一种高透明性阻隔膜及其制备方法与流程

文档序号:18544526发布日期:2019-08-27 21:32阅读:177来源:国知局
一种高透明性阻隔膜及其制备方法与流程

本发明涉及保护膜技术领域,尤其涉及一种高透明性阻隔膜及其制备方法。



背景技术:

专利号为201580002853.1的中国专利揭示了一种波长转换片材保护膜,该保护膜的o/si比例控制在1.7~2.0之间,可得到优秀的水蒸气阻隔效果以及良好的光学透射率。但是,由于o/si比例处于不饱和状态,该状态下o2含量非常的敏感,些微之o2波动就会影响镀膜速率,造成厚度的差异;尤其是大幅宽连续性的生产上,易造成宽度、长度均匀性上的偏差,从而导致良品率低。



技术实现要素:

本发明提供一种生产过程稳定,提高良品率,且阻隔性能优异,有效减少水气侵入的高透明性阻隔膜及其制备方法。

本发明采用的技术方案为:一种高透明性阻隔膜,其包括:基膜,于所述基膜上形成一阻隔层,所述阻隔层为混合金属-硅-氮氧化合物层,且所述阻隔层的折射率介于1.5~2.2之间,厚度介于20nm~60nm之间。

进一步地,所述混合金属-硅-氮氧化合物层为铝-硅-氮氧化合物层、钛-硅-氮氧化合物层、锌-硅-氮氧化合物层、或锡-硅-氮氧化合物层。

进一步地,所述阻隔层的折射率优选为介于1.5~1.8之间。

进一步地,所述阻隔层的厚度优选为介于20nm~40nm之间。

进一步地,所述基膜为pet膜、尼龙膜、或opp膜。

进一步地,所述基膜为pet膜,且厚度介于6um~50um之间。

进一步地,所述阻隔层的透光率为80%以上。

进一步地,所述阻隔层的制备方法为电子束蒸镀法或感应式蒸镀法。

本发明还提供如下技术方案:一种高透明性阻隔膜,其包括:基膜,于所述基膜上形成一阻隔层,所述阻隔层的制备方法为使用电子束蒸镀设备或感应式蒸镀设备将金属氧化物、金属氮化物或金属氮氧化物和氧化硅、氮化硅或氮氧化硅进行蒸发,同时导入氮气、氧气进行反应,得到混合金属-硅-氮氧化合物层,且所述阻隔层的折射率介于1.5~2.2之间,厚度介于20nm~60nm之间。

进一步地,所述金属氧化物为氧化铝、氧化钛、氧化锌、或氧化锡。

进一步地,所述金属氮化物为氮化铝、氮化钛、氮化锌、或氮化锡。

进一步地,所述金属氮氧化物为氮氧化铝、氮氧化铝、氮氧化钛、或氮氧化锡。

本发明进一步提供如下技术方案:一种高透明性阻隔膜的制备方法,其包括以下步骤:

提供基膜;

使用电子束蒸镀设备或感应式蒸镀设备将金属氧化物、金属氮化物或金属氮氧化物和氧化硅、氮化硅或氮氧化硅进行蒸发,同时导入氮气、氧气进行反应,于基膜上形成混合金属-硅-氮氧化合物的阻隔层,所述阻隔层的折射率介于1.5~2.2之间,厚度介于20nm~60nm之间。

相较于现有技术,本发明的高透明性阻隔膜及其制备方法通过使用电子束蒸镀设备将金属氧化物、金属氮化物或金属氮氧化物和氧化硅、氮化硅或氮氧化硅进行蒸发,同时导入氮气、氧气进行反应,得到混合金属-硅-氮氧化合物层作为阻隔层,从而有效提高生产稳定,提高良品率,且阻隔性能优异,有效减少水气侵入。

附图说明

附图是用来提供对本发明的进一步理解,并构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但不应构成对本发明的限制。在附图中,

图1:本发明高透明性阻隔膜的示意图。

具体实施方式

以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。

如图1所示,本发明的高透明性阻隔膜包括基膜1,于采用电子束蒸镀法或感应式蒸镀法在基膜1上形成一阻隔层2,阻隔层2为一混合金属-硅-氮氧化合物层,且阻隔层2的折射率介于1.5~2.2之间,优选为介于1.5~1.8之间;阻隔层2厚度介于20nm~60nm之间,优选为介于20nm~40nm之间。

其中,基膜1为pet(聚对苯二甲酸乙二醇酯)膜、尼龙膜、或opp(领苯基苯酚)膜;进一步,基膜1为pet膜,且厚度介于6um~50um之间。

混合金属-硅-氮氧化合物层为铝-硅-氮氧化合物层、钛-硅-氮氧化合物层、锌-硅-氮氧化合物层、或锡-硅-氮氧化合物层。

本发明的高透明性阻隔膜的制备方法如下:

提供基膜1;

使用电子束蒸镀设备或感应式蒸镀设备将金属氧化物、金属氮化物或金属氮氧化物和氧化硅、氮化硅或氮氧化硅进行蒸发,同时导入氮气、氧气进行反应,于基膜1上形成混合金属-硅-氮氧化合物的阻隔层2。

其中,金属氧化物为氧化铝、氧化钛、氧化锌、或氧化锡。金属氮化物为氮化铝、氮化钛、氮化锌、或氮化锡。金属氮氧化物为氮氧化铝、氮氧化铝、氮氧化钛、或氮氧化锡。

以下通过实验验证本发明的高透明性阻隔膜的性能;

实施例1:

使用pet薄膜作为基膜,铝、硅为材料,使用电子束蒸镀设备对铝、硅材料进行蒸发,并于反应过程中导入氧气、氮气,藉由调整铝及氮气在整体化合物中的比例,得到一折射率为1.5,厚度为60nm的铝-硅-氮氧化合物阻隔层。

实施例2:

使用pet薄膜作为基膜,铝、硅为材料,使用电子束蒸镀设备对铝、硅材料进行蒸发,并于反应过程中导入氧气、氮气,藉由调整铝及氮气在整体化合物中的比例,得到一折射率为1.6,厚度为60nm的铝-硅-氮氧化合物阻隔层。

实施例3:

使用pet薄膜作为基膜,铝、硅为材料,使用电子束蒸镀设备对铝、硅材料进行蒸发,并于反应过程中导入氧气、氮气,藉由调整铝及氮气在整体化合物中的比例,得到一折射率为1.8,厚度为60nm的铝-硅-氮氧化合物阻隔层。

实施例4:

使用pet薄膜作为基膜,铝、硅为材料,使用电子束蒸镀设备对铝、硅材料进行蒸发,并于反应过程中导入氧气、氮气,藉由调整铝及氮气在整体化合物中的比例,得到一折射率为1.6,厚度为20nm的铝-硅-氮氧化合物阻隔层。

实施例5:

使用pet薄膜作为基膜,铝、硅为材料,使用电子束蒸镀设备对铝、硅材料进行蒸发,并于反应过程中导入氧气、氮气,藉由调整铝及氮气在整体化合物中的比例,得到一折射率为2.0,厚度为40nm的铝-硅-氮氧化合物阻隔层。

实施例6:

使用pet薄膜作为基膜,钛、硅为材料,使用电子束蒸镀设备对钛、硅材料进行蒸发,并于反应过程中导入氧气、氮气,藉由调整钛及氮气在整体化合物中的比例,得到一折射率为2.2,厚度为20nm的钛-硅-氮氧化合物阻隔层。

实施例7:

使用pet薄膜作为基膜,锌、硅为材料,使用电子束蒸镀设备对铝、硅材料进行蒸发,并于反应过程中导入氧气、氮气,得到一20nm的锌-硅-氮氧化合物阻隔层。

实施例8:

使用pet薄膜作为基膜,锡、硅为材料,使用电子束蒸镀设备对铝、硅材料进行蒸发,并于反应过程中导入氧气、氮气,得到一20nm的锡-硅-氮氧化合物阻隔层。

实施例9:

使用pet薄膜作为基膜,铝、氧化硅为材料,使用电子束蒸镀设备对铝、硅材料进行蒸发,并于反应过程中导入氧气、氮气,得到一20nm的铝-硅-氮氧化合物阻隔层。

实施例10:

使用pet薄膜作为基膜,氧化铝、氧化硅为材料,使用电子束蒸镀设备对铝、硅材料进行蒸发,并于反应过程中导入氧气、氮气,得到一20nm的铝-硅-氮氧化合物阻隔层。

实施例11:

使用pet薄膜作为基膜,铝、氧化硅为材料,使用电子束蒸镀设备对铝、硅材料进行蒸发,并于反应过程中导入氧气、氮气,得到一100nm的铝-硅-氮氧化合物阻隔层。

比较例1:

使用pet薄膜作为基膜,氧化硅为材料,使用电子束蒸镀设备对氧化硅材料进行蒸发,并于反应过程中导入氧气,得到一折射率为1.45,厚度为60nm的硅-氧化合物阻隔层。

比较例2:

使用pet薄膜作为基膜,铝为材料,使用电子束蒸镀设备对铝进行蒸发,并于反应过程中导入氧气,得到一折射率1.6,厚度为60nm的氧化铝阻隔层。

比较例3:

使用pet薄膜作为基膜,铝、硅为材料,使用电子束蒸镀设备对铝、硅材料进行蒸发,并于反应过程中导入氧气、氮气,藉由调整铝及氮气在整体化合物中的比例,得到一折射率为2.0,厚度为60nm的铝-硅-氮氧化合物阻隔层。

比较例4:

使用pet薄膜作为基膜,铝、硅为材料,使用电子束蒸镀设备对铝、硅材料进行蒸发,并于反应过程中导入氧气、氮气,藉由调整铝及氮气在整体化合物中的比例,得到一折射率为2.0,厚度为120nm的铝-硅-氮氧化合物阻隔层。

比较例5:

使用pet薄膜作为基膜,于基膜表面与一种含非羥基化含硅前体或金属有机前体接触,吸付于表面上后,于该表面提供活性氧物质,并加入铝、硅为材料,形成一折射率1.6,厚度20nm的铝-硅-氧化合物。

比较例6:

使用pet薄膜作为基膜,钛、硅为材料,使用电子束蒸镀设备对钛、硅材料进行蒸发,并于反应过程中导入氧气、氮气,藉由调整钛及氮气在整体化合物中的比例,得到一折射率为2.4,厚度为20nm的钛-硅-氮氧化合物阻隔层。

比较例7:

使用pet薄膜作为基材,氧化硅为材料,使用电子束蒸镀设备对铝、硅材料进行蒸发,并于反应过程中导入氧气,得到一20nm的硅-氧化合物阻隔层。

比较例8:

使用pet薄膜作为基材,铝为材料,使用电子束蒸镀设备对铝、硅材料进行蒸发,并于反应过程中导入氧气,得到一20nm的铝-氧化合物阻隔层。

比较例9:

使用pet薄膜作为基材,于基材表面与一种含非羥基化含硅前体或金属有机前体接触,吸付于表面上后,于该表面提供活性氧物质,并加入铝、硅材料,形成一铝-硅-氧化合物。

实施例1-6相关性能测试结果如下表:

表一

比较例1-6相关性能的测试结果如下表:

表二

实施例7-11相关性能测试结果如下表:

表三

比较例7-9相关性能测试结果如下表:

表四

比较上述表一和表二后得出以下结论:

1.由实施例1,2,3与比较例1可看出,铝-硅-氮氧化物的阻隔层其阻隔效果与单纯氧化硅对比,对水气的阻隔效果有明显的提升,于可靠性、耐弯折性上也有优良的特性。

2.实施例1,2,3与比较2可看出,纯氧化铝阻性在可靠性之后有明显的下降,但在加入硅、氮元素之后,除一开始阻隔效果提升之外,可靠性明显改善了纯氧化铝不耐高温高湿的特性。

3.实施例4与比较例5可看出,经由电子束蒸镀的工艺搭配氮气的导入,可得到与使用ald方式沉积得到的铝-硅-氧化物阻隔层相同的阻隔效果,但生产效率提高了20倍。

4.实施例5与比较例3可看出,折射率为2.0的铝-硅-氧化物阻隔层,其厚度超过60nm之后,透过率会低于80%,使阻隔膜透明性大幅下降。

5.比较例3与比较例4可看出,折射率为2.0之铝-硅-氧化物阻隔层,其厚度达到120nm时,虽透过率可回升到85%以上,但因其镀膜厚度太后,耐弯折性太差,可靠性后水气透过率也大幅度上升。

6.实施例6可看出,钛-硅-氮氧化物一样可达到良好之阻隔效果。

7.实施例6与比较例6可看出,在厚度20nm时,折射率超过2.4的钛-硅-氮氧化合物,其光透过率会低于80%。

比较上述表三和表四后得出以下结论:

1.由实施例4与比较例7可看出,铝-硅-氮氧化物的阻隔层其阻隔效果与单纯氧化硅对比,阻隔效果有明显的提升,在可靠性、耐弯折性上也有优良的特性。

2.实施例4与比较例8可看出,纯氧化铝阻性在可靠性之后有明显的下降,但在加入硅、氮元素之后,除一开始阻隔效果提升之外,可靠性明显改善了纯氧化铝不耐高温高湿的特性。

3.实施例4与比较例9可看出,经由电子束蒸镀之工艺,搭配氮气之导入,可得到与使用ald方式沉积的铝-硅-氧化物之阻隔层相同额阻隔效果,但生产效率提高了20倍。

4.实施例6,7,8可看出,钛-硅-氮氧化物、锌-硅-氮氧化物、锡-硅-氮氧化物一样可达到良好的阻隔效果。

5.实施例9,10可看出,除了使用纯铝、纯硅于蒸镀时通入氧气、氮气为反应气体外,一样可使用氧化铝、氧化硅等陶瓷材料,并于反应时通入部分气体,调整氧气、氮气的比例,亦可制作出相同特性的铝-硅-氮氧化物阻隔层。

只要不违背本发明创造的思想,对本发明的各种不同实施例进行任意组合,均应当视为本发明公开的内容;在本发明的技术构思范围内,对技术方案进行多种简单的变型及不同实施例进行的不违背本发明创造的思想的任意组合,均应在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1