一种增强金刚石热导率的方法与流程

文档序号:13027416阅读:957来源:国知局
一种增强金刚石热导率的方法与流程

本发明涉及一种增强金刚石导热性的方法并将其用于热沉领域。



背景技术:

由于现在器件的发展迅速,电子器件的频率与集成度越来越高,因此产热的集中性也越来越高,器件产热对于工作的稳定性不容忽视。因此,如何高效,快速的将热量导出,成为业界研究的重点。对于导热材料的要求,便愈发急迫。热导率(thermalconductivity)便是描述材料导热性能的关键参数,高热导率材料的制备,是电子器件前进路上必不可少的一环。

热沉材料分为三代,第一代为热导率较高的金属,如铜400w/(m·k),铝218w/(m·k),但是虽然铜和铝等热导率较高,也容易加工,但是他们的热膨胀系数较高,温度升高后会产生较大的热应力,为了降低铜的热膨胀系数,人们通常将其与钨,钼等复合,形成金属-金属复合材料,然而却增加了它的质量,此外,由于金属之间的浸润性问题,导致其气密性也不够好。

第二代热沉材料的热导率与铜相似,一般是一些复合材料,如碳纤维和铜,碳纤维和sic的复合材料等,碳材料逐渐出现在人们的视线之中,这种材料之间的复合使他们具有更平衡的性质,强度高,密度低,更加适用于工业。而第三代热沉材料便包括cvd金刚石薄膜在内的一系列碳材料和碳复合材料,这些材料通常具有极高的热导率,但是由于其制造工艺等的限制,极高热导率的金刚石制造尺寸较小,如今只能利用于电子行业等精密的设备中,而石墨材料已经被广泛使用,代表性的就是graftech公司的spreadershiled、panasonic公司的pgs产品等,这些产品均有着优异的导热性能,并且柔韧性好,在手机,电脑等电子设备中都会见到他们的身影。但是,金刚石热沉材料却仍未大规模使用,虽然其有着更好的机械性能与导热性能,但是由于制造工艺等的限制,无法大量制造使用。

目前已知材料在室温下,天然金刚石的热导率最高,为2200w/(m·k),约为铜的5倍,如此高的热导率完全可以满足器件的需求,但是天然金刚石产量低,价格高,不能大规模用于工业生产。人造金刚石便进入人们的视野,hpht法生产单晶金刚石颗粒小,无法利用为热扩散元件;而大尺寸的金刚石制备方法主要为cvd法,但是仍存在以下缺点:

1、形核面晶粒尺寸与生长面差别过大,两侧热导率差别过大;

2、厚度较薄,在使用过程中容易碎裂;

3、热导率存在瓶颈,当今条件下提高多晶金刚石的热导率一般是长时间生长并去除底面小晶粒金刚石为主要手段,此方法既浪费了大部分金刚石,又延长了生长工艺时间。



技术实现要素:

本发明目的是要在不去除金刚石材料的基础上解决现有cvd方法制备金刚石两面晶粒尺寸差别过大,厚度较薄以及热导率提高困难的问题,而提供一种提高多晶金刚石热导率的方法。

本发明增强金刚石热导率的方法按下列步骤实现:

一、对硅片进行切割,然后分别置于无水乙醇和去离子水中进行超声清洗,得到洁净的硅片基底;

二、对洁净的硅片基底进行打磨处理,在硅片表面建立辅助形核点,得到带有辅助形核点的硅片;

三、将带有辅助形核点的硅片放置于cvd装置中,真空度抽至10-4pa以下,通入生长气体氢气与甲烷,升温至750℃以上进行多晶生长,得到带有硅基底的多晶金刚石片;

四、利用hno3与hf混合溶液对带有硅基底的多晶金刚石片进行腐蚀,去掉硅基底,清洗后得到自支撑多晶金刚石片;

五、将骤四中得到的自支撑多晶金刚石片形核面向上,放置于cvd装置中,以与步骤三相同的生长方式与参数进行重复生长,得到增强热导率的多晶金刚石片。

本发明主要利用金刚石形核面的多晶金刚石晶粒尺寸来提高其热导率,其关键在于将金刚石形核面进行两次利用,向两个方向分别外延生长。

本发明高导热金刚石片的制备方法包含以下有益效果:

1、本发明制备得到的多晶金刚石膜双面形貌大致相同,无显著形貌与热导率的差异;

2、经过两次生长,提高了金刚石的厚度,能够达到毫米级金刚石,易于抛光;

3、得到的双层多晶金刚石相对于单次生长的多晶金刚石热导率有提升。

附图说明

图1为实施例一制备的多晶金刚石片激光拉曼光谱图,其中1代表面1,2代表面2;

图2为实施例一步骤三制备得到的多晶金刚石片(面1)的扫描电子显微图;

图3为实施例一步骤五制备得到的多晶金刚石片(面2)的扫描电子显微图;

图4为实施例一步骤五制备得到的多晶金刚石片的截面扫描电子显微图;

图5为实施例一制备的多晶金刚石片的xrd图,其中1代表面1,2代表面2;

图6为实施例一制备的多晶金刚石片的热导率测试图,其中■代表单层金刚石,●代表实施例得到的双层金刚石。

具体实施方式

具体实施方式一:本实施方式增强金刚石热导率的方法按下列步骤实现:

一、对硅片进行切割,然后分别置于无水乙醇和去离子水中进行超声清洗,得到洁净的硅片基底;

二、对洁净的硅片基底进行打磨处理,在硅片表面建立辅助形核点,得到带有辅助形核点的硅片;

三、将带有辅助形核点的硅片放置于cvd装置中,真空度抽至10-4pa以下,通入生长气体氢气与甲烷,升温至750℃以上进行多晶生长,得到带有硅基底的多晶金刚石片;

四、利用hno3与hf混合溶液对带有硅基底的多晶金刚石片进行腐蚀,去掉硅基底,清洗后得到自支撑多晶金刚石片;

五、将骤四中得到的自支撑多晶金刚石片形核面向上,放置于cvd装置中,以与步骤三相同的生长方式与参数进行重复生长,得到增强热导率的多晶金刚石片。

本实施方式增强金刚石热导率的方法能够制备出直径为1~4英寸的多晶金刚石片。步骤二对硅片基底进行打磨,在硅片表面产生微小划痕以建立辅助形核点从而进行后续气相沉积。并控制步骤三和步骤五中多晶生长的工艺条件相同。

具体实施方式二:本实施方式与具体实施方式一不同的是步骤一中硅片的厚度为0.5~1.5mm。其它步骤及参数与具体实施方式一相同。

具体实施方式三:本实施方式与具体实施方式一或二不同的是步骤一中硅片为圆片,圆硅片的直径为25~50mm。其它步骤及参数与具体实施方式一或二相同。

具体实施方式四:本实施方式与具体实施方式一至三之一不同的是步骤二采用纳米金刚石粉、金刚石悬浮液或金刚石研磨膏对硅片进行打磨处理,在硅片表面建立辅助形核点。其它步骤及参数与具体实施方式一至三之一相同。

具体实施方式五:本实施方式与具体实施方式一至五之一不同的是步骤三控制cvd装置中沉积室的气压为80~150mbar。其它步骤及参数与具体实施方式一至五之一相同。

具体实施方式六:本实施方式与具体实施方式一至五之一不同的是步骤三在750~1000℃下进行多晶生长。其它步骤及参数与具体实施方式一至五之一相同。

具体实施方式七:本实施方式与具体实施方式一至六之一不同的是步骤三调节氢气流量为80~200sccm,甲烷流量为2~30sccm,在750~1000℃下生长40~60h。其它步骤及参数与具体实施方式一至六之一相同。

具体实施方式八:本实施方式与具体实施方式七不同的是步骤三调节氢气流量为180sccm,甲烷流量为20sccm,在850℃下进行多晶生长。其它步骤及参数与具体实施方式七相同。

具体实施方式九:本实施方式与具体实施方式一至八之一不同的是步骤三得到的多晶金刚石片的厚度为50~500μm。其它步骤及参数与具体实施方式一至八之一相同。

具体实施方式十:本实施方式与具体实施方式一至九之一不同的是步骤四hno3与hf混合溶液中hno3与hf的体积比为1:1。其它步骤及参数与具体实施方式一至九之一相同。

实施例一:本实施例增强金刚石热导率的方法按下列步骤实现:

一、对厚度为1.5mm的硅片进行切割,然后分别依次置于无水乙醇和去离子水中以500w的功率进行超声清洗20min,得到洁净的硅片基底;

二、采用30nm粒度的纳米金刚石粉对硅片进行打磨处理,在硅片表面建立辅助形核点,清洗得到带有辅助形核点(微小划痕)的硅片;

三、将带有辅助形核点的硅片放置于cvd装置中,真空度抽至10-4pa,通入氢气与甲烷,调节氢气流量为180sccm,甲烷流量为20sccm,气压为160mbar,升温至850℃进行多晶生长50h,得到带有硅基底的多晶金刚石片(面1);

四、利用hno3与hf混合溶液(1:1)对带有硅基底的多晶金刚石片进行腐蚀,溶解去掉硅基底,清洗后得到自支撑多晶金刚石片;

五、将骤四中得到的自支撑多晶金刚石片形核面向上,放置于cvd装置中,以与步骤三相同的生长方式与参数进行重复生长,得到厚度为160μm的增强热导率的(双层)多晶金刚石片(面2)。

本实施例得到的多晶金刚石片利用激光拉曼光谱进行金刚石纯度的表征,如图1所示,由1332cm-1峰位半高宽可以看出此方法制备的多晶金刚石品质较高,且双面品质相似;利用扫描电子显微镜观测其形貌,如图2-4,可以看出双面金刚石晶粒尺寸相似,且结晶情况较好;通过xrd检测其结晶情况如图5,看出其双面结晶取向类似;利用激光闪射法进行测试热导率如图6,对比单面与双面生长金刚石热导率,可以看出热导率有了明显增高,该增强热导率的多晶金刚石片的热导率达到11w/(cm·k)。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1