一种低品位碲矿的生物浸出方法

文档序号:3468407阅读:446来源:国知局
专利名称:一种低品位碲矿的生物浸出方法
技术领域
本发明涉及一种生物浸矿方法,特别是涉及一种低品位碲矿的微生物浸出方 法,属于微生物冶炼领域。
背景技术
碲(Te)是VIA族非金属元素,原子序数为52,在元素周期表中位于第六族硒 和钋之间,其化学性质与硫(S)和硒(Se)相近。碲具有十分良好的传热和导电本领, 是金属性最强的非金属元素。因此,碲通常称之为准金属或半金属,是良好的半导体材 料,主要应用于冶金、电子、玻璃、化工等领域,被誉为“现代工业、国防与尖端技术 的维生素,创造人间奇迹的桥梁”,是当代高新技术新材料。由于碲是一种分散元素, 很少有独立矿床,在地壳中的含量很小,大部分伴生赋存于铜、铅、金、银、铋等其他 独立的矿床,碲的取得主要取自金属铜等冶炼的副产物,即金属冶炼厂的阳极泥,产量 较低。科研论文“从铋碲矿中分离碲的新技术”(蒋新宇,稀有金属与硬质合金, 2000,(141) 8 10)公开一种从铋碲矿中分离碲的湿法冶金工艺。该技术将铋碲矿用 盐酸加氯酸钠浸出,浸出液用Na2SO3还原得粗碲粉,还原后液水解回收铋。粗碲粉经 盐酸浆化洗涤,最终得到纯度约96%的碲粉。该工艺至少存在五方面的不足第一、浸 出温度较高,长期在酸性条件下进行氧化反应,对设备腐蚀大;第二、工艺能耗高;第 三、建设周期较长、投资量较大、操作运行成本较高;第四、工艺主要用于处理一些较 高品位的碲矿,对于低品位碲矿效果较差、效益较低。

发明内容
本发明的目的就是针对现有技术的不足,提供一种碲矿浸出方法,该方法采用 生物浸矿原理,特别适用于对低品位碲矿浸出。为实现上述目的,本发明的技术方案如下一种低品位碲矿的生物浸出方法,其特征在于浸矿菌种包含氧化亚铁硫杆 菌。上述浸矿方法采用生物浸矿原理实现。生物浸矿技术是以微生物对矿石的直 接、间接以及两者的共同作用,利用微生物在生命活动中自身的氧化和还原特性,使矿 石中的有用成分氧化或还原,以水溶液中离子态或沉淀的形式与原物质分离,或靠微生 物的代谢产物与矿物作用,溶解提取矿物有用成分的技术。与其他工艺相比,其最大特 点是适用于传统工艺难以处理的矿石,并具有流程短、工艺简单、易操作、投资少、能 耗少、成本低和对环境友好等优点,因而近年来发展迅速。特别是在目前高品位、易选 别矿产资源日趋减少,低品位、难选冶资源日益受到重视的形势下,生物浸矿技术显示 出了巨大的经济、技术和环境优势,成为矿冶工程研究和应用的重点之一。矿石的生物浸出是水溶液中多相体系的一个复杂过程,它同时包含了化学氧化、生物氧化和电化学氧化反应,因此菌种选择与浸矿反应条件都能够影响浸矿方法 的成败与效率高低。本技术方案基于微生物浸矿的基本原理,选用氧化亚铁硫杆菌 (Thiobacillus ferrooxidans,简称T.f菌)浸出低品位碲矿中的碲,并通过调节控制浸矿过 程中涉及的各项理化条件,实现了微生物浸矿方法成功应用于低品位碲矿浸出。T.f菌是 一类化能自养菌,其主要代谢机理是以CO2为碳源,以NH4+为氮源,通过氧化Fe2+、元 素S以及还原态的化合物等来获得生命过程所需的能量。本技术方案采用T.f菌浸提低品 位碲矿的原理在于低品位碲矿中主要的硫化物型矿石为辉碲铋矿,其中含有低价S。 T.f菌在浸矿过程中一方面通过氧化低价S获得生长能量,另一方面在解离矿物的同时产 生152304溶解矿石,矿石中的碲以可溶化合物的形式浸出进入溶液。在这个过程中T.f菌 作为自养菌还能以碲矿中伴生的或加入的还原态S或铁矿物为能源自养生长。整体方法 工艺简单,节约成本,具有应用前景。浸矿方法以9K基础培养基为浸矿培养基,首先称取碲矿矿样加入浸矿培养基, 调节矿浆pH值至1.5 2.5;待矿浆pH值稳定后接种T.f菌菌液,接种量为2.5% 7.5% ;最后进行恒温振荡培养,培养条件为温度26 33°C、转速120 150r/min。浸 矿30d后测定,浸碲率为62.7 68.4%。在此基础上,本技术方案进一步采用混合菌种浸提低品位碲矿以提高碲浸出 率。具体是采用以T.f菌为主的T.f菌与氧化硫硫杆菌(T.thiooxidans,简称T.t菌)的 混合菌种。接种菌液是T.f菌菌液与T.f菌菌液按3 1 5 1混合而成。浸矿方法 以9K基础培养基为浸矿培养基,首先称取碲矿矿样加入基础培养基,调节矿浆pH值至 1.5 2.0;待矿浆pH值稳定后接种混合菌液,接种量为3.0% 9.0%;最后进行恒温振 荡培养,培养条件为温度28 32°C、转速120 150r/min。浸矿30d后测定,浸碲率 为 66.2 75.8%。与现有技术相比,本发明的有益效果是(1)采用生物浸矿原理实现了对低品 位碲矿的浸出,因此具有生物浸矿技术的固有优点,主要包括可以很经济地处理低品 位、难处理矿石和传统开发方式剩下的矿产废料,且对环境危害小、投资少、能耗低、 药耗少等方面;(2)采用的浸矿菌种常见、分布广泛、容易获得;(3)充分利用了与碲矿 石伴生的硫铁矿作为细菌生长能源物和营养物,有利于碲矿中伴生资源的循环和高效利 用;(4)浸矿过程中要求的理化条件简单、容易满足与控制。
具体实施例方式下面对本发明的优选实施例作进一步的描述。实施例一采用氧化亚铁硫杆菌浸提低品位碲矿。1、菌种与主要实验材料菌种氧化亚铁硫杆菌(T.f菌)。T.f菌株先经扩大培养,取对数生长期的菌液 作为接种菌液;扩大培养基是在9K基础培养基中加入4.5 ^FeSO4并调节pH到2.0; 9K 基础培养基,组份为(NH4) 2S043g/L、KC10.1g/L、K2HPO40.5g/L> MgSO4 · 7H20 0.5g/ L、Ca (NO3) 20.01g/L。矿样经浮选的低品位碲精矿,是以辉碲铋矿为主的混合硫化矿;矿样磨碎,粒度 124μιη 178 μ m。浸矿培养基9K基础培养基。2、浸提方法(1)向500mL三角瓶中加入200mL 9K基础培养基,称取碲矿矿样2 IOg到三 角瓶中,调节矿浆pH至1.5 2.5;(2)矿浆pH值稳定后接种T.f菌液,接种量为2.5% 7.5% ;(3)将三角瓶恒温振荡培养,培养条件为温度26 33°C、转速120 150r/ min。培养30d后,采用原子荧光法测定浸出液碲浓度。根据实验前后溶液中碲含量 的变化,计算碲矿中碲的浸出率。30d浸碲率为62.7 68.4%。实施例二采用氧化亚铁硫杆菌浸提低品位碲矿,其与实施例一相同之处不再重复,其不 同之处在于(1)矿样低品位碲矿磨碎,粒度165 μ m ;(2)向200mL 9K基础培养基加入碲矿矿样5g,并调节矿浆至pH2.0 ;(3) T.f菌液接种量为7.5 % ;(4)恒温振荡培养条件为温度30°C、转速150r/min。培养30d后,计算碲矿中碲的浸出率。30d浸碲率为68.4%。实施例三采用氧化亚铁硫杆菌浸提低品位碲矿,其与实施例二相同之处不再重复,其不 同之处在于T.f菌液接种量为2.5 %。培养30d后浸碲率为62.7 %。实施例四采用氧化亚铁硫杆菌浸提低品位碲矿,其与实施例二相同之处不再重复,其不 同之处在于T.f菌液接种量为5.0 %。培养30d后浸碲率为66.3 %。实施例五采用氧化亚铁硫杆菌与氧化硫硫杆菌混合菌种浸提低品位碲矿。1、菌种与主要实验材料混合菌种氧化亚铁硫杆菌(T.f菌)与氧化硫硫杆菌(T.t菌)。T.f菌株和T.t 菌株经扩大培养,分别取对数生长期的菌液按3 1 5 1混合作为接种菌液;T.f菌 株扩大培养基是在9K基础培养基中加入4.5% FeSO4并调节pH到2.0,T.t菌株扩大培养 基是在9K基础培养基中加入1 %单质硫并调节pH到2.0。矿样经浮选的低品位碲精矿,是以辉碲铋矿为主的混合硫化矿;矿样磨碎, 粒度 124μιη 178 μ m。浸矿培养基9K基础培养基,组份为(NH4) 2S043g/L、KCl 0.1g/L、 K2HPO40.5g/L、MgSO4 · 7H20 0.5g/L、Ca (NO3) 20.01g/L。2、浸提方法(1)向500mL三角瓶中加入200mL 9K基础培养基,称取碲矿矿样4 16g到三角瓶中,调节矿浆pH至1.5 2.0;(2)矿浆pH值稳定后接种混合菌液,接种量为3.0% 9.0% ;(3)将三角瓶恒温振荡培养,培养条件为温度28 32°C、转速120 150r/ min。培养30d后,计算碲矿中碲的浸出率。30d浸碲率为66.2 75.8%。实施例六采用氧化亚铁硫杆菌与氧化硫硫杆菌混合菌种浸提低品位碲矿,其与实施例五 相同之处不再重复,其不同之处在于(1)混合菌种氧化亚铁硫杆菌(T.f菌)与氧化硫硫杆菌(T.t菌)按4 1混 合;(2)矿样低品位碲矿磨碎,粒度165 μ m ;(3)向200mL 9K基础培养基加入碲矿矿样6g,并调节矿浆至pH1.5 ;(4)混合菌液接种量为7.5% ;(5)恒温振荡培养条件为温度30°C、转速150r/min。培养30d后,计算碲矿中碲的浸出率。30d浸碲率为75.8%。实施例七采用氧化亚铁硫杆菌与氧化硫硫杆菌混合菌种浸提低品位碲矿,其与实施例六 相同之处不再重复,其不同之处在于混合菌液接种量为4.5%。培养30d后浸碲率为69.1%。实施例八采用氧化亚铁硫杆菌与氧化硫硫杆菌混合菌种浸提低品位碲矿,其与实施例六 相同之处不再重复,其不同之处在于 混合菌液接种量为6.0 %。培养30d后浸碲率为73.5 %。实施例九采用氧化亚铁硫杆菌与氧化硫硫杆菌混合菌种浸提低品位碲矿,其与实施例六 相同之处不再重复,其不同之处在于称取矿样IOg ;混合菌液接种量为7.5%。培养30d后浸碲率为71.6%。实施例十采用氧化亚铁硫杆菌与氧化硫硫杆菌混合菌种浸提低品位碲矿,其与实施例九 相同之处不再重复,其不同之处在于称取矿样15g。培养30d后浸碲率为68.2%。实施例i^一采用氧化亚铁硫杆菌与氧化硫硫杆菌混合菌种浸提低品位碲矿,其与实施例六 相同之处不再重复,其不同之处在于混合菌种氧化亚铁硫杆菌(T.f菌)与氧化硫硫杆菌(T.t菌)按3 1混合;培养30d后,计算碲矿中碲的浸出率。30d浸碲率为70.3%。实施例十二采用氧化亚铁硫杆菌与氧化硫硫杆菌混合菌种浸提低品位碲矿,其与实施例六 相同之处不再重复,其不同之处在于
混合菌种氧化亚铁硫杆菌(T.f菌)与氧化硫硫杆菌(T.t菌)按5 1混合;培养30d后,计算碲矿中碲的浸出率。30d浸碲率为72.7%。
权利要求
1.一种低品位碲矿的生物浸出方法,其特征在于浸矿菌种包含氧化亚铁硫杆菌。
2.根据权利要求1所述的方法,其特征在于浸矿培养基为9K基础培养基,按如下 步骤进行51、称取碲矿矿样加入浸矿培养基,调节矿浆pH值至1.5 2.5;52、待矿浆pH值稳定后接种氧化亚铁硫杆菌液,接种量为2.5% 7.5%;53、进行恒温振荡培养,培养条件为温度26 33°C、转速120 150r/min。
3.根据权利要求2所述的方法,其特征在于所述步骤Sl中调节矿浆pH值至2.0; 所述步骤S3中恒温振荡培养条件为温度30°C、转速150r/min;所述步骤S2中菌液接种 量为5.0%。
4.根据权利要求1所述的方法,其特征在于所述浸矿菌是混合菌,还含有氧化硫 硫杆菌。
5.根据权利要求4所述的方法,其特征在于所述混合菌组分为氧化亚铁硫杆菌 氧化硫硫杆菌=3 1 5 1。
6.根据权利要求5所述的方法,其特征在于所述混合菌组分为氧化亚铁硫杆菌 氧化硫硫杆菌=4 1。
7.根据权利要求6所述的方法,其特征在于浸矿培养基为9K基础培养基,按如下 步骤进行51、称取碲矿矿样加入基础培养基,调节矿浆pH值至1.5 2.0;52、待矿浆pH值稳定后接种氧化亚铁硫杆菌液,接种量为3.0% 9.0%;53、进行恒温振荡培养,培养条件为温度28 32°C、转速120 150r/min。
8.根据权利要求7所述方法,其特征在于所述步骤Sl中调节矿浆pH值至1.5;所 述步骤S3中恒温振荡培养条件为温度30°C、转速150r/min;所述步骤S2中菌液接种量 为 4.5%或 6.0%或 7.5%。
9.根据权利要求1 8任一所述的方法,其特征在于使用矿样为辉碲铋矿。
10.根据权利要求9所述的方法,其特征在于使用矿样为碲矿磨碎至粒度 124ym 178 μ m。
全文摘要
本发明公开了一种低品位碲矿的微生物浸出方法。针对现有技术中从铋碲矿中分离碲采用的是湿法冶金工艺,具有能耗高、成本高、条件复杂的缺陷,本发明提供了一种利用生物浸矿原理浸出低品位碲矿中碲的方法。本方法选用氧化亚铁硫杆菌及其与氧化硫硫杆菌的混合菌作为浸矿菌种,经扩大培养后接种入低品位碲矿矿样,在控制pH值、接种量等条件的基础上经恒温振荡培养。培养30d后,氧化亚铁硫杆菌浸碲率为62.7~68.4%,混合菌浸碲率为66.2~75.8%。本发明方法原理可靠,浸矿菌种容易获得,操作简单。方法整体成本经济,能兼顾资源与环境利益,尤其适用于低品位碲矿的浸出,具有相当好的应用前景。
文档编号C01B19/02GK102020252SQ20101061398
公开日2011年4月20日 申请日期2010年12月30日 优先权日2010年12月30日
发明者侯立玮, 彭书明, 李凛, 童晋, 谢鸿观, 雷泞菲 申请人:成都理工大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1