一种柔性薄膜型热控涂层及其制备方法与流程

文档序号:20911561发布日期:2020-05-29 13:04阅读:300来源:国知局
一种柔性薄膜型热控涂层及其制备方法与流程

本发明涉及一种涂层技术领域,特别是涉及一种柔性薄膜型热控涂层及其制备方法。



背景技术:

被动热控涂层中能够满足长寿命、全反射要求,具有低吸收率(α)、低α/ε比的涂层,主要有玻璃型和薄膜型镀银(铝)二次表面镜。传统的二次表面镜有对红外线有较强吸收的透明基体、对光有很强反射的金属反射层和保护层以及防静电层组成。通过选用合适的金属底层和一定厚度的基体层,可得到符合要求的热控涂层。

玻璃型二次表面镜由于其本身刚性特点,很难粘贴在卫星等航天器的曲面位置,制约航天器曲面位置的热控性能。而柔性的薄膜型二次表面镜则可有效解决无法实施曲面粘贴的问题。但金属反射层与塑料薄膜柔性基底(例如聚酰亚胺薄膜、聚全氟乙丙烯薄膜)界面间作用力弱,导致膜层附着力差,极易造成热控涂层中膜层的脱落,热控涂层失效。



技术实现要素:

本发明的主要目的在于,提供一种新型结构的柔性薄膜型热控涂层及其制备方法,所要解决的技术问题是制约航天器曲面位置的热控性能,膜层附着力差,极易造成热控涂层中膜层的脱落,热控涂层失效。

本发明的目的及解决其技术问题是采用以下技术方案来实现的。依据本发明提出的一种柔性薄膜型热控涂层,包括:柔性薄膜基体、表面修饰层、缓冲层和种子层;

所述柔性薄膜基体包括相对的第一表面和第二表面;

在所述第一表面上依次层叠所述表面修饰层、所述缓冲层和所述种子层。

本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。

优选的,前述的柔性薄膜型热控涂层,其中所述表面修饰层为聚有机硅氧烷,厚度为0.1-20μm。

优选的,前述的柔性薄膜型热控涂层,其中所述缓冲层为氮化物或氧化物的涂层;

所述缓冲层的厚度为10-100nm。

优选的,前述的柔性薄膜型热控涂层,其中所述氮化物为si3n4、aln;

所述氧化物为biox、sno2、tio2、zno;

其中,1.4≤x≤1.7。

优选的,前述的柔性薄膜型热控涂层,其中所述种子层为金属或不完全氧化金属;

所述种子层的厚度为2-10nm。

优选的,前述的柔性薄膜型热控涂层,其中所述种子层采用nicr合金、al2/3o1-x、zno1-x或ti1/2o1-x;

其中,0.1﹤x≤1。

优选的,前述的柔性薄膜型热控涂层,其中还包括金属反射层和防氧化层,在所述种子层的相对于所述缓冲层的另一表面依次层叠所述金属反射层和所述防氧化层。

优选的,前述的柔性薄膜型热控涂层,其中所述的防氧化层为nicr。

优选的,前述的柔性薄膜型热控涂层,其中在所述玻璃基体的所述第二表面设有导电膜层。

本发明的目的及解决其技术问题还采用以下的技术方案来实现。依据本发明提出的一种上述柔性型热控涂层的制备方法,包括:

在柔性薄膜基体的第一表面上至少通过涂覆法、溅射法或蒸镀法中的一种方法依次沉积表面修饰层、缓冲层、种子层、金属反射层、防氧化层;

在柔性薄膜基体的第二表面上通过涂覆法、溅射法或蒸镀法沉积导电膜层。

借由上述技术方案,本发明柔性薄膜型热控涂层至少具有下列优点:

通过采用柔性薄膜型基体解决了曲面位置的涂层的粘贴的问题,通过增加表面修饰层、缓冲层和种子层增加了膜层附着力,解决了热控涂层中膜层脱落的问题,改善了热控涂层的效果。

上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。

附图说明

图1是本发明的实施例的柔性薄膜型热控涂层的结构的示意图。

具体实施方式

为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的柔性薄膜型热控涂层及其制备方法,其具体实施方式、结构、特征及其功效,详细说明如后。在下述说明中,不同的“一实施例”或“实施例”指的不一定是同一实施例。此外,一或多个实施例中的特定特征、结构、或特点可由任何合适形式组合。

如图1所示,本发明的一个实施例提出的一种柔性薄膜型热控涂层,其包括:柔性薄膜基体1、表面修饰层2、缓冲层3和种子层4;所述柔性薄膜基体1包括相对的第一表面11和第二表面12;在所述第一表面11上依次层叠所述表面修饰层2、所述缓冲层3和所述种子层4。

通过采用柔性薄膜型基体解决了曲面位置的涂层的粘贴的问题,通过增加表面修饰层、缓冲层和种子层增加了膜层附着力,解决了热控涂层中膜层脱落的问题,改善了热控涂层的效果。

作为优选方式,所述表面修饰层2为聚有机硅氧烷,厚度为0.1-20μm。

通过采用厚度为0.1-20μm的聚有机硅氧烷作为表面修饰层,提高了柔性薄膜基体与无机膜层的结合力,提高了有机无机材料粘接强度。

作为优选方式,所述缓冲层3为氮化物或氧化物的涂层;所述缓冲层3的厚度为10-100nm。

通过采用10-100nm厚度的氮化物或氧化物,并将其涂敷在柔性薄膜基体的第一表面上,提高了柔性薄膜基体与膜层的结合力,解决膨胀系数不匹配的问题,从而有效地减少了热控涂层中膜层脱落的发生。

作为一个实施例,所述氮化物为si3n4、aln;

提高了缓冲层与玻璃表面的结合力,节省了材料成本。

作为一个实施例,所述氧化物为biox、sno2、tio2、zno;其中,1.4≤x≤1.7。

提高了缓冲层与玻璃表面的结合力,节省了材料成本。

作为优选方式,所述种子层4为金属或不完全氧化金属;所述种子层4的厚度为2-10nm。

采用2-10nm厚度的金属或不完全氧化金属作为种子层,一方面提高了膜层间的结合力,另一方面提高了银膜或铝膜的膜层平整度,有利于铝或者银膜的结晶有序性,减少晶体缺陷造成的散射,从而提高反射率。

作为优选方式,所述种子层4采用nicr合金、al2/3o1-x、zno1-x或ti1/2o1-x;其中,0.1﹤x≤1。

优选形成种子层的上述材料,均为金属或欠氧氧化物,易成膜,不易形成岛状结构,与ag,al等金属反射层、缓冲层材料结合性能好。

作为优选方式,所述柔性薄膜型热控涂层还包括金属反射层5和防氧化层6,在所述种子层4的相对于所述缓冲层3的另一表面依次层叠所述金属反射层5和所述防氧化层6。

通过在柔性薄膜基体、表面修饰层、缓冲层和种子层的基础上继续形成金属反射层和防氧化层,构成了完整的柔性薄膜型二次表面镜热控涂层,有效地解决了涂层由于柔性薄膜基体与金属反射层膨胀系数不匹配的问题,减少了热控涂层中膜层脱落的发生,改善了热控涂层的效果。

作为优选方式,所述的防氧化层6为nicr。

采用nicr形成防氧化层易成膜,不易形成岛状结构,并且与ag,al等金属反射层结合性能好。

作为优选方式,在所述柔性薄膜基体1的所述第二表面12设有导电膜层7。

通过在第二表面设置导电膜层满足了玻璃型二次表面镜热控涂层对导电性的要求。

本发明的另一实施例提出一种上述柔性型热控涂层的制备方法,包括:

在柔性薄膜基体1的第一表面11上至少通过涂覆法、溅射法或蒸镀法中的一种方法依次沉积表面修饰层2、缓冲层3、种子层4、金属反射层5、防氧化层6;在柔性薄膜基体1的第二表面12上通过涂覆法、溅射法或蒸镀法沉积导电膜层7。

以下以具体实施例说明上述玻璃型热控涂层的制备方法。

实施例一

本发明提供了一种薄膜型二次表面镜热控涂层,其结构为0.2mm厚的柔性薄膜基体采用聚酰亚胺,2μm厚的表面修饰层采用聚有机硅氧烷作为,20nm厚的缓冲层采用si3n4,2nm厚的种子层采用nicr,200nm厚的金属反射层采用ag,500nm厚的防氧化层采用nicr制成。

上述涂层制备方法,包括以下步骤:

(1)将有机硅氧烷涂覆在市购的0.2mm聚酰亚胺薄膜表面,涂层厚度为2μm室温放置2h,然后放入烘箱120℃固化1h,获得表面修饰层。

(2)在表面修饰层的表面将硅靶材为镀膜材料制备氮化硅(si3n4)薄膜,设定磁控溅射的功率为200w功率,ar流量为20sccm,n2流量为20sccm,工作气压为0.4pa,溅射时间为200s,获得缓冲层;

(3)在缓冲层的表面利用nicr靶材制备种子层,设定磁控溅射的功率为200w功率,ar流量为20sccm,工作气压为0.4pa,溅射时间为20s,获得种子层;

(4)在种子层的表面利用金属银靶材制备金属发射层,设定磁控溅射的功率为200w功率,ar流量为20sccm,工作气压为0.4pa,溅射时间为2000s,获得金属发射层;

(5)在金属反射层的表面利用金属nicr靶材制备防氧化层,设定磁控溅射的功率为200w功率,ar流量为20sccm,工作气压为0.4pa,溅射时间为5000s,获得防氧化层;

(6)以氧化铟锡靶材为镀膜材料制备ito薄膜,设定磁控溅射的功率为200w功率,ar流量为20sccm,o2流量为1.0sccm,工作气压为0.4pa,溅射时间为200s,获得导电膜层。

实施例二

本发明提供了一种薄膜型二次表面镜热控涂层,其结构为0.2mm厚的柔性薄膜基体采用聚全氟乙丙烯,2μm厚的表面修饰层采用聚有机硅氧烷,20nm厚的缓冲层采用tio2,2nm厚的种子层采用ti,200nm厚的金属反射层采用ag,200nm厚的防氧化层采用ti1/2o1-x制成。

上述涂层制备方法,包括以下步骤:

(1)在市购的2mm石英玻璃表面以二氧化钛颗粒为镀膜材料制备二氧化钛(tio2)薄膜,镀膜背景真空2×10-4pa,采用定流量模式设置补充氧流量为10sccm,结合离子源辅助沉积,蒸发速率0.2nm/s,镀膜时间100s,获得缓冲层tio2;

(2)在缓冲层的表面利用金属钛为镀膜材料制备种子层,镀膜背景真空2×10-4pa,采用定真空模式,工作气压2×10-4pa,蒸发速率0.1nm/s,镀膜时间20s,获得种子层ti;

(3)在种子层的表面利用金属银为镀膜材料制备金属发射层,镀膜背景真空2×10-4pa,采用定真空模式,工作气压2×10-4pa,蒸发速率1nm/s,镀膜时间200s,获得金属发射层ag;

(4)在金属反射层的表面利用二氧化钛为镀膜材料制备防氧化层,镀膜背景真空2×10-4pa,采用定流量模式设置补充氧流量为4sccm,结合离子源辅助沉积,蒸发速率0.4nm/s,镀膜时间500s,获得防氧化层ti1/2o1-x。

(5)以氧化铟锡靶材为镀膜材料制备ito薄膜,设定磁控溅射的功率为200w功率,ar流量为20sccm,o2流量为1.0sccm,工作气压为0.4pa,溅射时间为200s,获得导电膜层。

以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1