制氢方法

文档序号:3445137阅读:652来源:国知局
专利名称:制氢方法
技术领域
本发明涉及一种改进的制氢方法。
背景技术
氢在满足世界未来可持续能源需求方面发挥着重要作用。但许多常规的制氢方法是不利的,这是因为它们由于应用化石燃料原料而排放出大量的二氧化碳。
希望开发一种利用可再生原料和较少能量的制氢方法。另外,如果这种方法比常规的制氢方法具有更小的碳影响则是有益的。
Verykios的美国专利US 6,387,554描述了一种由乙醇制氢和发电的方法,该方法的污染物排放为零,其中乙醇由生物质制备,所述方法的特征在于用水部分氧化/重整乙醇来制氢,所述氢随后进料至燃料电池用于产生电能。发明内容
本发明提供一种制氢方法,其包括(a)通过生物质发酵过程产生含5_15wt %乙醇的含水原料物流;(b)从所述原料物流中分离至少一部分水从而使所得重整器原料物流中乙醇的浓度为15-35wt% ;和在重整器中在蒸汽重整条件下使重整器原料物流与催化剂接触,以产生包含氢的重整器产物物流,其中基本不向重整器中加入氧。


图1本发明实施方案的工艺流程图。
图2为典型的燃料乙醇生产过程和随后的乙醇蒸汽重整过程的工艺流程图。
图3为自热乙醇重整过程的工艺流程图。
具体实施方式
本发明提供一种由含乙醇和水的原料物流通过在蒸汽重整条件下与重整催化剂接触而制氢的方法。
通过生物质发酵过程生产乙醇和水的原料物流,其包括本领域熟练技术人员已知的或将来要开发的包括生物质和/或由生物质提取的糖发酵生产包含乙醇的含水液体的任何方法。
在一个实施方案中,生物质发酵过程应用玉米作为初始原料,所述原料经过包括研磨、蒸煮、液化、糖化、发酵和固体脱除的一系列步骤来生产含乙醇的含水液体。
替代地,甘蔗、糖浆、甜菜汁、糖蜜、纤维素、山梨醇、藻类、葡萄糖或乙酸酯如乙酸乙酯或乙酸甲酯可以进料至生物质发酵过程。本领域的普通技术人员能够按照已知的方法操作发酵过程。在另一个实施方案中,第二代生物质原料如木质纤维素生物质如玉米秸、稻草和木屑可以用作发酵过程的原料。本领域的普通技术人员能够调整这种方法用于可用于生产乙醇的任何其它生物质原料。
由生物质发酵过程产生的原料物流可能包含需要脱除的固体或其它副产物。所得的原料物流包含5-15wt%的乙醇,优选为8-12wt%的乙醇。
将原料物流泵送至精馏塔或闪蒸罐或其它合适的分离设备,以从所述物流中脱除部分水。这种分离优选在具有2-10级的简单蒸馏塔或一系列闪蒸罐中实施。这种分离可以通过任何已知方法来实施。设计所述塔以产生乙醇含量为15-35wt%、优选为20-30被%的重整器原料物流。在进料至重整器之前可以向所述重整器原料物流提供任选的附加加热。
这种分离不同于通常用于发酵过程的产物的常规分离,这是因为在常规过程中要求高纯度的乙醇物流来满足燃料级和/或化学级规格。所述高纯度乙醇物流的乙醇含量大于99wt%。常规的分离是能量消耗非常大的过程,·是因为在这些分离条件下乙醇和水形成共沸物。通常,除了所述能量消耗大的精馏操作外,还需要附加的处理步骤如沸石吸附剂基 VSA(变真空吸附)。该处理成本明显增加了 99%纯乙醇的生产成本。例如,在由发酵基方法生产乙醇时,常规处理过程可能导致超出50%的实际设备成本。
本方法的分离是简单蒸馏或闪蒸步骤,该步骤不需要如此高的纯度,因此达不到共沸条件,分离过程也就不需要那么多的能量。
可以在进料至精馏塔之前将所述原料物流泵送至100-600psi的压力。常规的分离不在高压下进行,因为高压会导致需要更多能量的更困难的分离。
以气相流出分离设备的重整器原料物流在预热后进料至重整器,以产生主要包含氢、二氧化碳和一氧化碳及一些甲烷的重整产物。针对制氢目的,所述重整产物优选为以干基计含有超过50mol%氢的富氢物流,该物流进一步在水煤气变换反应中反应以将大部分一氧化碳转化为氢和C02。最终的水煤气变换流出物流以干基计含有至少60mol%的氢。
重整器原料物流的水碳比通常为2-4,优选为2. 5-3. 5。
烃物流也可以与上述重整器原料物流一起进料至重整器。烃的加入影响重整器中的水碳比。如果加入附加的烃,则为了保持想要的水碳比可以存在更多的蒸汽。这允许重整器的操作针对原料物流中水的分离程度进行优化。如果向重整器中加入烃物流,则可以操作分离步骤以脱除较少的水。
烃物流包含具有1-30个碳原子、优选1-15个碳原子和更优选1_4个碳原子的烃或它们的混合物。所述烃物流优选包含甲烷。所述烃物流可以至少部分在生物质发酵过程中产生。烃物流可以包括在别处产生的天然气。
如上所述,所述重整器原料物流通常在重整器中与催化剂接触以加速乙醇转化为氢。催化剂可以包括那些能够在蒸汽重整操作条件下在平衡态下操作的催化剂。例如,催化剂可以包括那些能够在低于900°C的重整器操作温度下在平衡态下操作的催化剂。
催化剂通常包括载体材料和金属组分,该催化剂将在下文中更为详细地进行描述。这里所应用的“载体材料”指在与金属组分和任选的“调节剂”接触前的载体材料,该载体材料在下文中也将更为详细地进行讨论。
载体材料可以包括例如过渡金属氧化物或其它耐高温基质。所述过渡金属氧化物可以包括氧化铝(包括Y、α、δ或η相)、二氧化硅、氧化锆或它们的组合,例如无定形二氧化硅-氧化铝。在一个具体实施方案中,所述过渡金属氧化物包括氧化铝。在另一个具体实施方案中,所述过渡金属氧化物包括Y-氧化铝。
载体材料的表面积可以为30-500m2/g、或40-400m2/g、或50-350m2/g。正如这里所应用的,术语“表面积”指的是按 Journal of the American Chemical Society 60(1938) 的309-316页描述的氮BET (Brunauer, Emmett and Teller)方法确定的表面积。正如这里所应用的,除了另有说明外,表面积相对于载体材料的重量定义。
载体材料的孔体积可以为O. Ι-lcc/g或O. 2-0. 95cc/g或O. 25-0. 9cc/g。另外,载体材料的平均粒度可以为O. 1-20 μ、或O. 5-18 μ或从1-15 μ (当以粉末形式应用时)。但可以设想的是所述载体材料可以通过造粒、制片、挤出或其它已知方法转化为具有不同形状和粒度的颗粒。
在一个或多个实施方案中,载体材料为商购的载体材料,例如商购的氧化铝粉末, 包括但不限于PURAL 氧化铝和CATAPAL 氧化铝,这些均为由Sasoi inc.出售的高纯度勃姆石氧化铝。
所述金属组分可以包括第VIII族过渡金属。正如这里所应用的,术语“第VIII族过渡金属”包括第VIII族过渡金属的氧化物和合金。所述第VIII族过渡金属可以包括镍、 钼、钯、铑、铱、金、锇、钌或它们的组合。在一个或多个实施方案中,第VIII族过渡金属包括镍。在一个具体实施方案中,第VIII族过渡金属包括镍盐如硝酸镍、碳酸镍、乙酸镍、草酸镍、柠檬酸镍或它们的组合。
催化剂可以包含相对于催化剂总重量计约O. l-60wt%、0. 2-50wt%或O. 5_40wt%的金属组分。
一个或多个实施方案包括使载体材料或催化剂与调节剂接触以形成改性载体或改性催化剂(在这里统称为改性载体)。例如,调节剂可以包括对氢表现出选择性的调节剂。
在一个或多个实施方案中,调节剂包括碱土元素如镁或钙。在一个或多个具体实施方案中,所述调节剂为含镁的化合物。例如,所述含镁化合物可以包括氧化镁或以镁盐的形式提供(例如氢氧化镁、硝酸镁、乙酸镁或碳酸镁)。
催化剂可以包括相对于载体材料的总重量计O. l_15wt%、或O. 5_14wt%* l_12wt% 的调节剂。
改性载体的表面积可以为20-400m2/g、或25_300m2/g或25_200m2/g。
在一个或多个实施方案中,催化剂还包括一种或多种添加剂。在一个或多个实施方案中,所述添加剂为促进剂。所述促进剂可以选自稀土元素如镧。稀土元素可以包括溶液、盐(例如硝酸盐、乙酸盐或碳酸盐)、氧化物和它们的组合。
催化剂可以包括相对于催化剂的总重量计O. l_15wt%、0. 5-15wt%或l_15wt%的添加剂。
在一个或多个实施方案中,所述催化剂包括的添加剂量大于调节剂量。例如,所述催化剂可以包括比调节剂多至少O. lwt%、或至少O. 15wt%、或至少O. 5wt%的添加剂。在另一个实施方案中,所述催化剂包含基本等量的添加剂和调节剂。
重整器可以在高压条件下操作。在一个或多个实施方案中,重整器可以在低于 300psig的重整器操作压力下操作,例如100-600psig、或200-400psig、或200-240psig、或150_275psig、或 150_250psig、或 150_225psig。
重整器可以在低于900°C、或低于875 °C、或低于850°C、或500-825 V、或 600-825°C的温度下操作。在一些情况下,本发明的实施方案能够在更低的重整器温度下操作。
较低的重整器温度(即低于900°C的温度)可以导致例如较低的公用工程需求、较低的结构材料成本(至少部分由于减小了工艺设备的腐蚀和应力)、更有利的水煤气变换平衡和重整产物中氢浓度的增加。
重整器在蒸汽重整条件下操作,所述条件由基本不向重整器原料中加入氧而定义。不同的重整工艺如自热重整或催化部分氧化要求加入氧以在重整器中燃烧组分来提供热量。蒸汽重整过程不加入氧或至少不加入大量的氧。可以向蒸汽重整过程中加入少量氧, 但这不是优选的。蒸汽重整条件可以按如下定义,其中所加入的氧(或空气)的量低于总重整器原料的2%,优选低于总重整器原料的1%,和更优选低于总重整器原料物流的O. 5%。 最优选的是不加入氧或至少基本不加入氧。
通过水煤气变换反应将一氧化碳(CO)转化为二氧化碳(CO2)可以产生更多的氢。 因此,重整产物可以任选输送至水煤气变换反应区,在其中通过使工艺物流(如重整产物) 中存在的 一氧化碳与蒸汽在水煤气变换反应中反应形成氢浓度比重整产物氢浓度更高的水煤气变换产物物流,从而使所述工艺物流进一步富集氢。
水煤气变换反应区可以包括能够转化一氧化碳为氢的任何反应器(或反应器组合)。例如,所述反应器可以包括固定床催化反应器。水煤气变换反应器包含水煤气变换催化剂。水煤气变换催化剂可以包括能够促进水煤气变换反应的任何催化剂。例如,水煤气变换催化剂可以包括氧化铝、氧化铬、铁、铜、锌、它们的氧化物或它们的组合。在一个或多个实施方案中,所述水煤气变换催化剂包括由BASF Corp.Sud Chemie或Haldor Topsoe 商购的催化剂。
水煤气变换反应通常在驱动重整反应所需要的温度下达到平衡(因此阻碍由一氧化碳制氢)。因此,水煤气变换反应器通常在比重整器操作温度低的操作温度下操作 (例如至少低50°C、或至少低75°C、或至少低10(TC )。例如,水煤气变换反应可以在约 200-500°C或250-约475°C或275-约450°C的温度下发生。
在一个或多个实施方案中,水煤气变换反应在多级中操作。例如,所述多级可以包括第一级和第二级。
通常,第一级的操作温度比第二级高(例如第一级为高温变换,而第二级为低温变换)。在一个或多个实施方案中,第一级可以在350-500°C、或360-480°C、或375-450°C 的温度下操作。第二级可以在200-325°C、或215-315°C、或225-300°C的温度下操作。设想的是在单个反应容器中或在多个反应容器中实施所述多级反应。
氢气可以在不经进一步反应或纯化的条件下直接用于多种用途,例如石油化工过程。因为整个系统在高压下操作,所产生的氢已经处于高压下。针对这种用途的目的,高压可以定义为低于 600psig、100-400psig、或 200-400psig、或 200-275psig、或 150_300psig、 或150-250psig、或150-225psig的压力。在其它常规的乙醇重整过程中,在低压或常压重整步骤中产生的氢必须在压缩机中加压,所述压缩机为投资成本并会产生大的操作和维修成本。
重整过程还可以包括氢的纯化。纯化方法可以包括分离,如从重整产物或水煤气变换产物物流中分离氢,以形成纯化的氢物流。例如,分离过程可以包括吸附,如变压吸附过程,其形成纯化的氢物流和尾气。替代地,分离过程可以包括膜分离,以形成纯化的氢物流和富二氧化碳物流。一个或多个实施方案包括吸附和膜分离两者。
例如,纯化的氢物流可以包含相对于纯化氢物流的重量计至少95vol%、或至少 98vol%、或至少99vol%的氢。
所述系统优选尽可能地进行热整合。在加入到重整器之前将重整器原料物流加热。另外,在进行随后的过程之前,产物物流(如重整产物、水煤气变换产物物流或它们的组合)可能需要激冷(例如降低温度)。通常,重整过程已经包括每股工艺物流(如重整器原料物流和产物物流)与外部提供的换热流体(如在换热器内)进行换热,从而控制其温度(按需加热或冷却),由此增大了整个重整系统的尺寸和重量。
但在本发明的一个或多个具体实施方案中,所述方法包括使一个或多个工艺物流与另一工艺物流(而不是外部换热流体)接触而在其间进行换热。例如,一个或多个实施方案包括在引入重整器之前使重整器原料物流与重整产物接触,以将热从重整产物传递给重整器原料物流(由此加热重整器原料物流和冷却重整产物)。所述方法可以包括在引入重整器之前使重整器原料物流与水煤气变换产物物流接触。设想的是当所述方法的换热要求至少部分可以被方法中原料物流和产物物流之间的换热接触替代时,所需的一部分换热可以通过与外部供给的换热流体接触实现。
在另一个实施方案中,所需热量可以通过燃烧上述生物质发酵过程的副产物和/ 或固体提供。
一个或多个具体实施方案包括通过顺序与越来越热的产物物流接触而顺序加热所述重整 器原料物流。例如,一个或多个具体实施方案包括与水煤气变换产物物流的换热接触,例如与第一级水煤气变换产物物流、第二水煤气变换产物物流或它们的组合的换热接触,随后与重整产物换热接触,如前面所述。
换热接触可以通过使重整器原料物流与产物物流逆流流过换热器进行。在一个或多个实施方案中,所述原料物流与产物物流逆流流过。
除了加热重整器原料物流外,所述换热接触在不需要引入外部热源或冷源的条件下降低了重整产物的温度。但当在部分方法内应用外部换热流体时,设想的是与只采用外部提供的换热流体的常规方法相比,应用外部换热流体的换热器将会较小并且需要较少的功率,这是由于外部提供的换热流体与需要换热的工艺物流间的温差减小。
正如以上所讨论的,重整器通常用外部热源加热。但本发明的一个或多个实施方案应用工艺物流作重整器热源。例如,一个或多个具体实施方案应用尾气至少部分加热重整器。例如,尾气可以用作燃烧炉的燃料,所述燃烧炉产生加热重整器的热烟道气。进一步设想的是在通过燃烧炉直接加热重整器之前,所述尾气可以通过与换热流体换热接触而进一步加热。替代地,一个或多个具体实施方案应用发酵过程的副产物作为燃烧炉的燃料,所述燃烧炉产生加热重整器的热烟道气。
另外,正如以上所讨论的,蒸汽重整过程包括向重整器引入蒸汽。通常,从外部来源向重整过程提供蒸汽。但在本发明中,蒸汽已经存在,和它的含量通过精馏或闪蒸条件来调节,以符合重整器的浓度要求。本发明的一个或多个实施方案包括应用一个或多个换热器产生的冷凝液作为重整器的蒸汽。虽然冷凝液通常为蒸气形式,但设想的是当提供给重整器时冷凝液可以为液体,由此在引入重整器之前需要气化。将冷凝液用作至少一部分所需要的蒸汽将会使外部供水需求最小化,从而减小了整个过程的耗水量。
在一个或多个实施方案中,可以捕集在发酵过程和/或氢形成过程中产生的CO2, 并用于高压注入用途例如油采收中。这种用途强化了油和气采收过程,同时最小化了碳对环境的影响(二氧化碳转化为地球内的非挥发性组分)。
进一步设想的是发酵步骤形成的CO2可以与由水煤气变换反应器流出物回收的 CO2组合,并进行压缩和隔离,因此防止它们排放入大气。
实施例
实施例1
该实施例验证了本发明实施方案的模拟结果。下面和表I中提供的细节给出了 ASPENPluS 模拟结果,其中由发酵过程产生的乙醇通过简单蒸馏步骤和然后在蒸汽重整条件下进入重整器。该实施例参照图1进行描述。图1描述了所述方法的主要步骤,但不是包括对所述方法来说可能必须的所有设备、阀门和管道的完整图。
在图1中,方框10代表生物质预处理步骤。这一步骤的细节取决于进料至所述方法的生物质的类型。方框12代表预处理后生物质的糖化和发酵。这些可以在任意个步骤中和按本领域普通技术人员已知的任何方法来实施。在方框14中,固体经管线82分离,而包含乙醇和水的混合物经管线46输送至泵16。混合物被泵送至塔18,在其中将一部分水分离并输送通过管线66。已经在这种用途中描述过塔18,但其优选为简单精馏塔。
经管线50将剩余的乙醇/水蒸气混合物输送至重整器20,在其中发生高压重整。 重整器产物经管线52输送至水煤气变换反应区22。水煤气变换反应区可以包括在不同温度下操作的多个反应器。反应区22优选包括至少一个高温水煤气变换反应器 和一个低温水煤气变换反应器。水煤气变换产物经管线54输送至二氧化碳脱除步骤24。从所述过程分离的二氧化碳可以如上所述进行隔离。
然后将分离产物送至PSA(变压吸附)系统,在其中经氢产物管线58从所述过程中脱除氢。尾气经管线60输送至燃烧炉28。尾气与经管线70进料的空气及任选经管线 72进料的天然气一起在燃烧炉中燃烧为重整器提供热量。管线62中的热烟道气可以用于为塔18提供热量。表I提供了本实施例中描述的实施方案的ASPENPluS :模拟过程中计算的工艺信息。
权利要求
1.一种制氢方法,其包括
2.通过生物质发酵过程产生包含5-15%乙醇的含水原料物流;
3.从所述原料物流中分离至少一部分水从而使乙醇的浓度为15-35%,以产生重整器原料物流;和
4.在重整器中在蒸汽重整条件下使重整器原料物流与催化剂接触,以产生包含氢的重整器产物,其中基本不向重整器中加入氧。
5.权利要求1的方法,其中在步骤(b)中乙醇的浓度为20-35%。
6.权利要求1的方法,其中在步骤(b)中乙醇的浓度为25-30%。
7.权利要求1-3任一项的方法,其中不向重整器中加入氧。
8.权利要求1-4任一项的方法,还包括为重整器提供热量的燃烧炉,其中燃烧炉的烟道气和/或热的重整器产物物流为步骤(b)的分离提供热量。
9.权利要求5的方法,其中在步骤(a)中产生的生物质废料被用作燃烧炉的燃料。
10.权利要求5-6任一项的方法,其中在步骤(a)中产生的生物气体用作燃料炉的燃料。
11.权利要求1-7任一项的方法,还包括使重整器产物物流通过一个或多个水煤气变换反应区,以产生二氧化碳和更多氢。
12.权利要求8的方法,其中使水煤气变换反应产生的二氧化碳与步骤(a)中产生的二氧化碳组合。
13.权利要求9的方法,还包括处理一个或多个二氧化碳物流以脱除杂质。
14.权利要求8-10任一项的方法,其中不将二氧化碳排放至大气。
15.权利要求1-11任一项的方法,其中将烃与重整器原料物流一起进料至步骤(C)。
16.权利要求12的方法,其中所述烃为具有1-8个碳原子的化合物。
17.权利要求12-13任一顶的方法,其中所述烃选自甲烷、乙烷、丙烷和丁烷。
18.权利要求12-14任一项的方法,其中所述烃包括生物气体。
19.权利要求1-15任一项的方法,其中在100-400psi的压力下实施步骤(C)。
全文摘要
本发明描述了一种制氢方法,其包括通过生物质发酵过程产生含5-15wt%乙醇的含水原料物流;从所述原料物流中分离至少一部分水从而使所得重整器原料物流中乙醇的浓度为15-35wt%;和在重整器中在蒸汽重整条件下使重整器原料物流与催化剂接触,以产生包含氢的重整器产物物流,其中基本不向重整器中加入氧。
文档编号C01B3/50GK103025651SQ201180013845
公开日2013年4月3日 申请日期2011年3月14日 优先权日2010年3月16日
发明者郭常杰, M·V·耶尔 申请人:国际壳牌研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1