用于等离子体环境中的腔室部件的氧化钇-二氧化锆耐蚀材料的制作方法

文档序号:18701049发布日期:2019-09-17 22:53阅读:232来源:国知局
用于等离子体环境中的腔室部件的氧化钇-二氧化锆耐蚀材料的制作方法
本公开内容的实施方式总的来说涉及由y2o3和zro2组成的耐蚀陶瓷材料,并且具体地涉及由这种耐蚀陶瓷材料制成的腔室部件。
背景技术
:在半导体工业中,通过许多制造工艺制造器件,以产生大小不断减小的结构。一些制造工艺(诸如等离子体蚀刻工艺和等离子体清洁工艺)将基板暴露于高速等离子体流以蚀刻或清洁基板。等离子体可能是高度腐蚀性的,并且可能腐蚀处理腔室和暴露于等离子体的其它表面。技术实现要素:在一个实施方式中,一种用于处理腔室(例如,用于半导体处理腔室)的腔室部件包括陶瓷主体,所述陶瓷主体由基本上由y2o3-zro2组成的烧结陶瓷材料组成,其中所述陶瓷材料基本上由55摩尔%-65摩尔%的y2o3和35摩尔%-45摩尔%的zro2组成。在一个实施方式中,一种用于处理腔室的腔室部件包括主体和所述主体上的陶瓷涂层。所述主体包括烧结陶瓷材料或金属中的至少一种。所述陶瓷涂层基本上由y2o3-zro2的一个或多个相组成,其中所述陶瓷涂层基本上由55摩尔%-65摩尔%的y2o3和35摩尔%-45摩尔%的zro2组成。在一个实施方式中,可以执行一种制造用于处理腔室的腔室部件的方法。所述方法包括将y2o3粉末与zro2粉末混合以形成y2o3-zro2粉末,所述y2o3-zro2粉末基本上由55摩尔%-65摩尔%的y2o3和35摩尔%-45摩尔%的zro2组成。所述方法进一步包括使用所述y2o3-zro2粉末执行冷等静压制以形成生坯主体。所述方法进一步包括将所述生坯主体形成为所述腔室部件的近似形状。所述方法进一步包括对所述生坯主体执行第一热处理以烧掉所述生坯主体中的有机接合剂。所述方法进一步包括随后在约1750℃-1900℃的温度下对所述生坯主体执行第二热处理以烧结所述生坯主体并产生基本上由y2o3-zro2的一个或多个相组成的烧结陶瓷主体,其中所述烧结陶瓷主体基本上由55摩尔%-65摩尔%的y2o3和35摩尔%-45摩尔%的zro2组成。所述方法进一步包括加工所述烧结陶瓷主体。所述方法进一步包括对所述烧结陶瓷主体执行纯化工艺以从所述烧结陶瓷主体去除痕量金属。附图简述在附图中,本公开内容以示例而非限制方式示出,其中相同的附图标记表示类似的元件。应注意,在本公开内容中不同地提及“一个(a)”或“一个(one)”实施方式不一定是提及相同的实施方式,并且这样的提及意味着至少一个实施方式。图1描绘了处理腔室的一个实施方式的截面图。图2描绘了静电吸盘组件的一个实施方式。图3a至图3b示出了根据各实施方式的加热器基板组件。图4a至图4b分别示出了根据各实施方式的工艺套件环的顶视图和底视图。图5a至图5b分别示出了根据各实施方式的用于处理腔室的盖的顶视图和底视图。图6a至图6b分别示出了根据各实施方式的用于处理腔室的喷嘴的顶视图和底视图。图7a至图7b分别示出了根据各实施方式的用于处理腔室的gdp的顶视图和底视图。图8是根据本公开内容的一个实施方式的示出制造固体烧结陶瓷制品的工艺的流程图。具体实施方式本公开内容的实施方式提供用于处理腔室的各种腔室部件,所述各种腔室部件由y2o3-zro2组成,所述y2o3-zro2包括55摩尔%-65摩尔%的y2o3和35摩尔%-45摩尔%的zro2。腔室部件可以是由y2o3-zro2组成的固体烧结陶瓷主体或包括由y2o3-zro2组成的固体烧结陶瓷主体,所述固体烧结陶瓷主体包括55摩尔%-65摩尔%的y2o3和35摩尔%-45摩尔%的zro2。可受益于使用所公开的固体烧结陶瓷主体的腔室部件的示例包括喷嘴、气体输送板、腔室门、环、盖、静电吸盘、加热器基板支撑件等。使用包括55摩尔%-65摩尔%的y2o3和35摩尔%-45摩尔%的zro2的y2o3-zro2形成腔室部件提供了优于由其它陶瓷材料组成的腔室部件的优势,包括优于一些应用中的由大约70摩尔%的y2o3和大约30摩尔%的zro2组成的腔室部件的优势。这些优势包括增加的硬度、增加的抗拉强度和/或增加的耐磨性。在本文中使用术语“热处理”来表示将升高的温度施加到陶瓷制品,诸如通过炉子将升高的温度施加到陶瓷制品。“耐等离子体材料”是指因暴露于等离子体处理条件而耐侵蚀和腐蚀的材料。等离子体处理条件包括由含卤素气体(诸如c2f6、sf6、sicl4、hbr、nf3、cf4、chf3、ch2f3、f、nf3、cl2、ccl4、bcl3和sif4等)以及其它气体(诸如o2或n2o)产生的等离子体。在所涂覆的部件的操作和暴露于等离子体的持续时间中,通过“蚀刻速率”(er)来测量材料对等离子体的耐受性,所述“蚀刻速率”(er)具有的单位可以是埃/分钟(/分钟)。也可以通过具有的单位为纳米/射频小时(nm/rfhr)的侵蚀速率来测量耐等离子体性,其中一个rfhr表示在等离子体处理条件中的一个小时的处理。可以在不同的处理时间之后进行测量。例如,可以在处理之前、在50个处理小时之后、在150个处理小时之后、在200个处理小时之后等进行测量。对于耐等离子体涂层材料而言,低于约100nm/rfhr的腐蚀速率是典型的。单一耐等离子体材料可以具有多个不同的耐等离子体性或侵蚀速率值。例如,耐等离子体材料可以具有与第一类型等离子体相关的第一耐等离子体性或侵蚀速率和与第二类型等离子体相关的第二耐等离子体性或侵蚀速率。当在本文中使用术语“约”和“大约”时,这些术语旨在表示所呈现的标称值精确到±10%内。在实施方式中,标称值也可以精确到+/-2%。在本文中参考腔室部件和安装在用于半导体制造的等离子体蚀刻器中的其它制品来描述一些实施方式。然而,应理解,这种等离子体蚀刻器也可以用于制造微机电系统(mems)器件。另外,本文描述的制品可以是暴露于等离子体或其它腐蚀性环境的其它结构。本文讨论的制品可以是用于诸如半导体处理腔室之类的处理腔室的腔室部件。参考由块状烧结陶瓷主体形成的腔室部件来在本文中讨论实施方式,并且提供关于这种块状烧结陶瓷主体的性质。然而,应注意,在一些实施方式中,腔室部件可以由与由y2o3-zro2的一个或多个相组成的所描述的陶瓷材料不同的金属和/或陶瓷组成,并且可以具有由陶瓷材料(所述陶瓷材料由具有55摩尔%-65摩尔%的y2o3和35摩尔%-45摩尔%的zro2的y2o3-zro2组成)组成的涂层。涂层可以经由溶胶-凝胶涂覆技术、热喷涂技术(诸如等离子体喷涂)、离子辅助沉积(iad)技术、物理气相沉积(pvd)技术、化学气相沉积(cvd)技术和/或原子层沉积(ald)技术来形成。因此,本文讨论的作为由y2o3-zro2组成的固体陶瓷制品的腔室部件可以替代性地是al2o3、aln、y2o3或用由y2o3-zro2组成的陶瓷材料的涂层涂覆的其它材料。涂层性质可与用于经由iad、pvd、cvd和/或ald形成的涂层的由y2o3-zro2的一个或多个相组成的陶瓷材料的块状烧结陶瓷性质相似。图1是具有一个或多个腔室部件的处理腔室100(例如,半导体处理腔室)的截面图,所述一个或多个腔室部件包括基本上由y2o3-zro2的一个或多个相组成的耐等离子体陶瓷材料,其中,根据本公开内容的实施方式,陶瓷材料基本上由55摩尔%-65摩尔%的y2o3和35摩尔%-45摩尔%的zro2组成。在进一步的实施方式中,陶瓷材料基本上由56摩尔%-65摩尔%的y2o3和35摩尔%-44摩尔%的zro2组成。在进一步的实施方式中,陶瓷材料基本上由57摩尔%-65摩尔%的y2o3和35摩尔%-43摩尔%的zro2组成。在进一步的实施方式中,陶瓷材料基本上由58摩尔%-65摩尔%的y2o3和35摩尔%-42摩尔%的zro2组成。在进一步的实施方式中,陶瓷材料基本上由59摩尔%-65摩尔%的y2o3和35摩尔%-41摩尔%的zro2组成。在进一步的实施方式中,陶瓷材料基本上由60摩尔%-65摩尔%的y2o3和35摩尔%-40摩尔%的zro2组成。在进一步的实施方式中,陶瓷材料基本上由55摩尔%-64摩尔%的y2o3和36摩尔%-45摩尔%的zro2组成。在进一步的实施方式中,陶瓷材料基本上由55摩尔%-63摩尔%的y2o3和37摩尔%-45摩尔%的zro2组成。在进一步的实施方式中,陶瓷材料基本上由55摩尔%-62摩尔%的y2o3和38摩尔%-45摩尔%的zro2组成。在进一步的实施方式中,陶瓷材料基本上由55摩尔%-61摩尔%的y2o3和39摩尔%-45摩尔%的zro2组成。在进一步的实施方式中,陶瓷材料基本上由55摩尔%-60摩尔%的y2o3和40摩尔%-45摩尔%的zro2组成。在进一步的实施方式中,陶瓷材料基本上由56摩尔%-64摩尔%的y2o3和36摩尔%-44摩尔%的zro2组成。在进一步的实施方式中,陶瓷材料基本上由57摩尔%摩尔%-63摩尔%的y2o3和37摩尔%-43摩尔%的zro2组成。在进一步的实施方式中,陶瓷材料基本上由58摩尔%-62摩尔%的y2o3和36摩尔%-42摩尔%的zro2组成。在进一步的实施方式中,陶瓷材料基本上由59摩尔%-61摩尔%的y2o3和39摩尔%-41摩尔%的zro2组成。在进一步的实施方式中,陶瓷材料基本上由约60摩尔%的y2o3和约40摩尔%的zro2组成。由y2o3-zro2陶瓷材料组成的烧结陶瓷主体可以具有约0.1%的孔隙率,其中孔隙率是孔隙体积分数。处理腔室100可以用于其中提供腐蚀性等离子体环境的工艺。例如,处理腔室100可以是用于等离子体蚀刻反应器(也被称为等离子体蚀刻器)、等离子体清洁器等的腔室。可包括由y2o3-zro2组成的陶瓷材料或基本上由y2o3-zro2组成的陶瓷材料形成的腔室部件的示例是盖132、喷嘴152、腔室门150、静电吸盘(esc)148的圆盘153、环(例如,工艺套件环或单环134)、气体分配板(未示出)、加热器基板支撑件(未示出)等。出于一个或多个原因,这些腔室部件中的每一个腔室部件可以受益于使用基本上由y2o3-zro2组成的陶瓷材料。例如,包括55摩尔%-60摩尔%的y2o3和40摩尔%-45摩尔%的zro2、56摩尔%-64摩尔%的y2o3和36摩尔%-44摩尔%的zro2、57摩尔%-63摩尔%的y2o3和37摩尔%-43摩尔%的zro2、58摩尔%-62摩尔%的y2o3和36-42摩尔%的zro2、59摩尔%-61摩尔%的y2o3和39摩尔%-41摩尔%的zro2或约60摩尔%的y2o3和约40摩尔%的zro2的y2o3-zro2陶瓷材料可以具有与其它陶瓷材料(包括含有大于65摩尔%的y2o3和小于35摩尔%的zro2的y2o3-zro2以及含有小于55摩尔%的y2o3和大于45摩尔%的zro2的y2o3-zro2)相比为最佳的或接近最佳的硬度、耐蚀性、耐介电击穿性和/或抗拉强度的组合。下面表1提供各种块状烧结陶瓷材料的性质,所述各种块状烧结陶瓷材料包括各种浓度下的y2o3和zro2的混合物。在所述表中,样品a包括100摩尔%的y2o3,样品b包括73.2摩尔%的y2o3和26.8摩尔%的zro2,样品c包括64.5摩尔%的y2o3和35.5摩尔%的zro2,样品d包括60.3摩尔%的y2o3和39.7摩尔%的zro2,并且样品e包括57.7摩尔%的y2o3和42.3摩尔%的zro2。如所示,使用60.3摩尔%的y2o3和39.7摩尔%的zro2实现了对于一些应用而言最佳的性质。例如,基本上由60.3摩尔%的y2o3和39.7摩尔%的zro2组成的陶瓷材料表现出被测试的组合物中的最高的平均抗弯强度、最高的维氏硬度和最高的断裂韧度,同时还表现出高弹性模量、高密度、约500v/密尔-600v/密尔的耐介电击穿性、耐等离子体腐蚀性。使用59摩尔%-61摩尔%的y2o3和39摩尔%-41摩尔%的zro2、58摩尔%-62摩尔%的y2o3和36摩尔%-42摩尔%的zro2、57摩尔%-63摩尔%的y2o3和37摩尔%-43摩尔%的zro2等也可以实现类似的期望性质,并且随着陶瓷材料的性质的组合对于应用而言变得不太合乎期望,陶瓷材料进一步偏离60.3摩尔%的y2o3和39.7摩尔%的zro2。抗热震能力(thermalshockresistivity)系数(r’)使用以下等式计算:表1:烧结陶瓷制品的性质在一个实施方式中,处理腔室100包括腔室主体102以及封闭了内部容积106的盖132。盖132可以包括大致在盖132的中心处的通孔,所述通孔接收喷嘴152。腔室主体102可以由铝、不锈钢或其它合适的材料制成。腔室主体102一般包括侧壁108和底部110。外衬垫116可以设置为邻近侧壁108以保护腔室主体102。外衬垫116可以是含卤素气体抗蚀剂材料,诸如al2o3或y2o3。排气口126可以被限定在腔室主体102中,并且可以将内部容积106耦接到泵系统128。泵系统128可以包括一个或多个泵以及用于抽空和调节处理腔室100的内部容积106的压力的节流阀。盖132可以被支撑在腔室主体102的侧壁108上和/或被支撑在腔室主体的顶部部分上。盖132可以为处理腔室100提供密封。在一些实施方式中,盖132可以打开以允许对处理腔室100的内部容积106的接取。气体面板158可以耦接到处理腔室100以通过喷嘴152中的气体输送孔向内部容积106提供工艺气体和/或清洁气体。可用于对处理腔室100中的基板进行处理的处理气体的示例包括含卤素气体(诸如c2f6、sf6、sicl4、hbr、nf3、cf4、chf3、ch2f3、f、cl2、ccl4、bcl3和sif4等)以及其它气体如o2或n2o。载气的示例包括n2、he、ar和对工艺气体而言是惰性的其它气体(例如,非反应性气体)。基板支撑组件(诸如静电吸盘148或加热器基板支撑件(未示出))设置在处理腔室100的内部容积106中位于盖132和喷嘴152的下方。静电吸盘148在处理期间保持基板144(例如,半导体晶片)。静电吸盘148可以在处理期间固定基板144,并且可以包括接合到导热(例如,金属)基底154(也被称为导热板)和/或一个或多个附加部件的静电圆盘153。导热基底154可以由al组成。在实施方式中,导热基底154的外壁包括阳极化层156(例如,al2o3阳极化层)。在实施方式中,环134(诸如工艺套件环)可以设置在静电吸盘上位于静电吸盘的外周边处。腔室主体102可以包括腔室主体102的侧壁中的空腔。在实施方式中,空腔可以由腔室门150覆盖。在处理和/或清洁期间,内部主体106可以填充有等离子体。空腔可能导致射频(rf)场的不均匀性,所述射频场被产生在腔室主体102中以加速等离子体。不均匀性可能导致电弧放电以及空腔处的等离子体强度的增加。腔室门150可以由基本上由含有55摩尔%-65摩尔%的y2o3和35摩尔%-45摩尔%的zro2的y2o3-zro2组成的陶瓷材料组成,其提供对内部容积106中的等离子体的高耐受性并且还具有高耐介电击穿性。高耐介电击穿性可以消除或减少rf场的任何不均匀性,并可以消除和/或抑制电弧放电。基本上由含有55摩尔%-65摩尔%的y2o3和35摩尔%-45摩尔%的zro2的y2o3-zro2组成的陶瓷材料也具有高抗弯强度,这减轻或消除了腔室门150的破损。基本上由含有55摩尔%-65摩尔%的y2o3和35摩尔%-45摩尔%的zro2的y2o3-zro2组成的陶瓷材料也具有高硬度,这减少了腔室门150上的磨损。在一个实施方式中,腔室门150是包括附接到陶瓷主体的金属部件的弯曲翻盖门,,其中金属部件包括铰链机构和/或附接到铰链机构。在一个实施方式中,腔室门具有约0.5英寸-1.5英寸的厚度、约3英寸-6英寸(例如,约4英寸-5英寸)的第一尺寸(例如,长度)和约8英寸-16英寸(例如,约10英寸-14英寸)的第二尺寸(例如,高度)。图2描绘了静电吸盘148的一个实施方式的分解图。静电吸盘148包括接合到导热基底154的静电圆盘153。静电圆盘153具有盘状形状,所述盘状形状具有可基本上匹配位于其上的基板144的形状和大小的环形周边。静电圆盘153可以包括一个或多个嵌入式加热元件和/或一个或多个嵌入式吸附电极。在一些实施方式中,加热元件可以被配置为将所支撑的基板加热至高达约350℃的温度。静电圆盘153可以另外包括在静电圆盘153的表面上的台面以及一个或多个气体输送孔,所述一个或多个气体输送孔用于在静电圆盘的表面与所支撑的基板的背侧之间输送导热气体(例如,he)。在一个实施方式中,静电圆盘166可以是由陶瓷材料制成的烧结陶瓷主体,所述陶瓷材料基本上由y2o3-zro2组成。在一些实施方式中,静电圆盘166可以具有0.04英寸-0.25英寸的厚度和7.85英寸-12.90英寸的直径。在一个实施方式中,静电圆盘153包括由陶瓷材料(所述陶瓷材料基本上由含有55摩尔%-65摩尔%的y2o3和35摩尔%-45摩尔%的zro2的y2o3-zro2组成)形成的第一陶瓷主体,所述第一陶瓷主体接合到第二陶瓷主体,所述第二陶瓷主体基本上由aln或al2o3组成。使用基本上由含有55摩尔%-65摩尔%的y2o3和35摩尔%-45摩尔%的zro2(例如,含有约60摩尔%的y2o3和约40摩尔%的zro2)的y2o3-zro2组成的陶瓷材料来提供静电圆盘153的耐介电击穿性、耐等离子体腐蚀性和硬度的最佳的或接近最佳的组合。对于库仑静电吸盘和约翰森-拉别克(johnsen-rahbek(jr))静电吸盘两者而言,耐介电击穿性和耐介电击穿能力可以是静电圆盘153的有用性质。另外,耐蚀性应当是高的,以最小化颗粒污染并最大化esc148的寿命。此外,静电圆盘153在使用期间与许多基板物理接触,这导致静电圆盘153上的磨损。在基板或晶片的处理期间,9.4gpa的高硬度使得其耐磨损(例如,由于所支撑的基板与静电圆盘153之间的热膨胀系数不匹配造成的相对运动导致的磨损)。基本上由含有约55摩尔%-65摩尔%的y2o3和约35摩尔%-45摩尔%的zro2的y2o3-zro2组成的陶瓷材料的高硬度使这种磨损最小化。附连在静电圆盘153下方的导热基底154可以具有盘状主体。在一些实施方式中,导热基底154可以由具有与上覆的静电圆盘153的热性质基本上匹配的热性质的材料制成。在一个实施方式中,导热基底154可以由诸如铝或不锈钢之类的金属或其它合适的材料制成。替代性地,导热基底154可以由陶瓷与金属材料的复合材料制成,这提供了良好的强度和耐久性以及传热性质。在一些实施方式中,复合材料可以具有与上覆的静电圆盘153基本上匹配的热膨胀系数,以减少热膨胀不匹配。在实施方式中,可通过硅树脂接合将导热基底154接合到静电圆盘153。在一些实施方式中,静电圆盘153由aln或al2o3的第一陶瓷主体形成。aln可以用于约翰森-拉别克静电吸盘,并且al2o3可以用于库仑静电吸盘。第一陶瓷主体可以包括嵌入所述第一陶瓷主体中的一个或多个吸附电极和/或一个或多个加热电极。由含有约55摩尔%-65摩尔%的y2o3和约35摩尔%-45摩尔%的zro2的y2o3-zro2形成的第二陶瓷主体(例如,薄晶片)可以通过扩散接合来被接合到第一陶瓷主体。可以使用约120℃-130℃的温度和高达约300磅/平方英寸(psi)的压力来执行扩散接合。对于第一陶瓷主体(aln或al2o3的第一陶瓷主体)和第二陶瓷主体(由含有约55摩尔%-65摩尔%的y2o3和约35摩尔%-45摩尔%的zro2的y2o3-zro2形成)之间的扩散接合,可以在第一陶瓷主体和第二陶瓷主体之间形成界面层。界面层可以由y、zr、al和o组成。图3a至图3b示出了根据各实施方式的加热器组件305。在一些实施方式中,加热器组件305可以被用作esc148的替代性基板支撑组件。加热器组件305包括扁平陶瓷加热器板310,所述扁平陶瓷加热器板310具有一个或多个嵌入式加热元件(未示出)。在一些实施方式中,陶瓷加热器板310可以具有0.3英寸-0.9英寸的厚度和7.9英寸-14.8英寸的直径。在实施方式中,陶瓷加热器板310可以包括在陶瓷加热器板310的上表面上的一个或多个台面。陶瓷加热器板310可以在处理期间支撑基板,并且可以被配置为将基板加热到高达约650℃的温度。可以将陶瓷加热器板310接合到漏斗形主体320,所述漏斗形主体320在漏斗形主体320的顶部处具有比在漏斗形主体320的底部处更大的内径和外径。在实施方式中,可以通过在超过1000℃(例如,高达1800℃)的温度和高达约800psi(例如,300psi-800psi)的压力下的扩散接合来产生陶瓷加热器板310与漏斗形主体320之间的接合。在实施方式中,漏斗形主体320可以由aln组成,并且可以是中空的以使漏斗形加热器板310与包含陶瓷加热器板310的腔室的其它部件之间的传热最小化。aln漏斗形主体320可以包括一个或多个更多的掺杂剂来控制导热系数。这种掺杂剂的示例包括钐、钇和镁。为了陶瓷加热器板310与漏斗形主体320之间的扩散接合,可以在陶瓷加热器板310与漏斗形主体之间形成界面层。界面层可以由y、zr、al和o组成。在一些实施方式中,陶瓷加热器板310耦接到附加陶瓷加热器板315。附加陶瓷加热器板315可以由aln组成。在一些实施方式中,陶瓷加热器板310不包括加热元件,并且加热元件替代地被包括在附加陶瓷加热器板315中。例如,陶瓷加热器板310可以通过扩散接合或通过螺栓被耦接到附加陶瓷加热器板315。在实施方式中,可以使用在超过1000℃(例如,高达1800℃)的温度和高达约800psi(例如,300psi-800psi)的压力下的扩散接合来产生扩散接合。附加陶瓷加热器板315可以被接合到漏斗形主体320,所述漏斗形主体320在漏斗形主体320的顶部处具有比在漏斗形主体320的底部处更大的内径和外径。在实施方式中,可以通过在超过1000℃(例如,高达1800℃)的温度和高达约800psi(例如,300psi-800psi)的压力下的扩散接合来产生附加陶瓷加热器板315与漏斗形主体320之间的接合。为了陶瓷加热器板310与附加陶瓷加热器板315之间的扩散接合,可以在陶瓷加热器板310与附加陶瓷加热器板315之间形成界面层。界面层可以由y、zr、al和o组成。陶瓷加热器310可以在高温(例如,高达约650℃)下暴露于基于氟的等离子体。氟可以在陶瓷加热器310的表面上形成,并与陶瓷加热器310中的诸如al之类的任何痕量金属反应(例如,以形成alf3)。alf3具有低蒸气压,并且因此可在高达约650℃的温度下蒸发或升华。然后,alf3可以在腔室中的其它腔室部件上冷凝,这导致处理过的基板的颗粒污染。因此,在实施方式中使用非常纯的并缺少al或痕量金属的y2o3-zro2陶瓷材料来防止氟化物累积在腔室部件上。由于陶瓷加热器310支撑基板(与静电吸盘148类似地),含有55摩尔%-65摩尔%的y2o3和35摩尔%-45摩尔%的zro2的y2o3-zro2陶瓷材料的组合物是最佳的或近似最佳的,因为所述组合物提供了最高的硬度、抗弯强度和断裂韧度以及高耐等离子体腐蚀性。图4a至图4b分别示出了根据各实施方式的工艺套件环405的顶视图和底视图。在实施方式中,工艺套件环405可对应于环134。工艺套件环405可以具有约0.5英寸-1.5英寸的厚度、约11英寸-15英寸(例如,约11.8英寸-14英寸)的内径(id)尺寸和约12英寸-16英寸的外径(od)尺寸。在实施方式中,工艺套件环405的顶部的外边缘可以是圆形的。在实施方式中,环的宽度(id与od之差)可以是约1英寸-2.5英寸。工艺套件环405可以接触所支撑的基板,并且因此可能因这种接触而经受磨损。另外,工艺套件环405具有相对大的直径且相对薄,并具有相对小的宽度。这些因素可能使工艺套件环405在处理和/或使用期间破裂。此外,工艺套件环405可在处理期间暴露于等离子体。因此,工艺套件环405受益于含有55摩尔%-65摩尔%的y2o3和35摩尔%-45摩尔%的zro2的y2o3-zro2陶瓷材料(例如,包括约60摩尔%的y2o3和约40摩尔%的zro2的y2o3-zro2陶瓷材料)表现出的耐等离子体性、硬度、抗弯强度和断裂韧度的组合。图5a至图5b分别示出了根据各实施方式的用于处理腔室的盖505的顶视图和底视图。在实施方式中,盖505可对应于盖132。在实施方式中,盖505可以具有约1英寸-2英寸的厚度和约19英寸-23英寸的直径。盖505可以接触可能具有不同的热膨胀系数的其它腔室部件,并且因此可能经受这种接触所造成的磨损。另外,盖505具有相对大的直径且相对薄。这些因素可能使盖505在处理和/或使用期间破裂。此外,盖505可以在处理期间暴露于等离子体。因此,盖505受益于含有55摩尔%-65摩尔%的y2o3和35摩尔%-45摩尔%的zro2的y2o3-zro2陶瓷材料(例如包括约60摩尔%的y2o3和约40摩尔%的zro2的y2o3-zro2陶瓷材料)表现出的耐等离子体性、硬度、抗弯强度和断裂韧度的组合。图6a至图6b分别示出了根据各实施方式的用于处理腔室的喷嘴605的顶视图和底视图。在实施方式中,喷嘴605可对应于喷嘴152。喷嘴605可以包括多个气体输送孔。喷嘴605可以在盖505的中心处或盖505的中心附近配合到孔中。在一些实施方式中,腔室可包括气体输送板(gdp)而不是盖和喷嘴。图7a至图7b分别示出了根据各实施方式的用于处理腔室的gdp705的顶视图和底视图。gdp705可以包括大量(例如,数千个)气体输送孔。在实施方式中,gdp705可以具有约1mm(例如,0.04)至约1英寸的厚度和约18英寸-22英寸的直径。在一个实施方式中,gdp705具有约1mm-6mm的厚度。gdp705可以是承载部件,并且可以具有相对大的直径且相对薄。这些因素可能使gdp705在处理和/或使用期间破裂。此外,gdp705可以在处理期间暴露于等离子体。因此,gdp705受益于含有55摩尔%-65摩尔%的y2o3和35摩尔%-45摩尔%的zro2的y2o3-zro2陶瓷材料(例如包括约60摩尔%的y2o3和约40摩尔%的zro2的y2o3-zro2陶瓷材料)表现出的耐等离子体性、硬度、抗弯强度和断裂韧度的组合。含有55摩尔%-65摩尔%的y2o3和35摩尔%-45摩尔%的zro2的y2o3-zro2陶瓷材料(例如,包括约60摩尔%的y2o3和约40摩尔%的zro2的y2o3-zro2陶瓷材料)的有益耐介电击穿性在用于gdp705时还可以减少电弧放电。在一些实施方式中,gdp705连接到背板(例如,诸如al背板之类的金属背板)以增加机械强度。gdp705可以被机械地夹紧到背板或被接合到背板(例如,通过扩散接合被接合到背板)。图8是示出根据本公开内容的一个实施方式的用于制造固体烧结陶瓷制品的工艺800的流程图。在框855处,选择用于形成陶瓷制品的y2o3和zro2陶瓷粉末。还选择所选的陶瓷粉末的量。在实施方式中,y2o3的陶瓷粉末可以具有至少99.99%的纯度,并且zro2的陶瓷粉末可以具有至少99.8%的纯度。在框858处,可以对所选的粉末执行纯化工艺。在框860处,将所选的陶瓷粉末混合。在一个实施方式中,将所选的陶瓷粉末与水、接合剂和抗絮凝剂混合以形成浆料。在一个实施方式中,使用研磨工艺(例如球磨)来混合陶瓷粉末。混合可以使陶瓷颗粒附聚成具有目标颗粒尺寸和目标颗粒尺寸分布的附聚物。值得注意,在实施方式中,陶瓷粉末的混合物不包括任何添加的烧结剂。在一个实施方式中,通过喷雾干燥将陶瓷粉末组合成粒状粉末。喷雾干燥工艺可以使附聚物中的液体或溶剂挥发。在框865处,由经混合的粉末(例如,来自由所选的陶瓷粉末的混合物形成的浆料)形成生坯主体(未烧结陶瓷制品)。可以使用包括但不限于注浆铸造、流延铸造、冷等静压制、单向机械压制、注塑成型和挤出的技术来形成生坯主体。例如,在一个实施方式中,可以将浆料喷雾干燥,置于模具中,并且压制形成生坯主体。在一个实施方式中,生坯主体通过冷等静压制形成。生坯主体可以具有要制造的腔室部件的近似形状。在一个实施方式中,在框866处,可以对生坯主体执行生坯加工。生坯加工可以包括例如在生坯主体中钻孔。在框868处,对生坯主体执行第一热处理以烧掉生坯主体中的有机接合剂。在一个实施方式中,通过将生坯主体在约1周-2周的持续时间内暴露于约950℃的升高的热量来执行第一热处理。在框870处,对生坯主体进行第二热处理以烧结生坯主体并产生基本上由55摩尔%-65摩尔%的y2o3和35摩尔%-45摩尔%的zro2组成(例如,基本上由约60摩尔%的y2o3和约40摩尔%的zro2组成)的烧结陶瓷主体。烧结生坯主体可以包括将生坯主体加热到低于y2o3和zro2的熔点的高温。在实施方式中,第二热处理工艺可以在约1750℃-1900℃的温度下执行约3小时-30小时的持续时间。在实施方式中,烧结可以在空气、氧气和/或氢气的存在下执行(例如,通过使这些气体中的任何气体流入正加热生坯主体的炉子中)。烧结工艺使生坯主体致密化并产生具有约0.1%孔隙率的固体烧结陶瓷制品,其包括至少一个y2o3-zro2相(例如,y2o3-zro2固溶体)。在实施方式中,烧结工艺可以是无压烧结工艺。在各种实施方式中,固体烧结陶瓷制品可以用于等离子体蚀刻反应器或其它腔室的不同的腔室部件。取决于正在生产的特定腔室部件,生坯主体可以具有不同的形状。例如,如果最终腔室部件是工艺套件环,那么生坯主体可以是环形状的。如果腔室部件是用于静电吸盘的静电圆盘,那么生坯主体可以是圆盘形状的。根据要生产的腔室部件,生坯主体也可以具有其它形状。烧结工艺通常使陶瓷制品的大小改变了不受控制的量。至少部分地由于大小的这种变化,在框875处完成烧结工艺之后通常对陶瓷制品进行加工。加工可以包括对陶瓷制品进行表面研磨和/或抛光、在陶瓷制品中钻孔、对陶瓷制品进行切割和/或塑形、研磨陶瓷制品、抛光陶瓷制品(例如,使用化学机械平坦化(cmp)、火焰抛光或其它抛光技术)、使陶瓷制品粗糙化(例如,通过喷砂处理进行粗糙化)、在陶瓷制品上形成台面等。在烧结之后,烧结陶瓷主体可能具有颜色不均匀性。颜色不均匀性可能是导致由烧结陶瓷主体形成的腔室部件被顾客退回的缺陷。因此,在一个实施方式中,在框880处,对烧结陶瓷主体执行第三热处理,以使烧结陶瓷主体的颜色匀化。在实施方式中,烧结陶瓷主体在第三热处理之后具有均匀白色。第三热处理可以在约1000℃-1400℃的温度下执行2小时-12小时的持续时间。在一个实施方式中,框866和/或875的加工工艺是粗加工工艺,所述粗加工工艺使烧结陶瓷主体大致具有目标形状和特征。在一个实施方式中,在框885处,使用附加加工工艺再次加工固体烧结陶瓷主体。附加加工工艺可以是精加工工艺,所述精加工工艺使烧结陶瓷主体具有目标形状、粗糙度和/或特征。陶瓷制品可以被加工成适于特定应用的配置。在加工之前,陶瓷制品可以具有适于特定目的(例如,用作等离子体蚀刻器中的盖)的大致的形状和大小。然而,可以执行加工以精确地控制腔室部件的大小、形状、尺寸、孔大小等。框866、875和/或885的加工工艺可以将痕量金属杂质引入烧结陶瓷制品。另外,烧结陶瓷制品可以包括由原始陶瓷粉末和/或其它制造步骤引入的非常少量的痕量金属杂质c对于将暴露于基于氟的等离子体的腔室部件,即使非常少量的金属杂质也可能对被处理的基板造成损害。因此,在框890处,可以对烧结陶瓷主体执行最终纯化工艺。在纯化之后,可以去除金属污染物,使得在陶瓷主体中不存在具有百万分之(ppm)100或更高的值的金属污染物。因此,纯化工艺之后的陶瓷主体的总纯度可以是99.9%。在一个实施方式中,最终纯化工艺包括湿法清洁工艺和/或干法清洁工艺。在实施方式中,最终纯化工艺可以从烧结陶瓷主体的表面去除痕量金属污染物。在其它实施方式中,最终纯化工艺可以从陶瓷主体的内部以及陶瓷主体的表面去除痕量金属污染物。下面表2提供了根据方法800所制造的陶瓷主体的金属杂质。通过gdms分析来测量金属杂质,并且以按重量计(wt.)的百万分数(ppm)来表示金属杂质。金属杂质al≤30b≤20ca≤50cr≤10co≤10cu≤10fe≤50pb≤20li≤20mg≤20mn≤10ni≤10k≤10na≤50sn≤50zn≤20表2:金属杂质取决于要生产的特定腔室部件,可以另外执行附加处理操作。在一个实施方式中,附加处理操作包括将固体烧结陶瓷主体接合到金属主体或其它主体(框895)。在其中对固体烧结陶瓷主体进行加工并将固体烧结陶瓷主体接合到金属主体的一些实例中,可以先执行加工,然后进行接合。在其它情况下,可以先将固体烧结陶瓷制品接合到金属主体,并且然后可以对固体烧结陶瓷制品进行加工。在其它实施方式中,某些加工在接合之前和之后都被执行。另外,在一些实施方式中,可以将固体烧结陶瓷制品接合到另一个陶瓷制品。在第一示例中,陶瓷制品要被用于喷头或gdp。在这样的实施方式中,可以在陶瓷制品中钻出许多孔,并且可以将陶瓷制品接合到铝气体分配板。在第二示例中,陶瓷制品用于静电吸盘。在这样的实施方式中,在陶瓷制品中钻出氦针孔(例如,通过激光钻孔钻出氦针孔),并且可以通过硅树脂接合或扩散接合来将陶瓷制品接合到铝基底板。在另一个示例中,陶瓷制品是陶瓷盖。由于陶瓷盖具有大的表面积,因此由新的烧结陶瓷材料形成的陶瓷盖可以具有高结构强度以防止在加工期间破裂或翘曲(例如,当向等离子体蚀刻反应器的工艺腔室施加真空时)。在其它示例中,形成喷嘴、工艺套件环或其它腔室部件。前述描述阐述了众多具体细节,诸如特定系统、部件、方法等的示例,以便提供对本公开内容的若干实施方式的良好理解。然而,对于本领域的技术人员而言将明显的是,可以在没有这些具体细节的情况下实践本公开内容的至少一些实施方式。在其它实例中,没有详细地描述所熟知的部件或方法或以简单框图格式来呈现所熟知的部件或方法,以避免不必要地模糊本公开内容。因此,所阐述的具体细节仅是示例性的。特定实现方式可以与这些示例性细节不同,并且仍预期为在本公开内容的范围内。在本说明书全文中提及“一个实施方式”或“实施方式”是指在至少一个实施方式中包括结合实施方式描述的特定特征、结构或特性。因此,在本说明书全文中的各种地方出现的短语“在一个实施方式中”或“在实施方式中”不一定都指代相同的实施方式。此外,术语“或”旨在表示包括性的“或”而不是排他性的“或”。虽然以特定顺序示出和描述了本文中的方法的操作,但可以改变每个方法的操作顺序,以使得可以以相反的顺序执行某些操作,或使得可以至少部分地与其它操作同时地执行某些操作。在另一个实施方式中,有区别的操作的指令或子操作可以是以间歇和/或交替的方式进行的。应理解,以上描述旨在是说明性的而非限制性的。在阅读和理解以上描述后,许多其它的实施方式对于本领域的技术人员而言是明显的。因此,本公开内容的范围应参考所附权利要求以及这些权利要求所赋予的等效物的全部范围来确定。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1