组件的增材制造的方法与流程

文档序号:18901371发布日期:2019-10-18 21:59阅读:512来源:国知局
组件的增材制造的方法与流程

本发明涉及一种组件的增材制造的方法。



背景技术:

基于激光的材料沉积已经被用于精确涂层沉积和增层制造。该工艺的低能源效率和相对低的沉积速率与收益性相冲突,从而限制了可能的应用。腔室尺寸小限制了将大型部件建造为一体化。

与传统制造技术(例如铸造、锻造和机械加工)相比,以逐层方式制造近净形状的部件可以提供节省时间和成本的巨大潜力。目前,所采用的方法包括依靠提供精确粉末聚焦的特殊喷嘴设计。提供了每道在20-100微米厚度范围内具有小层建造的小珠粒尺寸。然而,这些方法为了产生高精度,付出了沉积速率非常缓慢的代价。由于沉积速率非常缓慢,相对于更传统的制造方法,增材制造丧失了一定的优势。



技术实现要素:

在本发明的一个方面,一种增材制造组件的方法,该方法包括:选取粉末特征;沉积用于制造组件的粉末材料;就地检验沉积的粉末材料,以确定层特性;基于检验结果选择激光加工的工艺和激光参数;激光加工粉末材料;对激光加工的粉末材料进行层清理;就地额外检验激光加工的粉末材料,以确定材料特性;经由超声测量检验激光加工的粉末材料,以确定残留应力;在确定残留应力小于阈值时,用额外的粉末材料从沉积步骤开始重复以上步骤,直到完成组件的建造。

参考以下附图、说明书和权利要求书,将更好地理解本发明的这些和其他特征、方面和优点。

附图说明

本发明借助于附图得以更详细地示出。附图示出了优选的构造,并且不限制本发明的范围。

图1是描述本发明的增材制造工艺的示例性实施例的流程图;

图2示出本发明的示例性实施例的激光增材制造工艺;

图3示出本发明的示例性实施例的闪光灯激励热成像法特性检测过程;

图4是基于本发明的示例性实施例的闪光灯激励热成像法特性检过程的粉末堆积厚度;

图5是示出基于本发明的示例性实施例的闪光灯激励热成像法特性检测过程的样本的像素数量与厚度的曲线图;

图6示出本发明的示例性实施例的闪光灯激励热成像法特性检测过程;

图7是基于本发明的示例性实施例的闪光灯激励热成像法特性检测过程的金属沉积物的热导率;

图8示出本发明的示例性实施例的激光超声残留应力检验过程;以及

图9示出选择在本发明的示例性实施例的激光超声物理特性检验过程之后执行残留应力减轻过程。

具体实施方式

在以下对优选实施例的详细描述中,参考了构成本发明一部分的附图,并且在附图中,通过说明而非限制性的方式示出了可以实施本发明的具体实施例。应当理解的是,可以使用其他实施例,并且可以在不背离本发明的精神和范围的情况下进行改变。

广义地讲,本发明涉及一种增材制造组件的方法。该方法包括选择粉末特征、沉积粉末材料、检验粉末材料、选择激光加工的工艺和激光参数、激光加工粉末材料、进行层清理、额外检验激光加工的粉末材料,并且重复这些步骤直到完成组件的建造。

需要包括高沉积速率和大体积的增材制造工艺。下文所述工艺的实施例包括可应用于闭合的实施例(例如在选择性激光熔化(slm)中)和露天的实施例(例如在包层、沉积系统中)。这些实施例可在最终的建造内产生各层之间的高度差。

典型地,对于制造工艺,选择性激光融化(例如slm)和选择性激光烧结(sls)会产生物理特性,例如缺陷和/或残留应力的累积。可以在激光处理之前进行模拟。然而,当在增材制造工艺中处理可变高度时,模拟是无效的。

为了开始增材制造工艺的实施例,选取粉末特征。每层的尺寸、总高度要求、所用材料以及其他粉末特性在初始步骤中被确定。这些特性决定了激光的相互作用。粉末进料和堆积开始沉积粉末材料。当沉积后,层厚度和粉末层密度对于整个过程中根据需要进行识别和保持非常重要。这些层特性通过如图3至5所示的检验来评估。该检验可以通过粉末材料的闪光灯激励热成像法(flashthermography)或类似读数进行。除非另有说明,术语“闪光灯激励热成像法”可与术语“检验”互换使用。

层特性例如导电性还可以通过该工艺中的闪光灯激励热成像步骤来评估。此外,闪光灯激励热成像法还可以对缺陷绘图,例如层中的孔隙或层中的裂缝。基于对闪光灯激励热成像法结果的评估,可以选择激光加工工艺和工艺参数。此外,如果存在任何缺陷或未获得的参数,这些值可能会影响工艺参数。这些工艺参数可以从预设参数的数据库中选择。

随后进行激光加工。在激光加工之后,进行层清理以去除多余的材料等。进行另一轮闪光灯激励热成像法,以获得和评价沉积特性,例如但不限于厚度、导电性和分层/开裂。图6和7示出闪光灯激励热成像法和碰巧具有如图所示缺陷的样本结果。沉积材料的热导率可与材料的密度相关。

在该工艺中的这个阶段,经过对闪光灯激励热成像法结果的评估,如果不满足要求,则工艺循环回到选择工艺和激光加工参数,以再次进行激光加工。

在激光加工期间,在扫描层中出现快速的温度循环和陡峭的温度梯度。温度梯度引起热应力,该热应力在工艺完成后可能保留在部件中,即残留应力。这些残留应力可能会损害所建造的部件的功能性和结构完整性。激光超声可以是一种可包括在工艺过程中的残留应力的就地和非破坏性测量方法。通过对层中的残留应力的测量和评估,可以实现对残留应力水平的控制。控制残留应力可以避免部件的翘曲以及过早开裂。如果在评估之后,残留应力水平低于某一阈值,则该工艺可以循环重复以设置粉末进料和层叠,以继续建造额外的粉末材料层。如果该值等于或高于阈值,则可以执行残留应力降低过程。残留应力降低过程,例如激光冲击喷丸技术,可以用来减轻这些应力。一旦残留应力被减轻,工艺循环回到设置粉末进料和层叠的步骤,即粉末材料的沉积。

实施例包括专门在粉末特性、沉积特性和残留应力方面的工作,从而形成完整的闭环。针对最终产品的大块区域可以产生较厚的层,而针对具有精细细节的区域,可以产生较薄的层。由于闭环控制,层厚度可随每层而变化。如上所述,典型的层建造尺寸为20-100微米。利用本文所述的实施例,层尺寸可以增加到150微米-4毫米。较厚的层尺寸可以用于如上所述的大块区域,而精细细节的区域可以减小为典型的较薄层尺寸。传统增材制造工艺的典型速度为30至40小时。由于能够改变层厚度,包括本文所描述的实施例的工艺现在运行大约4小时。

图1示出采用本文所公开的步骤的增材制造工艺的示例性实施例的流程图。步骤100具有针对增材制造选择的粉末特性。在步骤102中,设置粉末进料和层叠。在该步骤中粉末材料会被沉积。在步骤104中,对层特性进行闪光灯激励热成像。在步骤106中评估结果,并纳入步骤108中工艺参数和激光加工参数的选择中。步骤110包括执行激光处理。步骤112包括激光处理后的层清理。在步骤114中,对材料特性进行额外的闪光灯激励热成像法。在步骤116中评估材料特性并将其与预定阈值进行比较。如果材料特性超过阈值,则工艺返回到待执行的步骤108。如果材料特性在阈值范围内,则步骤118作为超声残留应力测量方法执行。在步骤120中将测量的残留应力与阈值进行比较。如果残留应力超过阈值,即未通过测试,则执行步骤122。步骤122执行残留应力降低工艺,例如激光冲击喷丸。如果残留应力低于阈值,则在步骤124中确定是否完成了整个组件的建造。如果没有,则从步骤102开始重复该过程。如果完成了完整的组件建造,则可以完成该过程。

该过程能够针对就地组件建造实现闭环控制的精确度同时还可以快速决定组件的建造。在层被建造或在层之间建造时,作出快速决定的能力能够在更短的时间内创建出组件。此外,通过在建造层的同时处理任何缺陷,在较早阶段便清除了该工艺的缺陷,因此,重做工件的工作量变少。这种工艺节省了成本和时间,改善了现有技术。

在建造组件后,可以完成组件的热处理。此外,可对组件进行机械加工或抛光。本领域技术人员将认识到,为了简单和清楚起见,本文没有描绘或描述适用于本发明的所有激光加工的完整结构和操作。相反,仅描绘和描述了对于本公开独有的或对于理解本发明所必需的激光加工系统。激光加工的其余构造和操作可能符合本领域已知的各种当前实施和实践。

应理解,本文所公开的增材制造方法的各方面可以由任何适当的处理器系统使用任何适当的编程语言或编程技术来实现。该系统可以采用任何适当的电路的形式,例如可能涉及硬件实施例、软件实施例或包括硬件和软件元件的实施例。在一个实施例中,系统可以通过软件和硬件(例如处理器、传感器等)来实现,其可以包括但不限于固件、驻留软件、微代码等。

此外,处理器系统的某些部分可以采用计算机程序产品的形式,从处理器可用或处理器可读介质访问,该介质提供由处理器或任何指令执行系统使用或与之相关的程序代码。处理器可读介质的示例可以包括非暂时性有形处理器可读介质,诸如半导体或固态存储器、磁带、可移动计算机磁盘、随机存取存储器(ram)、只读存储器(rom)、硬盘和光盘。光盘的当前示例包括:光盘—只读存储器(cd-rom)、光盘—读/写(cd-r/w)和dvd以及其他已知的光、电或磁存储设备驱动器和介质。

过程参数可以在数据库中提供并对应于主记录存储,该主记录存储包括来自多个不同源数据集的数据。用于填充过程参数的数据可能源自其他数据库、xml结构和/或其他数据存储结构。同样,提供数据以生成过程参数的过程可能涉及提取/转换/加载(etl)过程。

尽管已经详细描述了具体实施例,但本领域的普通技术人员将理解,根据本发明的总体教导可以开发对细节的各种修改和替代。因此,所公开的特定装置仅为说明性的,而不限制本发明的范围,本发明的范围仅由所附权利要求书及其任何和所有等效物的全部范围限定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1