化学键合,能够形成牢固的结合,从而消除了在热冲击时产生的应力集中,有效避免了应力集中而导致的薄膜层开裂和脱落现象,大大提高了复合薄膜绝缘层绝缘性能的稳定性和可靠性。

2、在本发明中,采用溶胶凝胶法制备薄膜,能够实现分子水平的均匀性,即使在起伏较大的异构件基底表面,仍然能够得到厚度及成分均匀的薄膜;进一步地,通过溶胶凝胶法得到的多层薄膜,尽管每层薄膜都会在热处理过程中出现收缩并产生少量的孔洞,但是每一层薄膜都会对上一层的孔洞进行填充,并修复由于热冲击及应力产生的微裂纹,从而大大减小了薄膜层的缺陷,使得本发明的复合绝缘层均匀而致密;进一步地,多次循环热处理,既增强了各膜层之间的结合力,又形成了微晶al2o3薄膜绝缘层,大大阻挡了在高温高压下由于氧扩散对al2o3~al-o-n梯度层的氧化;因此使得整个复合绝缘层在高温富氧的工作环境中依然具有良好的绝缘性,有效保证薄膜传感器在高温环境中的稳定性和寿命。

3、在本发明中,由于采用溶液法,摆脱了对基板结构形状的要求,使得本发明中的复合薄膜绝缘层对异型精密构件平面、弯曲、翻折等不同部位均能形成均匀致密的覆盖,有效提高绝缘层整体的均匀性和高温绝缘性能,从而可有效保证薄膜传感器在高温条件下的可靠性和稳定性;并且,溶胶凝胶法能够轻松完成对较大工件的涂覆,利于实现批量的制备生产;与此同时,溶胶凝胶法成本低廉,操作简易,这些因素使得本发明提供复合绝缘层具有更为广阔的应用前景。

附图说明

图1为本发明中复合绝缘层具有的多层膜结构示意图(剖视图);图中:i为热生长al2o3层,ii为al2o3~al-o-n梯度层、iii为微晶al2o3薄膜绝缘层。

图2为实施例中薄膜传感器的结构示意图(剖视图);图中:1为合金基板、2为nicraly合金过渡层、3为热生长al2o3层,4为复合绝缘层,5为传感器功能层,6为al2o3保护层。

图3为实施例中复合绝缘层垂直方向电阻测试示意图(剖视图);图中:1为合金基板、2为nicraly合金过渡层、3为热生长al2o3层,4为复合绝缘层。

图4为实施例中复合绝缘层高温绝缘性的测试结果图;其中“■”代表升温过程,“●”代表降温过程,图中未显示部分代表电阻大于1gω。

具体实施方式

下面结合附图和实施例对本发明做进一步详细说明

本发明提供一种抗热冲击的高温复合绝缘层,如图1所示,包括两层结构,自下而上依次为al2o3~al-o-n梯度层及微晶al2o3薄膜绝缘层;所述al2o3~al-o-n梯度层的底层为al2o3层,顶层为非晶al-o-n薄膜层,且沿薄膜生长方向、n元素含量递增。应用该复合绝缘层的薄膜传感器包括了六层结构,如图2所示,自下而上依次合金基板1、nicraly合金过渡层2、热生长al2o3层3、复合绝缘层4、敏感功能层5及al2o3保护层6;该薄膜传感器的制备方法,包括以下步骤:

步骤1.ni基合金基板的表面处理:首先对表面进行抛光处理,然后采用工业去油剂、丙酮、酒精和去离子水先后对合金基板的表面进行超声清洗,再用氮气枪吹干,在烘箱中烘烤干燥,并在镀膜前采用等离子体清洗基板;

步骤2.nicraly合金过渡层的制备:采用直流溅射的方法将nicraly合金沉积于经步骤1处理后的合金基板上,得到带nicraly合金过渡层的复合基板;

步骤3.al2o3热生长层的制备:将经步骤2处理后得到的复合基板置于真空热处理炉内,在10-3pa以下的真空环境及900~1100℃温度条件下析铝处理1~10h;然后,保持900~1200℃温度并通入氧气至常压,氧化处理1~10h,控温冷却至室温,得到带nicraly合金过渡层及al2o3热生长层的复合基板;

步骤4.al2o3~al-o-n梯度层的制备:将经步骤3处理后得到的复合基板用溶胶凝胶法制备出一层酸性铝溶胶薄膜层,经加热台烘干,重复操作5-20次;

进一步地,将覆盖多层铝溶胶的复合基板置于n2气环境下,在800~1100℃高温热处理4-10h,得到厚度约2~5μm的al2o3~al-o-n梯度层,该梯度层沿薄膜生长方向,n元素含量呈递增趋势。

步骤5.微晶al2o3薄膜绝缘层的制备:将经步骤4得到的复合基板通过溶胶凝胶法制备出一层酸性铝溶胶薄膜层,经加热台烘干,重复操作5-20次;

进一步地,将覆盖多层铝溶胶的复合基板置于ar气环境下,升温到500~700℃中温热处理30min~60min;

进一步地,将复合基板置于真空度为10-3pa以下真空退火炉中,在900~1100℃的高温下进行快速循环退火,得到得到厚度约2~5μm的微晶al2o3薄膜绝缘层;

步骤6.敏感功能层的制备:在步骤5得到的复合基板上,采用薄膜技术与图形化工艺,将敏感功能层制备在本发明中的复合绝缘层上;

步骤7.al2o3保护层的制备:将经步骤6处理所得的复合基板置于背底真空度为10-3pa以下的真空室,在基温200~600℃、束流60~80ma的条件下,采用电子束蒸发的方法蒸镀一层al2o3保护层,制备保护层的厚度约2~5μm;

进一步地,所述制备al2o3保护层时,真空度为10-3~10-4pa,采用的是纯度不低于99.99wt%的高纯al2o3蒸料。

在本实施例中,以镍基合金板作为待测合金基板,在其上制备带本发明中复合绝缘层的s型薄膜热电偶的过程,包括以下步骤:

步骤1.合金基板的表面处理:对尺寸为70×15×2mm镍基合金基板表面进行抛光处理,先后采用工业去油剂、丙酮、乙醇、去离子水浸泡镍基合金基板并超声清洗各15min,后用干燥氮气吹干表面并在150℃烘箱中烘烤2小时,在每层薄膜制备前,采用等离子体清洗10min,等离子体气压12pa,功率450w;

步骤2.nicraly合金过渡层的制备:将步骤1清洗干净的镍基合金基板置于背底真空度为5.0×10-3pa的真空环境中,通入纯度为99.999%(体积百分比)的氩气作为溅射介质,以nicraly合金为靶材,在溅射气压为0.3pa、溅射功率为500w、基底温度为450℃的条件下,采用直流溅射的方法将nicraly合金沉积在经步骤1处理后的镍基合金基板上,沉积薄膜厚度为20μm,得到覆盖nicraly合金过渡层的复合基板;

步骤3.al2o3热生长层的制备:将步骤2得到的复合基板置于真空热处理炉内,在8×10-4pa以下的真空条件下、以5℃/min的速度升温至1050℃温度下析铝处理5小时;保持1050℃温度并通纯度为99.999%的氧气至常压,氧化处理5小时后,停止加热并继续通入氧气同样以5℃/min速度控温冷却至室温止,得到表面覆盖nicraly合金过渡层及al2o3热生长层的复合基板;

步骤4.al2o3~al-o-n梯度层的制备:将经步骤3处理后得到的复合基板用溶胶凝胶法提拉一层酸性铝溶胶薄膜层,其中酸性铝溶胶质量分数为10%,粘度为6.0,提拉速度为60mm/min,经加热台300℃处理10min,烘干后冷却,重复操作5次;

进一步地,将覆盖多层铝溶胶的复合基板置于n2气环境下,在1000℃高温热处理5h,得到厚度约2μm的al2o3~al-o-n梯度层。

步骤5.微晶al2o3薄膜绝缘层的制备:将经步骤4得到的复合基板通过溶胶凝胶法浸渍提拉一层酸性铝溶胶薄膜层,其中酸性铝溶胶浓度为10%,粘度为6.0,提拉速度为60mm/min,经加热台300℃处理10min,烘干后冷却,重复操作5次;

进一步地,将覆盖多层铝溶胶的复合基板置于ar气环境下,升温到650℃中温热处理30min;

进一步地,将复合基板置于真空度为10-3pa以下真空退火炉中,在1000℃的高温下进行快速循环退火,得到得到厚度约2μm的微晶al2o3薄膜绝缘层。

步骤6.薄膜传感器功能层:在背底真空为8.0×10-4pa下,以氩气为溅射介质、分别以pt和pt/rh为靶材,在基底温度为400℃,功率为120w,工作气压为0.4pa的条件下,采用射频磁控溅射的方法在复合绝缘层表面分别沉积厚度约为2μm的pt和pt/rh薄膜电极作为薄膜热电偶的功能层;

步骤7.al2o3保护层的制备:在背底真空为8.0×10-4pa下,采用纯度为99.999wt%的al2o3为蒸镀原料,在500℃基底温度、75ma束流的条件下,采用电子束蒸发法在薄膜传感器功能层的表面蒸镀厚度约3~4μmal2o3作为保护层;从而得到带有本发明所述的复合绝缘层的s型薄膜热电偶。

进一步的,上述步骤4和步骤5中溶胶凝胶法提拉一层酸性铝溶胶薄膜层的具体过程为:将复合基板固定于提拉机悬臂上,以200mm/min的下降速度使复合基板浸入酸性铝溶胶中,其中铝溶胶的粘度为6.0,质量分数为10%,浸滞1min后,以60mm/min的提拉速度使复合基板移出液面,取下复合基板置于加热台上,以300℃恒温处理10min,然后取出冷却至室温。

对本实施例制备的复合绝缘层进行绝缘性能测试,测试原理图如图3所示;测试结果如图4所示,由测试结果可知:升温阶段时,从室温升温到680℃,绝缘层的阻值大于1gω,高温下,当温度达到800℃,其阻值仍然达到了10mω,比未采用该复合绝缘层的al2o3绝缘层的电阻提高了三个数量级,比申请号为201610524876.5的专利文献中指出的采用的复合绝缘层的电阻高出了一个数量级;降温阶段时,从800℃降温到630℃,电阻从10mω逐渐增大到大于1gω;并且在多次高温循环测试中,本发明中的复合绝缘层电阻始终大于10mω,完全满足传感器在高温情况下的使用,有效提高了薄膜传感器的稳定性和可靠性。

以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1