一种异型均质超细晶碳化钨陶瓷制品的近成形制备方法与流程

文档序号:27015469发布日期:2021-10-23 00:10阅读:99来源:国知局
一种异型均质超细晶碳化钨陶瓷制品的近成形制备方法与流程

1.本发明涉及粉末冶金硬质合金技术领域,具体涉及一种异型均质超细晶碳化钨陶瓷制品的近成形制备方法。


背景技术:

2.碳化钨陶瓷又称无粘结相硬质合金,是指co/ni等粘结相含量低于0.5%的纯碳化钨或碳化钨与其他碳化物/硼化物/氧化物组成的硬质合金材料。无粘结相硬质合金具有超高耐磨性和抗高温变形性,加之碳化钨本身的耐腐蚀性,非常适用于超高压水切割砂管、超高压喷嘴、高耐磨性密封圈/阀芯、电子封装材料、重负载滑动密封耐磨件、高表面抛光质量光学镜片模具、切削刀具等要求高精度、高硬度、高抗变形性及高耐腐蚀性环境领域。与传统wc-co/ni硬质合金相比,为防止晶粒长大和金属粘结相的加入造成合金硬度下降,碳化钨陶瓷材料高温下可与碳形成固溶体的金属粘结相(起到烧结助剂作用)含量极少,导致碳化钨陶瓷制品收缩致密化条件极为严苛,组织均匀化极为困难。公开号为cn108411137a的中国发明专利申请公开了一种超细晶碳化钨硬质合金的制备方法,其方案是包括如下步骤:步骤1,按比例称取粒径60
±
10nm碳化钨和600
±
100nmco粉末,混合,室温下以无水乙醇作为震荡介质,进行超声震荡、搅拌、混粉;步骤2,将混合粉料干燥,研磨,过筛;步骤3,将过筛的粉料直接倒入模具中,进行预压;步骤4,在真空环境中,采用放电等离子烧结工艺,以100
±
20℃/min的升温速率持续升温到1300
±
20℃,控制压力30
±
2mpa,保温,随后随炉冷却,制得超细晶碳化钨基硬质合金。该制备方法采用放电等离子烧结工艺,密度不均、表面硬度低,成本极高,并且无法用来加工异型的构件。


技术实现要素:

3.针对现有无粘结相硬质合金近成形性能存在的密度不均、表面硬度低、成本高等技术问题,本发明的目的在于提供一种异型均质超细晶碳化钨陶瓷制品的近成形制备方法,采用压制成形后生坯表面封孔并覆膜包胶,再进行等静压处理消除压制生坯内部密度梯度,提高生坯密度,减少烧结致密化阻碍因素,通过高温高真空烧结制得具有异型特征,相对密度高,高硬度,组织均匀的性能优异的碳化钨陶瓷制品,推动碳化物陶瓷材料的应用拓展,满足工业领域应用综合性能要求,成本较低,适合工业大规模推广。
4.为实现上述目的,本发明采用以下技术方案:
5.本发明一种异型均质超细晶碳化钨陶瓷制品的近成形制备方法,其方案是,(1)根据异型目标制品制作相应的成形模具;
6.(2)将配好并具有流动性的碳化钨陶瓷粉末造粒颗粒置入模具中压制成形为生坯;
7.(3)然后将生坯进行表面封孔处理,封孔处理后用高分子薄膜进行真空覆膜;
8.(4)再对封孔处理和真空覆膜后生坯进行冷等静压均质处理,消除生坯密度梯度;
9.(5)等静压处理后,去除表面乳胶薄膜,并置入有机溶剂中萃取去除封孔剂;
10.(6)最后经低真空高温烧结制得异型、均质碳化钨陶瓷制品。
11.本发明一种异型均质超细晶碳化钨陶瓷制品的近成形制备方法,具体包括以下工序:配料、球磨、干燥、混料制粒、成形、封孔覆膜、等静压、去膜萃取、烧结工序。
12.本发明的技术方案选用纳米级的碳化钨粉末作为主要成分,按一定配比加入少量作为晶粒抑制剂和烧结助剂的碳化物粉末,如碳化铬,碳化钽,碳化硅以及石墨等进行高能球磨混合、活化;球磨后干燥过筛,并采用滚动造粒设备进行造粒过筛,制得粒度分布于0.1~2mm之间;松装密度为3.5~5g/cm3;流动速率大于100g/min的碳化钨陶瓷造粒颗粒,以更好地充填压制模具模腔。
13.本发明的技术方案选用压制成形模具考虑压制时受碳化钨陶瓷造粒颗粒间摩擦、模具型腔侧壁摩擦以及产品自身形状特征等影响因素,所用压制成形模具不同部位特征尺寸所对应制品不同部位特征尺寸放大比例不一致,放大比例居于1.15~1.35之间。
14.本发明的技术方案为解决异型产品采用压制工艺的局限性会导致压制生坯相对密度不高,且生坯内存在密度不均等问题,在压制工序后设置表面封孔、真空覆膜、等静压、去膜萃取、真空烧结工序。可提高压制生坯相对密度达到99%以上,保证生坯各部位密度均匀以减少烧结变形、开裂和局部烧结密度偏低等缺陷。
15.本发明的技术方案采用将压制成形后的生坯浸入熔融石蜡中进行表面封孔处理,优选熔点47~52℃的石蜡作为封孔剂。
16.本发明的技术方案采用高分子薄膜对封孔后的压坯进行真空覆膜处理,以避免后续等静压介质对压制生坯基体材质造成污染;所述的高分子薄膜为天然乳胶薄膜或聚氨酯薄膜,其中优选天然乳胶薄膜,薄膜厚度为0.02~0.5mm;所述的真空包胶真空度为1~1000pa。
17.本发明的技术方案将真空覆膜处理后的生坯置入冷等静压机中进行等静压处理,压力为60~300mpa,保压时间为5~60min。经过等静压处理的压制生坯相对密度可达99%以上且各部位密度均匀,可有效地减少烧结时变形、开裂缺陷。压制生坯相对密度提高可减少碳化钨粉末颗粒烧结收缩行程,有利于烧结密度的提高。
18.本发明的技术方案将等静压处理后包胶生坯进行萃取脱蜡处理,萃取溶剂为三氯乙烯或二氯甲烷,萃取温度为30~50摄氏度,萃取时间为1~3小时;其中优选萃取溶剂为三氯乙烯。
19.本发明的技术方案将脱蜡后的生坯放入石墨真空炉进行高温烧结,烧结压力为0.01~10pa,烧结温度为1700~2000℃,保温时间为30~120min。优选的烧结压力为1pa以下,烧结温度1800℃,保温时间60min。
20.通过上述方法所获得的异型碳化钨陶瓷制品,相对密度可达99.5%以上,晶粒度0.2~0.4μm,表面硬度≥2700hv1,而且可完全消除碳化钨陶瓷压制不均形成的表面软化层,减少乃至消除后续加工工序。
21.现有碳化钨陶瓷制品采用压制、挤压等常规粉末冶金工艺成形,对具有异型特征的制品成形尤为困难,特别是压制成形工艺会因原料填充模腔不均匀、模具内腔表面摩擦力等因素导致压制生坯内部密度不均匀,从而造成后续高温烧结收缩时制品内部延续密度不均。致密化程度是碳化钨陶瓷材料性能的关键因素,低密度区域或导致材料硬度和抗弯强度等特性指标显著下降,从而使材料丧失高硬度、高耐磨等优势。现有技术方案通常采用
取消异型特征、增加表面加工余量的方法,后续再通过平面磨、无心磨等磨削工序,或采用pcn刀具车加工工序,或采用电火花、激光加工等加工工艺去除表面软化层,加工出所需孔、凸台等异型特征,极大地增加制品成本,从而严重地阻碍碳化钨陶瓷材料的应用拓展。
22.与现有技术方案对比,本发明的有益效果是:
23.(1)可批量、低成本获得具有盲孔、凸台、倒角等异型特征的近成形碳化钨陶瓷制品;缩短或者避免后续增加加工余量,提高生产效率,降低制品成本。
24.(2)所获得的制品具有高密度、高硬度、高抗弯强度、组织均匀等优点;根据生产实践数据,同一制品如只采用压制工艺一次成形,相同烧结工艺所获得制品存在显微硬度不足1900hv1的低硬度区;通过本技术方案的实施,可获得组织均匀,各部位显微硬度高达2700hv1的碳化钨陶瓷制品。
25.(3)本发明的技术方案采用高温真空烧结工艺,与选用热压烧结、sps烧结、加压烧结、热等静压等现有技术方案相比,设备工艺简单并极大地降低生产成本低。
附图说明
26.图1是实施例1所制备的近成形异型均质超细晶碳化钨陶瓷喷嘴立体结构示意图。
27.图2是实施例1所制得近成形喷嘴的纵向切面结构示意图。
具体实施方式
28.为了更好地理解本发明,以下提供本发明的优选实施方式,对本发明进行进一步说明,但本发明的保护范围并不仅限于这些优选实施例。
29.实施例一异型均质超细晶碳化钨陶瓷喷嘴的近成形制备方法
30.准备与喷嘴形状相适应的模具,模具的尺寸在喷嘴的尺寸按比例放大,模具上喷嘴内孔直径放大比例1.18,模具上喷嘴外径放大比例1.23。图1是实施例1所制备的近成形异型均质超细晶碳化钨陶瓷喷嘴立体结构示意图,图2是实施例1所制得近成形喷嘴的纵向切面结构示意图,如图1和图2所示,所制喷嘴包括外体1和内孔2,内孔2是一个前段为半球形,中段为圆柱形,后段为锥状喇叭口形,角,外体包括基体层11和表面封孔及真空覆膜层12。
31.选用0.1~0.2微米的碳化钨粉末作为主要成分,加入混合物中质量比例为0.3%碳化铬,0.1%碳化钒,0.3%石墨,进行24小时高能球磨混合、活化;球磨干燥后400目过筛,并采用滚动造粒设备进行造粒过50目筛网,制得粒度小于0.8~1mm的造粒颗粒;松装密度为4.5g/cm3;流动速率130g/min的碳化钨陶瓷造粒颗粒。
32.进一步地采用6t机械压机压制成形,将压制成形后的生坯浸入47℃熔融石蜡中进行表面封孔处理,进入5s取出冷却。然后用真空覆膜机进行真空覆膜处理,采用天然乳胶薄膜,薄膜厚度为0.1mm;所述的真空覆膜真空度为10pa。
33.进一步地将真空覆膜处理后的生坯置入冷等静压机中进行等静压处理,压力为100mpa,保压时间为10min。
34.将等静压处理后包胶生坯进行萃取脱胶处理,萃取溶剂为三氯乙烯,萃取温度为40摄氏度,萃取时间为3小时,去除表面封孔石蜡和部分基体内石蜡。
35.进一步地将脱蜡后的生坯放入石墨真空炉进行高温烧结,烧结压力为1pa,烧结温
度为1780℃,保温时间为60min。
36.最终获得制品经阿基米德排水法测得密度为15.52g/cm3;采用显微硬度计,在1kgn,保压10s条件下测得表面硬度为2730hv;采用金相显微镜方法测得晶粒度为0.15~0.25μm,致密度为99.2%。烧结坯尺寸满足制品最终要求的近成形碳化钨陶瓷喷嘴。
37.实施例二
38.准备与喷嘴形状相适应的模具,模具的尺寸在喷嘴的尺寸按比例放大,模具上喷嘴内孔直径和喷嘴外径放大比例均为1.25。
39.选用f.s.s.s为0.3~0.4微米的碳化钨粉末作为主要成分,加入混合物中质量比例为0.3%碳化铬,0.1%碳化钒,0.3%石墨,进行24小时高能球磨混合、活化;球磨干燥后400目过筛,并采用滚动造粒设备进行造粒过50目筛网,制得粒度小于0.3mm的造粒颗粒;松装密度为4.5g/cm3;流动速率130g/min的碳化钨陶瓷造粒颗粒。
40.进一步地采用6t机械压机压制成形,将压制成形后的生坯浸入47℃熔融石蜡中进行表面封孔处理,进入5s取出冷却。然后用真空覆膜机进行真空覆膜处理,采用天然乳胶薄膜,薄膜厚度为0.1mm;所述的真空覆膜真空度为10pa。
41.进一步地将真空覆膜处理后的生坯置入冷等静压机中进行等静压处理,压力为100mpa,保压时间为10min。
42.将等静压处理后包胶生坯进行萃取脱胶处理,萃取溶剂为三氯乙烯,萃取温度为40摄氏度,萃取时间为3小时,去除表面封孔石蜡和部分基体内石蜡。
43.进一步地将脱蜡后的生坯放入石墨真空炉进行高温烧结,烧结压力为1pa,烧结温度为1830℃,保温时间为60min。
44.最终获得制品经阿基米德排水法测得密度为15.42g/cm3;采用显微硬度计,在1kgn,保压10s条件下测得表面5个取样点平均维氏硬度值为2680hv;采用扫描电子显微镜取像,用image j软件采用等效圆的方法测得晶粒度为0.4~0.5μm,致密度为99.1%。烧结坯尺寸满足制品最终要求的近成形碳化钨陶瓷喷嘴。
45.采用本方法制备的异型均质超细晶碳化钨陶瓷制品不仅具有超高耐磨性和抗高温变形性,加之无钴粘结相可凸显出碳化钨本身的优异耐腐蚀性,非常适用于超高压水切割砂管、超高压喷嘴、喷砂喷嘴、3d打印喷嘴,较常规钨钢喷嘴可延长3~5倍使用寿命。
46.上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1