铁氧体磁性材料的制作方法

文档序号:3443051阅读:204来源:国知局
专利名称:铁氧体磁性材料的制作方法
技术领域
本发明涉及铁氧体磁性材料。
背景技术
作为由氧化物构成的永久性磁铁的材料,众所周知有六方晶类的M型(磁铁铅矿型)Sr铁氧体或者Ba铁氧体。由这些铁氧体构成的铁氧体磁性材料是以铁氧体烧结体和粘结磁铁的形式作为永久性磁铁被加以提供的。近年来,伴随着电子零部件的小型化以及高性能化而即使相对于由铁氧体磁性材料构成的永久性磁铁也不断要求既要是小型的又要具有高磁气特性。作为永久性磁铁的磁气特性的指标一般是使用剩余磁通量密度(Br)以及矫顽 (磁)力(HcJ)来评价这些指标为高的具有高磁气特性。一直以来,从提高永久性磁铁的 Br以及HcJ的观点出发,以在铁氧体磁性材料中含有规定的元素的方法等以及经改变其组成来加以研究探讨。例如,在以下所述专利文献1中介绍了通过在M型Ca铁氧体中至少含有La、Ba以及Co从而获得具有高Br以及高HcJ的铁氧体烧结磁铁的氧化物磁性材料。另外,在以下所述专利文献2中介绍了通过使M型Ca铁氧体中含有La、Sr以及Co 从而获得具有高Br以及高HcJ的铁氧体烧结磁铁的氧化物磁性材料。而且,在以下所述专利文献3中公开了通过在M型Sr铁氧体中含有Sr、La以及Co从而具有高Br以及高HcJ 的烧结磁铁。专利文献专利文献1 日本专利第4078566号公报专利文献2 国际公开2007/077811号小册子专利文献3 日本专利第3163279号公报

发明内容
发明所要解决的课题如以上所述,为了良好地获得Br以及HcJ这两个数据而尝试了种种改变添加到主要组成的元素的组合,但是到底怎样的添加元素的组合才能够给出高特性,这至今仍然还未明了。另外,在永久性磁铁中除了具有高Br以及高HcJ之外,优选磁化为Br的90%时的磁场的值(Hk)相对于HcJ的比率即所谓矩形比(squareness ratio) (Hk/HcJ)也要高。如果Hk/HcJ高的话那么由于外部磁场和温度变化而引起的减磁就小,且变得能够获得稳定的磁气特性。因此,关于使用了铁氧体磁性材料的永久性磁铁,优选在获得高Br以及高HcJ的同时能够获得表现优异的Hk/HcJ。然而,如果提高了任意一个特性的话那么其它特性发生下降等,要制得能够获得具有像这样3个特性的永久性磁铁的铁氧体磁性材料一直以来绝不是件容易的事。因此,本发明就是借鉴了以上所述那样的情况而做出的不懈努力之结果,是以提供一种能够获得维持高Br以及高HcJ而且具有高Hk/HcJ的永久性磁铁的铁氧体磁性材料以及由这样的铁氧体磁性材料构成的磁铁为目的的。解决课题的手段为了达到以上所述目的,本发明的铁氧体磁性材料,其特征为是一种具备由铁氧体相构成的主相的铁氧体磁性材料,所述铁氧体磁性材料具有六方晶结构;具有由以下所述式(1)所表示的主要组成CalTX_yRwSrxBayFezMm019 ⑴[式1中,R是选自稀土类元素(包含Y)以及Bi中的至少1种元素且至少含有 La,M是选自Co、Mn、Mg、Ni、Cu以及Zn中的至少1种元素且至少含有Co]在式(1)中w、x、y、ζ以及m满足以下所述式⑵、(3)、(4)、(5)、(6)、(7)以及 ⑶,0. 25 < w < 0. 65(2)0. 01 < χ < 0. 45(3)0. 0002 < y < 0. 011 (4)y < χ(5)8 < ζ < 11(6)1. 0 < w/m < 2. 5(7)0. 017 < m/z < 0. 065 (8)作为副成分至少含有Si成分,该Si成分的总量相对于主要组成为0. 1 3质量%,而且Ca、R、Sr、Ba、Fe、M以及Si的摩尔比满足以下所述式(9)。1. 5 彡[(Ca+R+Sr+Ba) - (Fe+M)/12] /Si 彡 3· 5 (9)上述本发明的铁氧体磁性材料在由以上所述式(1)加以表示并且各元素满足式 (2) (8)的条件的同时,作为副成分而进一步含有Si成分,并且进一步通过构成主要组成的金属元素和Si满足式(9)所表示的关系,从而变成一种不仅具有高Br以及高HcJ而且还具有高Hk/HcJ的铁氧体磁性材料。另外,本发明提供了一种以下所述的磁铁,S卩,由上述本发明的铁氧体磁性材料所构成并具有弧段形状而且该形状的中心角为30°以上,优选为60°以上。像这样的弧段形状的铁氧体永久性磁铁在马达等领域中有着广泛的运用,根据上述本发明的铁氧体磁性材料,就能够提供一种具有高Br、高HcJ以及高Hk/HcJ的弧段形状的磁铁。另外,本发明的铁氧体磁性材料对于形成具有像这样形状的磁铁来说是极为有利的。即,由铁氧体磁性材料构成弧段形状的磁铁多数是由铁氧体磁性材料的烧结体所构成。 像这样的磁铁是通过以下所述方式来加以制造的,即,使用烧结前的铁氧体磁性材料来形成成形体并烧成这个成形体。在要获得弧段形状的烧结体的情况下使用对应于此的形状的成形体。成形体通常在烧成时是以一定的比例进行收缩的,在磁场被定向的情况下如果以结晶组织来看的话,那么收缩率在c轴(磁化容易轴)方向和a轴方向上有着较大的差异,通常c轴方向的收缩率较a轴方向的收缩率来得大。为此,在制成弧段形状并将结晶组织定向成圆弧状来加以排列的情况下,由这个收缩率之差(缩率比)能够表示在烧成时中心角发生进一步变大那样的收缩举动。为此,为了获得具有所希望的中心角的各向异性的形状,成形体鉴于像这样的收缩举动而预先放浅圆弧(缩小中心角)。尽管如此,在制造圆弧深的形状的磁铁的情况下,在成形体的阶段,将圆弧加深到某一程度以上仍然是有必要的。在打算要取得中心角成为30°以上那样的磁铁的情况下,因为成形体的圆弧也被控制得相当深,所以例如在成形时不让两端附近充分凝固,因而对于成形来说有必要需要较长的时间,或者有必要加大成形压力,与以往的技术相比较相对要求更严的成形条件。其结果除了生产性变低之外,会有所获得的磁铁的特性也容易发生降低的倾向。为此,一直以来,制造具有中心角成为30°以上那样的各向异性的铁氧体烧结磁铁是困难的。相对于此,本发明的铁氧体磁性材料因为具有以上所述那样的特定组成,所以能够发挥出所谓增大成形体烧成时的缩率比的效果。为此,根据该铁氧体磁性材料,与以往技术相比较能够在烧成时利用大缩率比来容易地从圆弧浅的成形体制得圆弧深的(中心角大)烧结体。因此,由本发明的铁氧体磁性材料构成弧段形状的磁铁就能够容易得拥有所谓30°以上优选为60°以上的大中心角。发明效果根据本发明,可提供一种能够获得维持高Br以及高HcJ而且不仅具有高Hk/HcJ 并具有大中心角的弧段形状的永久性磁铁的铁氧体磁性材料。


图1是表示优选的实施方式的铁氧体永久性磁铁的立体图。图2是分别表示磁铁1的平面以及端面的图。符号说明1.磁铁
具体实施例方式以下是一边参照附图一边就有关本发明的优选的实施方式加以说明。在图面的说明中将相同的符号标注于相同的要素,从而避免重复说明。(铁氧体永久性磁铁)图1是表示优选的实施方式的铁氧体永久性磁铁的立体图。图1所表示的铁氧体永久性磁铁1(以下仅称之为“磁铁1”)具有以其端面成为圆弧状的形式进行弯曲的形状, 一般具有被称之为弧段形状、C字形状、瓦片形状、弓形状等的形状。该磁铁1是由铁氧体磁性材料的烧结体所构成,是一种铁氧体烧结磁铁。构成磁铁1的铁氧体磁性材料是一种具备由拥有六方晶结构的铁氧体相构成的主相的铁氧体磁性材料,优选为磁铁铅矿型(M型)铁氧体。在此。所谓主相是指在构成铁氧体烧结体的结晶粒子和在形成于该粒子之间的晶界中构成结晶粒子的部分,在优选的情况下占烧结体的95体积%以上。本实施方式的铁氧体磁性材料具有由以下所述式(1)所表示的主要组成。该主要组成包含于以上所述的主相中并且形成六方晶结构。
CalTX_yRwSrxBayFezMm019 ⑴在此,在式1中R是选自稀土类元素(包含Y)以及Bi中的至少1种元素且至少含有La,M是选自Co、Mn、Mg、Ni、Cu以及Zn中的至少1种元素且至少含有Co。在式(1)中w、x、y、Z以及m分别表示R、Sr、Ba、Fe以及M的原子比率,并满足所有以下所述式(2)、(3)、(4)、(5)、(6)、(7)以及(8),0. 25 < w < 0. 65(2)0. 01 < χ < 0. 45(3)0. 0002 < y < 0. 011 (4)y < χ(5)8 < ζ < 11(6)1. 0 < w/m < 2. 5(7)0. 017 < m/z < 0. 065 (8)另外,铁氧体磁性材料作为以上所述的主要组成以外的副成分至少含有Si成分, 该Si成分的总量相对于主要组成为0. 1 3质量%。所谓Si成分是在构成元素中含有Si 的成分,在含有多种Si成分的情况下其合计量成为以上所述的“总量”。而且,在铁氧体磁性材料中Ca、R、Sr、Ba、Fe、M以及Si各个元素其摩尔比成为满足以下所述式(9)的关系。1. 5 彡[(Ca+R+Sr+Ba) - (Fe+M)/12] /Si 彡 3· 5 (9)以下是就有关以上所述铁氧体磁性材料的组成作进一步详细的说明。在上述主要组成中的Ca的原子比例(Ι-w-x-y)优选为超过0. 05不到0. 59。如果Ca的原子比例过小,那么就会有铁氧体磁性材料不能成为M型铁氧体的情况。另外,除了增加α-Fe2O3等非磁性相的比例之外,R成为剩余从而生成正铁氧体(orthoferrite)等非磁性的异相,并会有磁气特性(特别是Br和HcJ)发生下降的倾向。另外,如果Ca的原子比例过大,那么除了会有不能成为M型铁氧体的情况之外,CaFeCVx等非磁性相变多从而会担忧磁气特性发生下降。由R所表示的元素除了至少含有La之外,作为La之外的元素优选为选自稀土类元素(包含Y)以及Bi中的至少1种,更加优选为选自稀土类元素中的至少1种。但是,作为R从提高各向异性磁场的观点出发特别优选只含有La。主要组成中的R的原子比率(w)为超过0.25不到065,如果在该范围内的话,那么就能够很好地获得理想的Br和HcJ以及Hk/HcJ。如果R的原子比率过小的话,那么铁氧体磁性材料中的M的固溶量将变得不够充分,并且Br以及HcJ降低。另外,如果过大的话,那么就会产生正铁氧体等非磁性的异相,且Hk/HcJ变低从而获得实用的磁铁将变困难。从如此的观点出发优选R的原子比率为0. 3 0. 55,更加优选为0. 35 0. 5。Sr的原子比率(χ)为超过0.01不到0.45,通过控制在该范围内从而良好的Br、 HcJ以及Hk/HcJ被满足。如果Sr的原子比率为过小的话,那么Ca和/或La的比率则变大且Hk/HcJ降低。另外,如果Sr的原子比率过大的话,那么Br以及HcJ则变得不够充分。 从如此的观出发Sr的原子比率优选为0. 05 0. 35,更加优选为0. 05 0. 2。Ba的原子比率(y)为超过0. 0002不到0. 011,通过控制在该范围内从而良好的 Br、HcJ以及Hk/HcJ被满足。如果Ba的原子比率为过小的话,那么就不能够得到充分提高Hk/HcJ的效果。另外,如果过大的话,那么Br以及HcJ则会不适合地发生下降。从如此的观点出发,Ba的原子比率优选为0. 0006 0. 010。另外,Sr的原子比率(χ)以及Ba的原子比率(y)满足y < χ的关系。就这样通过使Sr的原子比率变成比Ba的原子比率来得大,从而除了获得良好的Br以及除了变得容易获得充分高的Hk/HcJ之外,增大后面所述那样的缩率比而变得容易获得弧段形状的磁铁。Fe的原子比率(ζ)为超过8不到11,通过控制在该范围内从而良好的Br、HcJ以及Hk/HcJ被满足。Fe的原子比率过小过大都会使Br以及HcJ不合适地发生降低。Fe的原子比率优选为8. 5 10. 5,更加优选为9 10。由M所表示的元素除了至少含有Co之外,作为Co之外的元素优选为选自Mn、Mg、 Ni、Cu以及Zn中的至少1种,更加优选为选自MruNi以及Zn中的至少1种。但是,作为M 从提高各向异性磁场的观点出发特别优选只含有Co。铁氧体磁性材料的主要组成关于M的原子比率(m)首先要满足m/z超过0.017不到0.065的条件。另外,要满足w/m超过1.0不到2. 5的条件。通过满足这些条件从而就能够获得良好的Br、HcJ以及Hk/HcJ。在M的原子比率为过小的情况下,则不能够获得良好的Br以及HcJ,特别是如果Co的比率过小的话,那么就不能够获得良好的HcJ。另外,在 M的比率为过大的情况下,会有Br以及HcJ发生降低的倾向。从如此的观点出发m/z优选为0. 02 0. 05,更加优选为0. 022 0. 04。另外,w/ m优选为1. 2 2. 0,更加优选为1. 5 1. 8。铁氧体磁性材料除了以上所述的主要组成之外还包含后面所述的副成分。无论是在铁氧体磁性材料的主相以及晶界都可以包含副成分。在铁氧体磁性材料中除了整体中的副成分之外便是主要组成。从获得充分的磁气特性的观点出发,在铁氧体磁性材料中主要组成的含有比例优选为90质量%以上,更加优选为95 100质量%。本实施方式的铁氧体磁性材料作为副成分至少含有Si成分。作为Si成分只要具有含有Si的组成,那么就没有特别的限定,例如也可以以Si02、Na2Si03、Si02 · ηΗ20等形态进行添加。铁氧体磁性材料通过含有Si成分从而烧结性将变得良好,另外,适度调整烧结体的结晶粒径就能够成为磁气特性良好地被控制的铁氧体磁性材料。其结果既能够良好地维持Br以及HcJ又能够获得高Hk/HcJ。在铁氧体磁性材料中,Si成分的含量以所有的Si成分的合计量换算成SiO2为 0. 1 3质量%。Si成分如果是这样的含量的话那么就能够获得高HcJ。另外,Ca、R、Sr、Ba、Fe、M以及Si的摩尔比满足以下所述式(9)。1. 5 彡[(Ca+R+Sr+Ba) - (Fe+M)/12] /Si 彡 3· 5 (9)在此,磁铁铅矿型构造一般是以AB12O19来表示的。在充当该组成的情况下以上所述式(9)中的[(Ca+R+Sr+Ba)_(Fe+M)/12]/Si能够被表示为(A_B/12)/Si。由此,该式是表示被认为从主相溢出从而存在于晶界的A位点(site)成分以及Si成分的晶界中的存在比 (A位点成分/Si成分)。本实施方式的铁氧体磁性材料通过满足以上所述式(9)的条件,从而即使是A位点元素为较多的(B位点元素为较少)那样的背离于化学计量比的组成,也变得好像能够良好地保持M型构造。其结果在维持高磁气特性(Br以及HcJ)的同时,能够获得优异的 Hk/HcJ。从更好地获得像这样的效果的观点出发,[(Ca+R+Sr+Ba)_(Fe+M)/12]/Si优选为1. 5 3. 5,更加优选为1. 5 3. 0。铁氧体磁性材料含有以上所述的主要组成以及至少包含Si成分的副成分,铁氧体磁性材料的组成可以由荧光X线定量分析来加以测定。另外,主相的存在可以由X线衍射或者电子线衍射来加以确认。本实施方式的铁氧体磁性材料作为副成分也可以含有除了 Si成分之外的成分。 作为其它副成分例如可以有Al和/或Cr。由此,磁铁1的HcJ有着一种提高的倾向。从获得良好的HcJ的向上效果的观点出发,Al和/或Cr的含量相对于铁氧体磁性材料整体被换算成Al2O3或者Cr2O3而优选为0. 1质量%以上。但是,这些成分因为会有使磁铁1的Br 降低的情况,所以从获得良好的Br的观点出发优选为3质量%以下。另外,作为副成分也可以将B作为例如B2O3而含有。通过含有B,从而就能够降低在制得由铁氧体磁性材料构成的烧结体的时候的预烧温度和烧结温度,并且变得能够生产性良好地制得磁铁1。但是,如果B的含量过多的话那么因为会有磁铁1的饱和磁化发生降低的情况,所以B的含量相对于铁氧体磁性材料整体作为B2O3而优选为0. 5质量%以下。而且,铁氧体磁性材料作为副成分可以以氧化物的形态含有6£1、1%、01、1111、附、211、 In、Li、Ti、&、Ge、Sn、V、Nb、Ta、Sb、As、W、Mo等。这些元素的含量被换算成各个原子的化学计量组成的氧化物而优选为氧化镓5质量%以下,氧化镁5质量%以下,氧化铜5质量% 以下,氧化锰5质量%以下,氧化镍5质量%以下,氧化锌5质量%以下,氧化铟3质量%以下,氧化锂1质量%以下,氧化钛3质量%以下,氧化锆3质量%以下,氧化锗3质量%以下, 氧化锡3质量%以下,氧化钒3质量%以下,氧化铌3质量%以下,氧化钽3质量%以下,氧化锑3质量%以下,氧化砷3质量%以下,氧化钨3质量%以下,氧化钼3质量%以下。但是,在多种类组合这些物质来加以含有的情况下为了避免磁气特性的降低而优选其合计含量成为5质量%以下。还有,铁氧体磁性材料中,作为副成分优选不含有碱金属元素(Na、K、Rb等)。碱金属元素的存在会有使磁铁1的饱和磁化降低的倾向。但是,也会有碱金属元素例如被包含于为了制得铁氧体磁性材料的原料中的情况,如果是像这样含有不可避免的程度的话, 那么在铁氧体磁性材料中含有也并非不可。不对磁气特性产生大影响的碱金属元素的含量为3质量%以下。构成磁铁1的铁氧体磁性材料正如以上所述其形态为烧结体,并且具有包含结晶粒子(主相)和晶界的构造。该烧结体中的结晶粒子的平均结晶粒径优选为1.5μπι以下, 更优选为Ι.Ομπι以下,进一步优选为0.5 Ι.Ομπι。通过拥有像这样的平均结晶粒径,从而就变得容易获得高HcJ。铁氧体磁性材料的烧结体的结晶粒径可以由扫描型电子显微镜来加以测定。磁铁1如以上所述是一种以端面成为圆弧状的形式使平板状的磁铁在一个方向上进行弯曲的具有弧段形状的磁铁。图2是从上方看到该磁铁1的平面图以及从侧面看到的端面图。如以上所述,磁铁1具备拥有规定中心角的扇形的平面形状。在此,所谓弧段形状的磁铁的中心角是以以下所述形式进行定义的值。即,所谓中心角是将在具有圆弧状的端面上的外侧边设想成圆弧的时候的该圆弧的中心角,在图2所表示的端面图中是以θ来表示的。具有像这样形状的磁铁1在图2的端面图中一般是以在用OR来表示的箭头方向上具有径向各向异性的形式对结晶组织进行配向。
在此,本实施方式的磁铁1因为是由具有以上所述的组成以及结晶组织的铁氧体磁性材料的烧结体所构成,所以在具有像这样的弧段形状的情况下,在烧成成形体而获得烧结体的时候,由a轴方向与c轴方向的收缩率之差通常显示出由于烧成而使中心角变得更大那样的收缩举动。还有,该收缩率之差例如可以由缩率比(c轴方向的收缩率/a轴方向的收缩率)来表示,该缩率比基本上是由铁氧体磁性材料的组成来决定的。缩率比越大, 越是在制作成为弧段形状的情况下在圆弧的切线方向与圆弧的法线方向的收缩程度上产生差值,作为整体而变得会产生中心角变大那样的收缩。于是,根据能够产生像这样高的缩率比的本实施方式的铁氧体磁性材料,能够容易地从圆弧浅的成形体利用烧成时的大缩率比来制得圆弧深的(中心角大)烧结体。因此, 由本实施方式的铁氧体磁性材料对于制得具有所谓30°以上优选为60°以上的大中心角的磁铁1来说是有利的。以上虽就有关优选的实施方式所涉及的磁铁1作了说明,但是由本发明而获得的磁铁只要是由本发明的铁氧体磁性材料构成的磁铁,并不限定于以上所述的形态。例如,磁铁除了具有各向异性的弧段形状之外,还可以具有平板状以及圆柱状等种种形状。即使是除了弧段形状之外的形状,只要是由本发明的铁氧体磁性材料所构成的,那么既能够维持高Br以及HcJ又能够获得高Hk/HcJ。另外,磁铁1并不限定于由以上所述那样的铁氧体磁性材料的烧结体构成的磁铁,例如也可以是由胶粘剂来结合铁氧体磁性材料的粉末而形成的粘结磁铁。在此情况下,以上所述那样的铁氧体磁性材料的条件,如果是满足于铁氧体磁性材料的粉末即可。构成铁氧体磁性材料的粉末的一次粒子的平均粒径虽然没有特别的限制,但是优选为2 μ m以下,更优选为1 μ m以下,进一步优选为0. 1 1 μ m。如果该平均粒径为过大的话,那么粉末中的多磁区粒子的比率则变高,并且要担心HcJ会降低。另外,如果平均粒径过小的话,那么会由于热扰乱而降低磁性,或者在磁场中进行形成的时候的定向性和成形性变差。作为胶粘剂可以列举丁腈橡胶(例如NBR橡胶)、聚氯乙烯、聚酰胺树脂[例如尼龙6、尼龙12(注册商标)]等。(铁氧体永久性磁铁的制造方法)接着,就有关以上所述那样的铁氧体永久性磁铁的制造方法的优选实施方式作如下说明。在以下的实施方式中,将展示一个由铁氧体磁性材料构成的铁氧体烧结磁铁的制造方法的例子。在本实施方式中,铁氧体烧结磁铁能够经过配合工序、预烧工序、粉碎工序、 成形工序以及烧成工序来加以制造。关于各个工序将在以下作逐一说明。<配合工序>在配合工序中是配合铁氧体磁性材料的原料来获得原料组合物。首先,作为铁氧体磁性材料的原料可以列举含有构成铁氧体磁性材料的元素中1种或者2种以上的化合物 (原料化合物)。原料化合物例如优选粉末状的物质。作为原料化合物可以列举各个元素的氧化物或者由烧成而成为氧化物的化合物(碳酸盐、氢氧化物、硝酸盐等)。例如可以例示SrC03、La (OH) 3、Fe203、BaCO3> CaCO3以及Co3O4等。原料化合物的粉末的平均粒径例如从能够均质配合的观点出发优选为0. 1 2. 0 μ m的程度。另外,作为铁氧体磁性材料中的Si成分的原料可以列举SiO2,如果是含有Si的化合物等则没有特别的限制。另外,也可以在原料粉末中对应于必要配合一些其它副成分的原料化合物(元素单质、氧化物等)。配合例如可以通过以获得所希望的铁氧体磁性材料的组成的形式对各个原料实施称量,在进行混合后使用湿式磨碎机、球磨机等并对原料进行0. 1 20小时左右的混合以及粉碎处理来加以实行。还有,在这个配合工序中没有必要混合所有的原料,其中一部分可以在后面所述的预烧之后进行添加。例如,副成分Si的原料(例如SiO2)和主要组成的构成元素Ca的原料(例如CaCO3)也可以在后面所述的预烧之后在粉碎(特别是微分碎)工序中进行添加。 添加的时机只要是以容易获得所希望的组成和磁气特性的形式加以调整的话即可。<预烧工序>在预烧工序中是预烧在配合工序中所获得的原料粉末。预烧例如优选在空气中等氧化性气氛中进行。预烧温度优选为1100 1400°C的温度范围,更优选为1100 1300°C, 进一步优选为1100 1250°C。预烧时间可以是1秒钟 10小时,优选为1秒钟 3小时。 由预烧而获得的预烧体含有70%以上的上述那样的主相(M相)。主相的一次粒子径优选为10 μ m以下,更加优选为2 μ m以下。〈粉碎工序〉在粉碎工序中粉碎由预烧工序形成的颗粒状和块状的预烧体,并再一次粉碎成粉末状。由此,后面所述的成形工序中的成形就变得容易了。在这个粉碎工序中可以添加在以上所述那样的配合工序中没有配合的原料(原料的后添加)。粉碎工序例如在以成为粗粉末的形式粉碎预烧体(粗粉碎),之后再进一步对粗粉末作细微粉碎(微粉碎),即可以以两个阶段的工序来实行粉碎。粗粉碎例如可以用振动研磨机等直至平均粒径成为0. 5 5. 0 μ m为止进行粉碎。 关于微粉碎是进一步由湿式磨碎机、球磨机以及喷射研磨机等来粉碎在粗粉碎工序中所获得的粗粉碎材料。在微粉碎过程中是以所获得的微粉碎材料的平均粒径优选为0. 08 2. Oym ;更优选为0. 1 1. 0 μ m ;进一步优选为0. 2 0. 8 μ m的形式实行粉碎的。微粉碎材料的比表面积(例如由BET法加以求得)优选为7 12m2/g左右。优选的粉碎时间根据粉碎方法而有所不同,例如在湿式磨碎机的情况下优选30分钟 10小时,由球磨机进行的湿式粉碎则优选为10 50小时左右。在粉碎工序中添加原料的一部分的情况下,例如添加能够在微粉碎过程中加以实施。在本实施方式中虽然能够在微粉碎的时候添加作为Si成分的SiO2和作为Ca成分的 CaCO3,但是也能够在配合工序和粗粉碎工序中添加这些化合物。另外,在微粉碎工序中,为了提高在烧成后所获得的烧结体的磁气(性)的定向度而优选添加例如以一般式Cn(0H)nHn+2表示的多元醇。在此,作为多元醇在一般式中η优选为4 100的数,更优选为4 30的数,进一步优选为4 20的数,最优选为4 12的数。 作为多元醇例如可以列举山梨醇。另外,也可以合并使用2个种类以上的多元醇。此外,除了多元醇之外也可以合并使用其它公知的分散剂。在添加多元醇的情况下,其添加量相对于添加对象(例如粗粉碎材料)优选为 0.05 5.0质量%,更优选为0. 1 3.0质量%,进一步优选为0.2 2.0质量%。此外, 在微粉碎工序中进行添加的多元醇在后面所述的烧成工序中被热分解去除。
〈成形工序〉在成形工序中,在磁场中对在粉碎工序后所获得的粉碎材料(优选为微分碎材料)进行成形从而制得成形体。成形体可以以干式成形以及湿式成形的任一个方法来加以实行。从提高磁气(性)的定向度的观点出发优选以湿式成形来加以实行。在由湿式成形来加以成形的情况下,例如优选在通过以湿式来实行以上所述的微粉碎工序从而获得浆料之后,将该浆料浓缩到规定的浓度并制得湿式成形用浆料,使用该浆料来实施成形。浆料的浓缩可以由离心分离和压滤等来加以实行。湿式成形用浆料优选为在其全量中微粉碎材料占30 80质量%的程度。在浆料中作为分散微粉碎材料的分散溶剂优选为水。在此情况下,在浆料中也可以添加葡萄糖酸、葡萄糖酸盐以及山梨醇等表面活性剂。另外,作为分散溶剂也可以使用非水类溶剂。作为非水类溶剂可以使用甲苯和二甲苯等有机溶剂。在此情况下,优选添加油酸等表面活性剂。此外,湿式成形用浆料也可以通过将分散溶剂等添加到微粉碎后的干燥状态的微粉碎材料中来加以调制。关于湿式成形,接着相对于该湿式成形用浆料来实行磁场中成形。在此情况下,成行压力优选为9. 8 49MPa(0. 1 0. 5ton/cm2)左右,所施加的磁场优选为398 1194kA/ m(5 15k0e)左右。在本实施方式中,因为是形成由本发明的铁氧体磁性材料构成的磁铁1,所以在如以上所述那样制造弧段形状的磁铁的情况下在后面所述的烧成工序中能够产生高缩率比。 因此,在这个成形工序中即使形成圆弧比所希望的磁铁更浅(中心角小)的成形体也能够在烧成后获得圆弧深的磁铁。成形体的中心角优选根据铁氧体磁性材料的组成作适当设定,例如成形体的中心角能够被设定成比作为目标的磁铁的中心角小10 20%左右。〈烧成工序〉在烧成工序中烧成在成形工序制得的成形体从而以其作为烧结体。由此就可获得由如以上所述那样的铁氧体磁性材料的烧结体构成的磁铁1。在制造弧段形状的磁铁的情况下,在烧成中,以具有规定中心角的形式进行成形的成形体发生收缩,这时也就产生一定的缩率比。由此,所获得的烧结体成为具有比成形体更加小的中心角的烧结体。为了获得圆弧深的烧结体而优选烧成时的缩率比为1. 0 2. 5,更加优选为1. 5 2. 5。烧成能够在大气中等氧化性气氛中进行。烧成温度优选为1050 1270°C,更加优选为1080 1240°C。另外,烧成时间(保持在烧成温度的时间)优选为0.5 3小时的程度。此外,在以如以上所述那样的湿式成形来制得成形体的情况下,如果没有使这个成形体充分干燥,而就这样通过进行烧成来作急剧加热的话,那么就会有可能分散溶剂等发生急剧挥发从而在成形体上产生龟裂。因此,从避免像这样的不良状况的观点出发,优选通过在到达上述烧结温度之前,例如从室温到100°C左右以0. 5°C /分钟程度的慢慢的升温速度进行加热来使成形体充分干燥,从而抑制龟裂的发生。此外,在添加表面活性剂(分散剂)等的情况下,例如优选在100 500°C左右的温度范围内通过以2. 5°C /分钟左右的升温速度进行加热从而充分去除这些分散溶剂挥发物(脱脂处理)。此外,这些处理既可以在开始烧成工序的时候进行,也可以在烧成工序前以别的途径来进行。以上虽然就有关铁氧体烧结磁铁的优选的制造方法作了说明,但是只要至少使用本发明的铁氧体磁性材料,那么制造方法并不限定于以上所述的制造方法,可以对以上所述条件等作适当变更。另外,制造作为磁铁并不是铁氧体烧结磁铁而是粘结磁铁的情况下,例如在直至上述粉碎工序为止实行了各个加工工序之后,混合所获得的粉碎物和胶粘剂,通过在磁场中对该混合物加以成形从而就能够获得含有本发明的铁氧体磁性材料粉末的粘结磁铁。实施例以下是通过实施例来进一步详细地说明本发明,但是本发明并不限定于这些实施例。[实施例1](铁氧体烧结磁铁的制造)首先,作为铁氧体磁性材料的主要组成的原料准备氧化铁(Fe203)、碳酸钙 (CaCO3)、碳酸锶(SrCO3)、氧化钴(Co3O4)、碳酸钡(BaCO3)以及氢氧化镧[La (OH) 3],并以烧成后的主要组成成为以下所述组成式的形式分别对这些原料进行称量。另外,作为Si成分以相对于主要组成成为0. 69质量%的形式准备氧化硅(SiO2)。主要组成的组成式^aHuLawSi^Ba/ezCc^C^在实施例1中与表1所表示的那样以获得主要组成的原子比率分别不相同的铁氧体磁性材料的形式用多个组合来准备原料。该实施例1是一种特别让Ca(l-W-X-y = 0. 0333 0. 6007)以及Sr (χ = 0. 0003 0. 5700)的原子比率发生大变化来制造试样 1-1 1-9的各种铁氧体烧结磁铁的实施例。以下是就有关使用以上所述原料的铁氧体烧结磁铁的制造方法加以说明。用湿式磨碎机对在上述称量后的原料中的主要组成的原料实施10分钟的混合、并粉碎,从而获得浆料(配合工序)。在干燥该浆料之后,在大气中以1250°c的温度条件保持2小时来实行预烧(预烧工序)。用小型棒杆式振动研磨机对所获得的预烧粉末实施10分钟的粗粉碎。在这个粗粉碎材料中分别添加在上述内容中称量的氧化硅(SiO2);相对于粗粉碎材料成为1.90质量%的碳酸钙(CaCO3);成为0.45质量%的山梨醇。使用湿式球磨机对该混合物实行33小时的微分碎从而获得浆料(以上为粉碎工序)。在微粉碎之后以固体成分浓度成为73 75%的形式调整所获得的浆料从而制得湿式成形用浆料。使用湿式磁场成形机在796kA/m(10k0e)的施加磁场中使该湿式成形用浆料成形,从而制得具有直径30mmX厚度15mm的圆柱状的成形体(成形工序)。所获得的成形体在大气中以室温条件进行充分干燥,接着在大气中以1200°C的温度条件实行保持1小时的烧成,由此而获得铁氧体烧结磁铁(烧成工序)。(铁氧体烧结磁铁的评价)在对由实施例1所获得的各个铁氧体烧结磁铁的圆柱的上下面实施加工之后,在使用最大施加磁场755kA/m (12k0e)的B-H跟踪器来求得这些Br (mT)以及HcJ (kA/m),并且测定Br成为90%的时候的外部磁场强度(Hk),据此而求得Hk/HcJ(% )。所获得的结果被表示于表1中。[表 1]
权利要求
1. 一种铁氧体磁性材料,其特征在于,是一种具备由铁氧体相构成的主相的铁氧体磁性材料,所述铁氧体相具有六方晶结构,具有由下式(1)所表示的主要组成,Ca^^-y^Sr.Ba/eAOig (1)式(1)中,R是选自稀土类元素以及Bi中的至少1种元素且至少含有La,该稀土类元素包含Y,M是选自Co、Mn、Mg、Ni、Cu以及Zn中的至少1种元素且至少含有Co,在所述式(1)中《、χ、y、ζ以及m满足下式(2)、(3)、⑷、(5)、(6)、(7)以及⑶, 0. 25 < w < 0. 65(2)0. 01 < χ < 0. 45(3)0.0002 < y < 0. 011(4) y < χ (5) 8 < ζ < 11 (6)1.0 < w/m < 2. 5(7)0.017 < m/z < 0. 065 (8)作为副成分至少含有Si成分,该Si成分的总量相对于所述主要组成为0. 1 3质量%,并且Ca、R、Sr、Ba、Fe、M以及Si的摩尔比满足下式(9),1.5 彡[(Ca+R+Sr+Ba)-(Fe+M)/12]/Si 彡 3· 5 (9)。
2.一种磁铁,其特征在于,由权利要求1所述的铁氧体磁性材料所构成并具有弧段形状而且该形状的中心角为 30°以上。
3.如权利要求2所述的磁铁,其特征在于, 所述中心角为60°以上。
全文摘要
本发明是以提供一种能够获得维持高Br以及高HcJ而且具有高Hk/HcJ的永久性磁铁的铁氧体磁性材料为目的的。优选的实施方式所涉及的铁氧体磁性材料具备拥有六方晶结构的铁氧体相,并具有由Ca1-w-x-yRwSrxBayFezMmO19[式中,R是选自稀土类元素(包含Y)以及Bi中的至少1种元素,且必须包含La,M是选自Co、Mn、Mg、Ni、Cu以及Zn中的至少1种元素,且必须包含Co]所表示的主要组成,满足以下所述关系式0.25<w<0.65,0.01<x<0.45,0.0002<y<0.011,y<x,8<z<11,1.0<w/m<2.5,0.017<m/z<0.065,Si成分的总量相对于主要组成为0.1~3质量%,而且各个元素满足1.5≤[(Ca+R+Sr+Ba)-(Fe+M)/12]/Si≤3.5的关系。
文档编号C01G51/00GK102471162SQ20108003076
公开日2012年5月23日 申请日期2010年7月5日 优先权日2009年7月8日
发明者森宜宽, 森田启之, 皆地良彦, 长冈淳一 申请人:Tdk株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1