一种用于宽色域背光显示红光发射玻璃陶瓷及其制备技术的制作方法

文档序号:11222740阅读:932来源:国知局
一种用于宽色域背光显示红光发射玻璃陶瓷及其制备技术的制造方法与工艺

本发明涉及固体发光材料领域,尤其是涉及一种用于宽色域背光显示的红光发射玻璃陶瓷及其制备技术。



背景技术:

在液晶显示(lcd)领域,高亮度、小体积、低能耗、无汞是大势所趋,这也推动着背光源的更新换代——荧光转换型白光led逐渐替代传统的冷阴极荧光灯。

当前的lcd技术对图像质量和色彩饱和度有着严苛的要求,其色域应足够宽以反映出大自然中各种丰富的色彩。色域的宽度取决于背光源的光谱以及相应的红绿蓝三色滤光片(背光源光谱谱形应尽量窄,且其波长需与滤波片的最大透过区域相匹配)。由于缺少足够的红光成分,且较宽的谱形无法匹配商用滤波片,传统基于“ingan蓝光芯片+yag:ce3+黄色荧光粉”方案的白光led不能满足lcd对背光源光谱质量的苛刻要求,其在cie1931色度空间中的色域仅为~68%ntsc。近年来,研究者更倾向于采用“蓝光芯片+绿色/红色荧光粉”的方案,其中,人们采用“ingan蓝光芯片+β-sialon:eu2+绿粉+caalsin3:eu2+红粉”,已成功将白光led基背光源的色域拓宽至~82%ntsc。β-sialon:eu2+绿粉的带宽窄,量子效率高,是理想的背光源用荧光粉,然而,caalsin3:eu2+的半峰宽高达~90纳米,且其红光发射大部分位于人眼不敏感的区域,caalsin3:eu2+红粉与β-sialon:eu2+绿粉的光谱重叠也比较大,光子重吸收作用强,因而并不能满足宽色域lcd的要求。显然,开发出一种窄带、高效红色荧光粉取代caalsin3:eu2+将有望进一步改善led基lcd的性能。

另一方面,荧光粉封装材料的可靠性一直是白光led领域所关注的焦点。传统有机硅胶在大功率蓝光芯片的长时间辐照下易发生老化和黄化,造成白光led的光衰和色漂移,从而大幅降低了器件使用寿命。近年来,全无机的玻璃陶瓷作为封装材料引起人们广泛关注,它们是一类在无机玻璃基体中均匀分布纳米/微米晶的复合材料。玻璃基体赋予了材料优异的力学和热/化学稳定性,而稀土掺杂的纳/微米晶颗粒则作为光功能单元。因而,若能在玻璃基质中析出具有窄带、高效红光发射的荧光微晶,并将合成的红光发射玻璃陶瓷应用于白光led背光源,将具有十分显著的应用价值,有望推动液晶显示产业的快速发展。

本发明提出一种用于宽色域背光显示的红光发射玻璃陶瓷及其制备方法,在蓝光激发下该材料发射明亮红光,其量子效率高达95%。将β-sialon:eu2+绿粉旋涂于红光发射透明玻璃陶瓷表面,并将之与蓝光芯片耦合,经过标准商用红绿蓝三色滤光片滤光后,其在cie1931色度空间中的最大色域高达90%ntsc。



技术实现要素:

本发明涉及一种含k2xf7:mn4+(x=nb或ta)晶相的红光发射玻璃陶瓷及其制备技术,目的在于发展出可应用于宽色域液晶背光显示的长寿命荧光转换体。

本发明中还提供了上述红光发射透明玻璃陶瓷的制备方法,即通过合理设计前驱玻璃组分,并采用熔体急冷技术制备出前驱玻璃,随后通过晶化热处理,形成镶嵌k2xf7:mn4+(x=nb或ta)微晶的透明玻璃陶瓷。在热处理过程中,mn离子进入晶相并占据nb或ta格位,成为产生高效红光发射的主发射离子。通过调节玻璃组分,可优化材料的红光发射特性。该材料可被蓝光高效激发,其主激发波长位于465纳米,产生中心波长位于628纳米的红光窄带发射,其半峰宽仅为~3纳米,荧光量子效率达到95%。

一种高效窄带红光发射透明玻璃陶瓷的制备方法,包括以下步骤:

前驱玻璃基体的设计,该玻璃基体组分含量如下:

20-60mol%sio2;20-45mol%al2o3;0-15mol%nbf5;0-15mol%taf5;

5-15mol%kf;0-20mol%k2co3;0.1-2.0mol%k2mnf6;

上述组分的摩尔总量为100mol%。

根据本发明,各组分的优选含量如下:

sio2优选为30-50mol%,更优选为40-45mol%;

al2o3优选为25-40mol%,更优选为30-35mol%;

nbf5优选为2-10mol%,更优选为5-10mol%;

taf5优选为2-10mol%,更优选为5-10mol%;

kf优选为5-8mol%;

k2co3优选为2-18mol%,更优选为5-10mol%;

k2mnf6优选为0.5-1.5mol%,更优选1.0mol%;

(2)将sio2、al2o3、nbf5、taf5、kf、k2co3、k2mnf6等粉体原料按照一定组分配比称量,在玛瑙球磨罐中混合并充分研磨均匀后置于坩埚中,加热、并保温一段时间使之熔融,而后,将熔融液体迅速倒入模具中成形得到块状透明前驱玻璃,最后,将获得的前驱玻璃放入电阻炉中退火以消除内应力,随炉冷却后,切成块状;

(3)将获得的块状前驱玻璃进一步放入电阻炉中以确定升温速率加热到一定温度,保温一段时间使之发生晶化,获得块状透明玻璃陶瓷。

根据本发明,步骤(2)中,在电阻炉中加热到1000~1600℃,优选1300-1500℃。保温1-5小时,优选2-4小时使粉体原料熔融。

根据本发明,步骤(2)中,将玻璃熔体取出并快速倒入模具中成形,得到块状前驱玻璃。

根据本发明,在步骤(2)中,退火温度为450-600℃。

根据本发明,步骤(3)中,在升温过程中,控制升温速率为1-10℃/min,优选2-5℃/min。

根据本发明,步骤(3)中,在电阻炉中加热到650-900℃,优选700-800℃。保温1-12小时,优选4-8小时,使前驱玻璃发生部分晶化,获得块状透明玻璃陶瓷。

根据本发明,所述制备方法具体包括如下步骤:

(1)将sio2、al2o3、nbf5、taf5、kf、k2co3、k2mnf6等粉体原料按照一定组分配比称量,在玛瑙球磨罐中混合并研磨均匀后置于坩埚中,放入电阻炉中加热至1300-1500℃,保温2-4小时使之熔融,而后,将玻璃熔体取出并快速倒入模具中成形得到块状前驱玻璃,最后,将获得的前驱玻璃放入电阻炉中在450-600℃退火以消除内应力;

(2)将获得的前驱玻璃再次放入电阻炉中以2-5℃/min升温速度加热到700-800℃,保温4-8小时,使之发生部分晶化,获得块状微晶玻璃。

本发明中,采用以上材料组分和制备工艺,可以获得在玻璃基体中均匀镶嵌k2xf7:mn4+(x=nb或ta)微晶的透明玻璃陶瓷。在465纳米蓝光激发下,该材料发出明亮的红光。

本发明还涉及一种玻璃陶瓷的应用,其特征在于,所述玻璃陶瓷作为荧光转换材料用于宽色域lcd。

根据本发明,将β-sialon:eu2+绿粉旋涂于所述红光发射透明玻璃陶瓷表面,并将之与蓝光芯片耦合,经过标准商用红绿蓝三色滤光片滤光,构建出led背光源原型器件,经计算,其在cie1931色度空间中的最大色域高达90%ntsc。

附图说明

图1是实例1中红光玻璃陶瓷样品的x射线衍射图;

图2是实例1中红光玻璃陶瓷样品的激发和发射光谱;

图3是实例1中红光玻璃陶瓷样品的量子效率测试曲线;

图4是实例1中红光玻璃陶瓷样品在cie1931色度空间中的色域。

具体实施方式

实例1:将分析纯sio2、al2o3、nbf5、kf、k2co3、k2mnf7粉体,按40sio2:30al2o3:9nbf5:10b2o3:5kf:5k2co3:1k2mnf6(摩尔比)的配比精确称量后置于玛瑙球磨罐中,混合并研磨均匀后置于铂金坩埚中,放入电阻炉中加热到1450℃后保温1小时使之熔融,而后,将玻璃熔体取出并快速倒入模具中成形,得到块状前驱玻璃,最后,将获得的前驱玻璃放入电阻炉中在550℃退火以消除内应力;将获得的前驱玻璃再次放入电阻炉中加热到750℃后保温6小时使之发生部分晶化,获得块状透明玻璃陶瓷。

x射线衍射数据表明在玻璃基体中析出了k2nbf7微晶相(如图1所示)。样品经过表面抛光,用fls920荧光光谱仪测量其室温激发和发射(如图2所示)。在监测mn4+离子628纳米发射的激发谱上,探测到对应于mn4+4a2g→4t2g跃迁的蓝光波段(中心波长位于465纳米)的激发带;在465纳米激发的发射谱上,出现对应于mn4+2eg→4a2g跃迁的强的红光发射(中心波长为628纳米),其半峰宽仅为~3纳米,其荧光量子效率为95%(如图3所示)。将β-sialon:eu2+绿粉旋涂于该红光发射透明玻璃陶瓷表面,并将之与蓝光芯片耦合,经过标准商用红绿蓝三色滤光片滤光,构建出led背光源原型器件,经计算,其在cie1931色度空间中的色域为90%ntsc(如图4所示)。

实例2:将分析纯sio2、al2o3、taf5、kf、k2co3、k2mnf6粉体,按35sio2:35al2o3:9.5taf5:10kf:10k2co3:0.5k2mnf6(摩尔比)的配比精确称量后置于玛瑙球磨罐中,混合并研磨均匀后置于铂金坩埚中,放入电阻炉中加热到1400℃后保温2小时使之熔融,而后,将玻璃熔体取出并快速倒入模具中成形,得到块状前驱玻璃,最后,将获得的前驱玻璃放入电阻炉中在600℃退火以消除内应力;将获得的前驱玻璃再次放入电阻炉中加热到700℃后保温1小时使之发生部分晶化,获得块状透明玻璃陶瓷。经测试,玻璃基体中析出k2taf7微晶,样品的荧光量子效率为93%。将β-sialon:eu2+绿粉旋涂于该红光发射透明玻璃陶瓷表面,并将之与蓝光芯片耦合,经过标准商用红绿蓝三色滤光片滤光,构建出led背光源原型器件,经计算,其在cie1931色度空间中的色域为87%ntsc。

实例3:将分析纯sio2、al2o3、nbf5、kf、k2mnf6粉体,按60sio2:20al2o3:3.5nbf5:15kf:1.5k2mnf6(摩尔比)的配比精确称量后置于玛瑙球磨罐中,混合并研磨均匀后置于铂金坩埚中,放入电阻炉中加热到1000℃后保温5小时使之熔融,而后,将玻璃熔体取出并快速倒入模具中成形,得到块状前驱玻璃,最后,将获得的前驱玻璃放入电阻炉中在450℃退火以消除内应力;将获得的前驱玻璃再次放入电阻炉中加热到800℃后保温8小时使之发生部分晶化,获得块状透明玻璃陶瓷。经测试,玻璃基体中析出k2nbf7微晶,样品的荧光量子效率为85%。将β-sialon:eu2+绿粉旋涂于该红光发射透明玻璃陶瓷表面,并将之与蓝光芯片耦合,经过标准商用红绿蓝三色滤光片滤光,构建出led背光源原型器件,经计算,其在cie1931色度空间中的色域为80%ntsc。

实例4:将分析纯sio2、al2o3、taf5、kf、k2co3、k2mnf6粉体,按20sio2:45al2o3:4.5taf5:10kf:20k2co3:0.5k2mnf6(摩尔比)的配比精确称量后置于玛瑙球磨罐中,混合并研磨均匀后置于铂金坩埚中,放入电阻炉中加热到1600℃后保温1小时使之熔融,而后,将玻璃熔体取出并快速倒入模具中成形,得到块状前驱玻璃,最后,将获得的前驱玻璃放入电阻炉中在600℃退火以消除内应力;将获得的前驱玻璃再次放入电阻炉中加热到900℃后保温1小时使之发生部分晶化,获得块状透明玻璃陶瓷。经测试,玻璃基体中析出k2taf7微晶,样品的荧光量子效率为80%。将β-sialon:eu2+绿粉旋涂于该红光发射透明玻璃陶瓷表面,并将之与蓝光芯片耦合,经过标准商用红绿蓝三色滤光片滤光,构建出led背光源原型器件,经计算,其在cie1931色度空间中的色域为75%ntsc。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1