金属丝接合的合金复合材料的制作方法

文档序号:3426937阅读:325来源:国知局
专利名称:金属丝接合的合金复合材料的制作方法
技术领域
本发明涉及一种高导电合金复合材料。具体地说,本发明涉及一种可被成形为综合性能十分理想的小直径金属丝的高导电合金复合材料。
先描述本发明与金金属丝和铜金属丝在形成电连接中的应用方面的关联,例如应用中涉及半导体模具的电接触垫(electricalcontact pads)与导线框插头(pins of a lead frame)的偶联。但应当明白,本发明的各方面均具有更广泛的适用性,如下所述。
金与铜是广泛用于电线连接的金属,例如用于半导体或其它要求高导电、高强度及高稳定性应用的场合。金与铜属于这种应用选择的金属,因为金与铜具有理想的综合性质。例如金是高导电(在3微欧姆-厘米以下)、易延展及很稳定的。金耐受氧化,换句话说,它是很耐腐蚀的。铜也是高导电的,具有所需强度和弹性模数的性质。
典形的半导体应用涉及使用连接传导终端的导线,例如处于半导体上的传导终端和处于外引导部件(outside lead member)的传导终端,例如托架、外壳或其它衬底。一般,这种场合所用金属丝非常细,例如约20-35微米。但是,金的机械强度低于这种场合下有效使用所应具备的机械强度。铜用于这种场合的缺点是其耐腐蚀性较低,例如它易于氧化。
现已知,用一种或多种其它金属与金形成合金及与铜形成合金,可改善它们的性能,使之更适用于半导体和其它要求高导电、高强度及高稳定性的场合。
本发明涉及一种高导电的合金,包括主要量的高导电金属,并具有理想的综合性质,包括提高强度和其它对合金有效用于半导体和其它电应用所必需的理想性质。
文献概述
US 4,775,512披露了一种接合了金属丝的金丝,其特征在于机械强度高和电阻低。这种金线是一种金合金,包括锗或锗与铍的混合物作为成合成金(alloying)成分。
采用其它一些金属作为成合金成分来提高金丝的强度也是已知的。这些金属的实例有钙、镧系元素金属如镧及钕和过渡金属元素如铜、银、钛及铂。对这些金属一般都是以较次要量(例如<0.1体积%)加入合金中的。
US 4,676,827披露了非常细的铜合金丝,用于连接半导体芯片(Chips)。这种铜合金包括高纯铜及(A)至少一种稀土元素或(B)镁、钙、钛、锆、铪、锂、钠、钾、铷或铯中的至少一种元素,或(A)与(B)元素的混合物。该专利还披露了一种包括前述(B)元素及钇的铜合金丝。此外该专利还披露了一种包括硫、硒或碲的铜合金丝。在该专利中披露的还有另外一种铜合金丝包括钇和稀土元素。
前述“成合金”的金属的性质和用量要与金或铜,即基底金属与成合金的金属,彼此是可充分互混的,也就是说,成合金的金属基本完全溶解于熔融基底金属溶液中,从而形成基底金属合金。因此,所得基底金属合金包括基底金属与合金金属的一种固体溶液。
尽管这样的基底金属合金固体“溶液”被广泛使用,但仍然存在一些有关使用的问题。例如,这种基底金属合金的导电系数一般低于纯基底金属的导电系数。在构成半导体器件长距离互连接中(例如约250密尔),最好金属丝细一些或不发生偏向,以避免由于相邻金属丝接触引起短路。已知增大包括金属丝材料的弹性模数(韧性)可减弱金属丝发生偏向的趋势。另一个与采用前述类型金合金相关的问题是,既若不是不可能,也是难以形成弹性模数令人满意的极细金属丝。
本发明涉及一种高导电性的金属合金丝,相对于已有技术的金属丝,它的强度、弹性模数及其它一些对金属丝用于半导体和包括利用这些金属丝的半导体应用所希望的性质均有所改善。
发明综述按照本发明,这里提供一种金属合金复合材料,包括一基质形态的高电导基底金属相和一处于基质内的另一金属相,基底金属含量为主要量,另一金属含量为次要量,该金属合金复合材料能被成形为用于半导体场合的非常细的金属丝。“另一”金属可以各种形式存在于基底金属基质中,例如呈树枝形状。预计本发明金属合金复合材料可广泛应用金属丝形式,尤其用于半导体中。在优选形式中,金属丝可包括延伸形态的例如平行轴向排列纤维的“另一”金属(这里也指“成合金成分”)。
按照本发明的另一方面,提供一种终端组件,包括一个与传导部件接触的导电终端和另一个与半导体传导接触的导电终端,所述这些终端均通过包括金属合金复合材料的金属丝连接,该金属合金复合材料包含一基质形态的高电导基底金属相和一处于该基质内的另一金属相,该基底金属含量为主,另一金属含量为次。
在优选形式中,用于这种组件的金属丝可包括一种金合金或一种铜合金,其直径不超过30微米,最大抗拉强度至少约300Mpa和拉伸延伸率至少约1%。
本发明还有另一方面是,提供一种金属合金复合材料,包括一基质形态的金相和一处于该基质内的另一金属相,金的含量为主,另一金属含量为次。“另一”金属可以各种形式存在于金基质中,例如呈树枝状形。
用于本发明金合金的优选成合金成分包括铱、铑、钼、一种铁与钒的混合物、一种镍与铌的混合物和一种铁与硅的混合物。
本发明的另一方面是,提供一种制备金合金复合材料的方法,包括(A)、形成一种含主要量熔融金和次要量另一金属的混合物,该另一金属是处于熔融态并与熔融态金不混溶的,或是处于固态并且不溶于所述熔融态金,和(B)、在可有效形成包括一基质形态的金相和一处于该基质内的另一金属相的固态金合金复合材料条件下,冷却该混合物。
在优选形中,可采用熔炉熔化或可熔电弧熔化形成前述混合物,并在包括进行冷铸或模铸如定向铸、连续铸和熔融纺丝的条件下冷却该混合物。
本发明的另一方面还包括一种制备金合金丝的方法,包括(A)、提供一种包括一基质形态的金相和一处于该基质内的另一金属相的固态组合物,在该组合物中金含量为主,另一金属含量为次;和(B)、在使该组合物可成形为包括其它金属的多根平行轴向排列纤维或延伸微粒的金属丝形态条件下,对该组合物进行变形处理。在优选形式中,用于本发明成形金属丝的变形处理包括挤压、锻造及金属丝拉丝操作。
本发明研制的金合金不同于传统的金合金,其中通过形成固体溶液或沉淀硬化机理提高了该合金的强度。本发明的金合金是基于采用一种在常压金熔点下不混溶(不溶)于熔融(液态)金中的成合金成分。相反,传统金合金的成合金成分在金熔点下是可混溶(可溶)于熔融(液态)金的。因此,已有技术的金合金一般都是均匀型的,即由单一相组成,因为它们是成合金成分溶于金中的固体溶液。相反,对本发明的实施方案,则可看到是包括两相的,其中成合金成分是分散于或分布于连续金相中的。
发明详述用于本发明合金复合材料中的高电导基底金属(例如金或铜)成分应当是很纯的。基底金属的纯度取决于所用合金复合材料的具体场合。可以认为,对大多数应用场合,基底金属纯度为至少98%是会令人满意的。对于涉及电子及半导体组件的应用,建议对基底金属的纯度采用至少约99.9%的。
术语“高电导基底金属”指的是其导电系数在小于约3微欧姆-厘米的金属。采用金是很优选的,因为它有特别好的综合性质。铜及铝都是优选的基底金属,铜是选择用于比铝应用范围更广的金属。其它高电导基底金属的实例包括镍、钯及银,它们可用于某些特殊选择的场合。
用于本发明合金复合材料中的成合金成分可为以下任何金属,即(A)在基底金属与成合金成分的熔融混合物中与基底金属不混溶的;(B)在固体形态的该混合物中能以独立相存在;(C)赋予该复合材料所需的性质。应当明白,成合金成分可以是一种可部分与熔融基底金属互溶(互混)的金属,在此种情况下,所用成合金成分要过量到能被基底金属所溶解的程度。例如,在固态铜中铬是部分可溶的。基底金属中成合金成分的平衡(25℃)溶解度优选不超过约1重量%及优选不超过约0.1重量%。本发明包括在其范围内的实施方案,其中基底金属基质包括一个部分成合金成分溶于该基底金属中的固体溶液相和一个包括不溶于该固体溶液中的部分成合金成分。
还应当明白,该成合金成分可以是一种在熔融基底金属中为固态(不互溶)的金属,例如以固体不溶微粒的形式分散其中。
成合金成分是一种可赋予本发明基底金属复合材料理想性质的材料。因此,成合金成分的选择取决于构成该合金的基底金属,及欲改善的性质。这些性质的实例包括强度提高、弹性模数提高及对电特性例如导电系数及自感系数的影响最小。
对于用金作为基底金属,成合金成分的选择应以欲改善的金的性质为根据。一般说来,可以采用其性质“比金好”的金属。例如可用比金强度高的金属来提高复合材料的强度。同样,要提高弹性模数,则可采用弹性模数比金高的金属。也可采用两种或两种以上的在熔融金混合物中不混溶的成合金成分,以赋予该复合材料理想的性质。
对于用铜作为基底金属,可用其性质“比铜好”的金属。例如,可用比铜弹性模数高、机械强度高或耐腐蚀性好的金属,来改善合金复合材料的性质。可采用两种或两种以上的在铜熔融混合物中不混溶的成合金成分,赋予该复合材料理想的性质。
在高导电性基底金属合金复合材料中,也可包括一种在熔融基底金属混合物中可混溶的(可溶的)金属,而且在该复合材料中这种金属可与该基底金属形成固体溶液,如同混合物固化一样。可以选择这种“可混溶”成合金成分来赋予该复合材料理想的性质。包含“可混溶”成合金成分的基底金属合金复合材料包括一种基底金属与“可混溶”成合金成分的固体溶液的基质和一处于该基质内的“不可混溶”成合金成分相。
可用于金合金复合材料中“可混溶”合金主要金属实例为铌和钽。可用于铜合金复合材料中“可混溶”合金主要金属实例为钴和铁。
包含在复合材料中成合金成分量要足以赋予该复合材料理想性质。最低用量视所用金属而变。一般说来,用量不大。可以认为,采用约2体积%的成合金成分,大多数场合下均有明显性质改善。(除非另有说明,构成合金的成合金成分比例均以按复合材料总体积计的体积百分数表示(体积%)。所用成合金成分的最主要量由最大机械强度对电性能要求来决定。
建议成合金成分可包括约3-40体积%的复合材料,优选约7-15体积%。任选“可混溶”成合金成分可构成约3-40体积%的该复合材料,优选约7-15体积%。
用于本发明金合金复合材料的优选“不混溶”成合金成分是铱和钼。特别地,本发明优选金合金复合材料包括约90%的金和以下所示比例的“不混溶”成合金成分10%铱10%铑7.5%钼10%钼8.0%铁和2%钒8.0%铌和2%钼9.5%铁和0.5%钼9.5%镍和0.5%铌9.5%铁和0.5%硅。
用于本发明铜合金复合材料中的“不混溶”成合金成分为铬、钼、钒、铌、钽和铱,以铌为优选。特别地,本发明优选铜合金复合材料包括按以下所示比例的“不混溶”成合金成分3%铌5%铌10%铌3%铬5%铬10%铬5%钽5%钒。
本发明复合材料是能够被成形为具有理想综合性质的金属丝,例如,直径不大于约50微米,强度至少约300Mpa,拉伸伸长率至少约1%。本发明优选金属丝直径为约10-40微米,强度为约300-1000Mpa,拉伸伸长率约1-15%。特别优选的金属丝直径约15-30微米,强度约500-1000Mpa,拉伸伸长率约2-8%
本发明高电导基底金属合金复合材料可采用任何适宜方法制备。方法选择取决于复合材料所用场合。一般说来,可将包括该复合材料的成分混合物先成形为坯料。然后,再将坯料加以成形或变换为所需形式。
一般,粉末成合金成分是与高电导基底金属相结合的。可通过熔化金属成合金成分的坯料,然后利用例如氩气雾化该液体,使之成为粒度适宜的粉末,例如约0.5-50微米,来形成这种粉末。
优选地是,该坯料包括一种在基底金属基质中分布很均匀的细微粒状如约0.1-10微米的成合金成分。制备该合金复合材料坯料的典形方法包括采用传统熔体处理方法和粉末冶金方法。熔体处理包括熔炉熔化,或可熔电弧熔化,或非可熔电弧焊,或等离子体/电子束熔化。采用熔体处理过程的一个最主要好处是能够在基底金属基质中均匀分散成合金成分。粉末冶金包括混合粉状基底金属及粉状成合金成分,形成一种可进行处理、烧结或热匀压制的混合物。采用粉末冶金方法的主要好处是在成形复合材料中能够使用高不可溶的成合金成分。
该成合金成分可以各种形式存在于基底金属基质中,这取决于成形该复合材料的方法。例如,成合金成分可为分散于基底金属基质中的固体微粒,或为第二相树枝状物,或亚稳固体溶液。
对包括本发明合金复合材料的金属丝成形优选方法,涉及采用变形处理(冷拉丝),冷拉丝对于基底金属基质中成合金成分变形为延伸纤维、延伸带条或微粒都是有效的。变形处理用于成形其它金属的合金是已知的,如美国金属协会手册(American Society of MetalsHandbook)中所述。这种金属丝成形方法一般涉及挤压或锻压,然后拉丝。要求施加于各复合材料上的剪切力要足以使成合金成分的微粒变形为延伸纤维或条带。为此目的,剪切量应超过该成合金成分的屈服极限或流动剪切力。所需剪切量取决于各种因素,包括如所用具体成合金成分、该成分的粒度及杂质含量。
在本发明的某些实施方案中,已发现的是,变形过程中分散于基底金属基质中的成合金成分的球粒变平和被延伸为条带状。这种条带厚度接近纳相(nanophase)材料。进一步变形会迫使条带本身折叠,以适应周围基底金属基质的应变。据测定,部分微粒能保持不变形。例如约1体积%。较多未变形微粒的存在会产生一些由合金复合材料成形金属丝的问题。
实施例下述实施例是对本发明范围内高电导基底金属合金复合材料的说明。
在第一组实施例中,在室温下对金合金坯料(1.5厘米直径)进行锻压,制得250微米的条状物,然后拉丝使之变成直径25微米的金合金丝。锻压操作在室温下进行,并在双锤旋转磨中每次通过使横截面积减少15%,至直径250微米。拉丝操作采用一系列模具,每一模具公称尺寸减小8-15%,并包括采用矿物油浸浴或水基润滑剂浴润滑。
前述被转变为金属丝的各条状物,是用包括含金及成合金成分的金合金混合物的坯料制备的,其成分测定列于下表1中。成形为条状物的各坯料都是通过熔体处理或粉末冶金技术制备的,如表1所示。熔体处理法涉及采用非可熔电弧铸或可熔电弧铸进行共熔,然后进行冷铸。粉末冶金法涉及对粒径约100微米以下的粉末进行混合;和在200Mpa压力下进行冷匀压制,接着在200Mpa及700℃下热匀压制。注意,下表1所述的某些典形金属丝包括一种以上的金属丝样品,因为在制备由其成形金属丝样品的金基坯料中采用了不同的制备方法,如表1所示(见实施例1、4、10、11及12)。下表2包括表1所示的一些典形金属丝的性能数据。这些由不同方法制备的金基坯料所构成的金属丝具有同样的性质。这解释了表2中的数据,但不包括各拉伸强度及拉伸伸长性质的数值。
所制备金合金复合材料的成合金成分及其量均列于表1。各复合材料的其余部份包括纯度99.99重量%的金。
表1实施例号 成合金成分 成合金成分量 金基坯料的制备方法体积%1钼 10 熔炉熔化/冷铸;非可熔电弧铸;粉末冶金2铑 10 非可熔电弧铸3铼 10 非可熔电弧铸
4铱 10 熔炉熔化/冷铸;非可熔电弧铸;粉末冶金5钴 10 非可熔电弧铸6铂 10 非可熔电弧铸7铂5 非可熔电弧铸8镍 10 非可熔电弧铸9镍5 非可熔电弧铸;熔炉熔化/冷铸10 镍及 5 非可熔电弧铸;熔炉熔硅 0.5 化/冷铸11 镍及 5 非可熔电弧铸;熔炉熔硅 0.1 化/冷铸12 镍及 5 非可熔电弧铸;熔炉熔硅1 化/冷铸评价了上述表1中所测定的各种金合金复合材料的性质。为对照,也评价了用于电互连接器中传统合金(合金C-1)的性质。这些评价包括拉丝硬度(Hard as Drawn,“HAD”),和“退火”(在500℃下在线连续),如表2所示。
表2合金 最大拉伸强度拉伸伸长率MPa%C-1,金及7ppm Be及20ppm Ca(HAD)4002.0C-1,金及7ppm Be及20ppm Ca(退火) 2504.0实施例1,金及10%钼6002.4实施例9,金及5%镍)(HAD) 7561.6实施例9,金及5%镍(退火) 4977.6实施例12,金,5%镍及1%Si(HAD)8232.3实施例12,金,5%镍及1%Si(退火) 5762.3表2数据清楚表明,相对于已有技术的由金合金溶液组成的合金,本发明的金合金复合材料的强度提高。强度提高对HAD及退火二种评价都很重要。至于拉伸延展性,对金属丝接合方法保持合金极限延展性的能力是必须遵循的。但是延展性应当高于0.5%,以防止金属丝在其极限使用中断裂。表2表明本发明合金强度提高,拉伸延展性合格。
在第二组实施例中,用室温锻压方法,由铜合金坯料(5厘米)制成250微米的条状物,然后经拉丝使之成为直径25微米的铜合金丝。锻压操作在室温下进行,并涉及在双锤旋转磨中每次通过使横截面积减少15%,至直径250微米。拉丝操作采用一系列模具,每模具公称尺寸减小8-15%,并包括采用矿物油浸浴或水基润滑剂浴润滑。
前述被转化为金属丝的各条状物都是通过包括含铜及成合金成分的铜合金混合物坯料制备的,其成分测定列于下表3中。被成形为条状物的各坯料都是通过熔体处理或粉末冶金技术制备的,如表3所示。熔体处理采用非可熔电弧铸或可熔电弧铸法进行共熔,然后进行冷铸或可熔电弧熔化。粉末冶金法包括对粒径约100微米以下的粉末进行混合;和在250Mpa压力下冷匀压制,接着在250Mpa及900℃下热匀压制。注意,下表3所述的典形金属丝包括一种以上的金属丝样品,因为在制备由其成形为金属丝样品的铜基坯料中采用了不同的制备方法,如表3所示。
所制备的铜合金复合材料的成合金成分及其数量测定列于表1。各复合材料其余部分包括纯度99.9重量%的铜。
表3实施例成合金成合金成分的量铜基坯料的制备方法成分体积%13铌 3 熔炉熔化/冷铸;非可熔电弧铸;粉末冶金14铌 7.5 熔炉熔化/冷铸;非可熔电弧铸;粉末冶金15铌 15 熔炉熔化/冷铸;非可熔电弧铸;粉末冶金16铬 3 熔炉熔化/冷铸;17铬 5 熔炉熔化/冷铸18 铬 10熔炉熔化/冷铸19 钽 5 可熔电弧熔化20 钒 5 可熔电弧熔化评价上表3中所测定的各种铜合金复合材料性质。该评价包括拉丝硬度(Hard as Drawn,“HAD”)和“退火”(在500℃下在线连续),如表4所示。
表4合金最大拉伸强度,MPa 拉伸伸长率,%实施例13Cu及3%Nb退火 275 4.0HAD325 3.0实施例14Cu及7.5%Nb退火 315 4.0HAD485 2.5实施例15Cu及15%Nb退火 405 2.0HAD900 1.0实施例16Cu及3%Cr退火 310 3.0HAD435 1.5实施例17Cu及5%Cr退火 320 3.0HAD445 1.5实施例18Cu及10%Cr退火 400 2.6HAD515 1.1实施例19Cu及5%Ta退火 324 3.3HAD466 2.7实施例20Cu及5%V退火 297 3.8HAD344 2.9
评价表明,表4合金性质比铜基金属的性质好。评价还表明,包括成合金成分如铬、铌及钽的合金耐腐蚀性比铜基金属的好。
应当知道,本发明提供以经济及实际的方式改善高电导金属性质的改良方法,由本发明合金复合材料成形的细金属丝能非常好地应用于各种场合,包括尤其半导体应用场合。
权利要求
1.一种金属合金复合材料,包括一相为基质形态的金和一相处于该基质内的另一金属,金含量为主要量,另一金属含量为次要量。
2.按照权利要求1的复合材料,其中另一金属呈微粒形。
3.按照权利要求2的复合材料,其中的微粒为细长形的。
4.按照权利要求1的复合材料,其呈金属丝形。
5.按照权利要求4的复合材料,其呈金属丝形,这种丝包括该另一金属的多根平行轴向排列的纤维。
6.按照权利要求4的复合材料,其中所述金属丝直径为不大于约50微米,拉伸强度至少约300Mpa,拉伸伸长率至少约1%。
7.按照权利要求6的复合材料,其中所述金属丝直径为约10-40微米,拉伸强度为约300-1000Mpa,拉伸伸长率为约1-15%。
8.按照权利要求7的复合材料,其中所述金属丝直径为约15-30微米,拉伸强度约500-1000Mpa,拉伸伸长率为约2-8%。
9.一种制备金合金丝的方法,包括(A)、提供一种包括一基质形态的金相和一处于该基质内的另一金属相的固体组合物,在该组合物中金为主要量和另一金属为次要量;和(B)、使该组合物处在可成形为包括另一金属的多根平行轴向排列纤维的金属丝的条件下,对该组合物进行变形处理。
10.一种制备金合金复合材料的方法,包括(A)、构成一种含主要量的熔融金和次要量的另一金属的混合物,该另一金属是处于熔融态并与熔融金不互混的,或是处于固态并且不溶于所述熔融金;(B)、冷却该混合物,条件是可有效形成包括一基质形态的金相和一处于该基质内的另一金属相的固态金合金复合材料。
11.一种终端组件,包括与传导部件传导接触的导电终端和另一与半导体传导接触的导电终端,所述终端均通过包括金属合金复合材料的金属丝连接,该金属合金复合材料包含一基质形态的高电导基底金属相和一的处于该基质内的另一金属基本相,所述基底金属为主要量,另一金属为次要量。
12.按照权利要求11的组件,其中所述合金复合材料包括主要量铜。
13.按照权利要求12的组件,其中所述金属丝直径不大于约50微米,拉伸强度至少约300Mpa,拉伸伸长率至少约1%。
14.按照权利要求12的组件,其中所述金属丝直径约10-40微米,拉伸强度约300-1000Mpa,拉伸伸长率约1-15%。
15.按照权利要求12的组件,其中所述金属丝直径约15-30微米,拉伸强度约500-1000Mpa,拉伸伸长率约2-8%。
16.按照权利要求11的组件,其中所述合金复合材料包括主要量的铜和次要量的铌。
17.按照权利要求11的组件,其中所述合金复合材料包括主要量的铜和次要量的铬。
18.按照权利要求11的组件,其中所述合金复合材料包括主要量的铜和次要量的钽。
19.按照权利要求11的组件,其中所述合金复合材料包括主要量的铜和次要量的钒。
20.按照权利要求1的合金复合材料,其中包括次要量的铱。
21.按照权利要求1的合金复合材料,其中包括次要量的铑。
22.按照权利要求1的合金复合材料,其中包括次要量的钼。
23.按照权利要求1的合金复合材料,其中包括各次要量的铁及钼。
24.按照权利要求1的合金复合材料,其中包括各次要量的镍及铌。
25.按照权利要求1的合金复合材料,其中包括各次要量的铁及硅。
26.按照权利要求11的组件,其中所述合金复合材料包括主要量的金。
27.按照权利要求11的组件,其中所述合金复合材料包括主要量的铝。
全文摘要
一种金属合金复合材料包括一基质形态的高电导基底金属相和一处于该基质内的另一金属相,所述基底金属以主要量存在,另一金属以次要量存在,该合金复合材料可被成形为非常细的金属丝,用于半导体场合,包括终端组件,所述组件包括一个与传导部件传导接触的导电终端和另一个与半导体传导接触的导电终端,所述终端均通过所述合金复合材料金属丝连接,基底金属的实例有金、铜和铝。
文档编号C22C9/00GK1326516SQ99813254
公开日2001年12月12日 申请日期1999年9月14日 优先权日1998年9月14日
发明者T·W·艾利斯 申请人:库利克及索发投资有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1